ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE_old/src/mdtools/libmdCode/calc_sticky_pair.F90
Revision: 322
Committed: Wed Mar 12 15:17:52 2003 UTC (21 years, 3 months ago) by gezelter
File size: 12450 byte(s)
Log Message:
Massive sticky rewrite

File Contents

# Content
1 !! This Module Calculates forces due to SSD potential and VDW interactions
2 !! [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)].
3
4 !! This module contains the Public procedures:
5
6
7 !! Corresponds to the force field defined in ssd_FF.cpp
8 !! @author Charles F. Vardeman II
9 !! @author Matthew Meineke
10 !! @author Christopher Fennel
11 !! @author J. Daniel Gezelter
12 !! @version $Id: calc_sticky_pair.F90,v 1.2 2003-03-12 15:17:52 gezelter Exp $, $Date: 2003-03-12 15:17:52 $, $Name: not supported by cvs2svn $, $Revision: 1.2 $
13
14 module sticky_pair
15
16 use simulation
17 use definitions
18 use forceGlobals
19 #ifdef IS_MPI
20 use mpiSimulation
21 #endif
22
23 implicit none
24
25 PRIVATE
26
27 logical, save :: sticky_initialized = .false.
28 real( kind = dp ), save :: SSD_w0
29 real( kind = dp ), save :: SSD_v0
30 real( kind = dp ), save :: SSD_rl
31 real( kind = dp ), save :: SSD_ru
32 real( kind = dp ), save :: SSD_rup
33
34 public :: initialize_sticky
35 public :: do_sticky_pair
36
37 contains
38
39 subroutine initialize_sticky(sticky_w0, sticky_v0)
40 real( kind = dp ), intent(in) :: sticky_w0, sticky_v0
41
42 ! we could pass all 5 parameters if we felt like it...
43
44 SSD_w0 = sticky_w0
45 SSD_v0 = sticky_v0
46 SSD_rl = 2.75_DP
47 SSD_ru = 3.35_DP
48 SSD_rup = 4.0_DP
49
50 sticky_initialized = .true.
51 return
52 end subroutine initialize_sticky
53
54 subroutine do_sticky_pair(atom1, atom2, d, rij, A, pot, f, t)
55
56 !! This routine does only the sticky portion of the SSD potential
57 !! [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)].
58 !! The Lennard-Jones and dipolar interaction must be handled separately.
59
60 !! We assume that the rotation matrices have already been calculated
61 !! and placed in the A array.
62
63 !! i and j are pointers to the two SSD atoms
64
65 integer, intent(in) :: atom1, atom2
66 real (kind=dp), intent(inout) :: rij
67 real (kind=dp), dimension(3), intent(in) :: d
68 real (kind=dp), dimension(9,getNlocal()) :: A
69 real (kind=dp), dimension(3,getNlocal()) :: f
70 real (kind=dp), dimension(3,getNlocal()) :: t
71
72 real (kind=dp) :: xi, yi, zi, xj, yj, zj, xi2, yi2, zi2, xj2, yj2, zj2
73 real (kind=dp) :: r2, r3, r5, r6, s, sp, dsdr, dspdr
74 real (kind=dp) :: wi, wj, w, wip, wjp, wp
75 real (kind=dp) :: dwidx, dwidy, dwidz, dwjdx, dwjdy, dwjdz
76 real (kind=dp) :: dwipdx, dwipdy, dwipdz, dwjpdx, dwjpdy, dwjpdz
77 real (kind=dp) :: dwidux, dwiduy, dwiduz, dwjdux, dwjduy, dwjduz
78 real (kind=dp) :: dwipdux, dwipduy, dwipduz, dwjpdux, dwjpduy, dwjpduz
79 real (kind=dp) :: zif, zis, zjf, zjs, uglyi, uglyj
80 real (kind=dp) :: drdx, drdy, drdz
81 real (kind=dp) :: txi, tyi, tzi, txj, tyj, tzj
82 real (kind=dp) :: fxii, fyii, fzii, fxjj, fyjj, fzjj
83 real (kind=dp) :: fxij, fyij, fzij, fxji, fyji, fzji
84 real (kind=dp) :: fxradial, fyradial, fzradial
85
86 if (.not.sticky_initialized) then
87 write(*,*) 'Sticky forces not initialized!'
88 return
89 endif
90
91 r2 = rij*rij
92 r3 = r2*rij
93 r5 = r3*r2
94
95 drdx = d(1) / rij
96 drdy = d(2) / rij
97 drdz = d(3) / rij
98
99 #ifdef IS_MPI
100 ! rotate the inter-particle separation into the two different
101 ! body-fixed coordinate systems:
102
103 xi = A_row(1,atom1)*d(1) + A_row(2,atom1)*d(2) + A_row(3,atom1)*d(3)
104 yi = A_row(4,atom1)*d(1) + A_row(5,atom1)*d(2) + A_row(6,atom1)*d(3)
105 zi = A_row(7,atom1)*d(1) + A_row(8,atom1)*d(2) + A_row(9,atom1)*d(3)
106
107 ! negative sign because this is the vector from j to i:
108
109 xj = -(A_Col(1,atom2)*d(1) + A_Col(2,atom2)*d(2) + A_Col(3,atom2)*d(3))
110 yj = -(A_Col(4,atom2)*d(1) + A_Col(5,atom2)*d(2) + A_Col(6,atom2)*d(3))
111 zj = -(A_Col(7,atom2)*d(1) + A_Col(8,atom2)*d(2) + A_Col(9,atom2)*d(3))
112 #else
113 ! rotate the inter-particle separation into the two different
114 ! body-fixed coordinate systems:
115
116 xi = a(1,atom1)*d(1) + a(2,atom1)*d(2) + a(3,atom1)*d(3)
117 yi = a(4,atom1)*d(1) + a(5,atom1)*d(2) + a(6,atom1)*d(3)
118 zi = a(7,atom1)*d(1) + a(8,atom1)*d(2) + a(9,atom1)*d(3)
119
120 ! negative sign because this is the vector from j to i:
121
122 xj = -(a(1,atom2)*d(1) + a(2,atom2)*d(2) + a(3,atom2)*d(3))
123 yj = -(a(4,atom2)*d(1) + a(5,atom2)*d(2) + a(6,atom2)*d(3))
124 zj = -(a(7,atom2)*d(1) + a(8,atom2)*d(2) + a(9,atom2)*d(3))
125 #endif
126
127 xi2 = xi*xi
128 yi2 = yi*yi
129 zi2 = zi*zi
130
131 xj2 = xj*xj
132 yj2 = yj*yj
133 zj2 = zj*zj
134
135 call calc_sw_fnc(rij, s, sp, dsdr, dspdr)
136
137 wi = 2.0d0*(xi2-yi2)*zi / r3
138 wj = 2.0d0*(xj2-yj2)*zj / r3
139 w = wi+wj
140
141 zif = zi/rij - 0.6d0
142 zis = zi/rij + 0.8d0
143
144 zjf = zj/rij - 0.6d0
145 zjs = zj/rij + 0.8d0
146
147 wip = zif*zif*zis*zis - SSD_w0
148 wjp = zjf*zjf*zjs*zjs - SSD_w0
149 wp = wip + wjp
150
151 #ifdef IS_MPI
152 pot_row(atom1) = pot_row(atom1) + 0.25d0*SSD_v0*(s*w + sp*wp)
153 pot_col(atom2) = pot_col(atom2) + 0.25d0*SSD_v0*(s*w + sp*wp)
154 #else
155 pot = pot + 0.5d0*SSD_v0*(s*w + sp*wp)
156 #endif
157
158 dwidx = 4.0d0*xi*zi/r3 - 6.0d0*xi*zi*(xi2-yi2)/r5
159 dwidy = - 4.0d0*yi*zi/r3 - 6.0d0*yi*zi*(xi2-yi2)/r5
160 dwidz = 2.0d0*(xi2-yi2)/r3 - 6.0d0*zi2*(xi2-yi2)/r5
161
162 dwjdx = 4.0d0*xj*zj/r3 - 6.0d0*xj*zj*(xj2-yj2)/r5
163 dwjdy = - 4.0d0*yj*zj/r3 - 6.0d0*yj*zj*(xj2-yj2)/r5
164 dwjdz = 2.0d0*(xj2-yj2)/r3 - 6.0d0*zj2*(xj2-yj2)/r5
165
166 uglyi = zif*zif*zis + zif*zis*zis
167 uglyj = zjf*zjf*zjs + zjf*zjs*zjs
168
169 dwipdx = -2.0d0*xi*zi*uglyi/r3
170 dwipdy = -2.0d0*yi*zi*uglyi/r3
171 dwipdz = 2.0d0*(1.0d0/rij - zi2/r3)*uglyi
172
173 dwjpdx = -2.0d0*xj*zj*uglyj/r3
174 dwjpdy = -2.0d0*yj*zj*uglyj/r3
175 dwjpdz = 2.0d0*(1.0d0/rij - zj2/r3)*uglyj
176
177 dwidux = 4.0d0*(yi*zi2 + 0.5d0*yi*(xi2-yi2))/r3
178 dwiduy = 4.0d0*(xi*zi2 - 0.5d0*xi*(xi2-yi2))/r3
179 dwiduz = - 8.0d0*xi*yi*zi/r3
180
181 dwjdux = 4.0d0*(yj*zj2 + 0.5d0*yj*(xj2-yj2))/r3
182 dwjduy = 4.0d0*(xj*zj2 - 0.5d0*xj*(xj2-yj2))/r3
183 dwjduz = - 8.0d0*xj*yj*zj/r3
184
185 dwipdux = 2.0d0*yi*uglyi/rij
186 dwipduy = -2.0d0*xi*uglyi/rij
187 dwipduz = 0.0d0
188
189 dwjpdux = 2.0d0*yj*uglyj/rij
190 dwjpduy = -2.0d0*xj*uglyj/rij
191 dwjpduz = 0.0d0
192
193 ! do the torques first since they are easy:
194 ! remember that these are still in the body fixed axes
195
196 txi = 0.5d0*SSD_v0*(s*dwidux + sp*dwipdux)
197 tyi = 0.5d0*SSD_v0*(s*dwiduy + sp*dwipduy)
198 tzi = 0.5d0*SSD_v0*(s*dwiduz + sp*dwipduz)
199
200 txj = 0.5d0*SSD_v0*(s*dwjdux + sp*dwjpdux)
201 tyj = 0.5d0*SSD_v0*(s*dwjduy + sp*dwjpduy)
202 tzj = 0.5d0*SSD_v0*(s*dwjduz + sp*dwjpduz)
203
204 ! go back to lab frame using transpose of rotation matrix:
205
206 #ifdef IS_MPI
207 t_Row(1,atom1) = t_Row(1,atom1) + a_Row(1,atom1)*txi + &
208 a_Row(4,atom1)*tyi + a_Row(7,atom1)*tzi
209 t_Row(2,atom1) = t_Row(2,atom1) + a_Row(2,atom1)*txi + &
210 a_Row(5,atom1)*tyi + a_Row(8,atom1)*tzi
211 t_Row(3,atom1) = t_Row(3,atom1) + a_Row(3,atom1)*txi + &
212 a_Row(6,atom1)*tyi + a_Row(9,atom1)*tzi
213
214 t_Col(1,atom2) = t_Col(1,atom2) + a_Col(1,atom2)*txj + &
215 a_Col(4,atom2)*tyj + a_Col(7,atom2)*tzj
216 t_Col(2,atom2) = t_Col(2,atom2) + a_Col(2,atom2)*txj + &
217 a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj
218 t_Col(3,atom2) = t_Col(3,atom2) + a_Col(3,atom2)*txj + &
219 a_Col(6,atom2)*tyj + a_Col(9,atom2)*tzj
220 #else
221 t(1,atom1) = t(1,atom1) + a(1,atom1)*txi + a(4,atom1)*tyi + a(7,atom1)*tzi
222 t(2,atom1) = t(2,atom1) + a(2,atom1)*txi + a(5,atom1)*tyi + a(8,atom1)*tzi
223 t(3,atom1) = t(3,atom1) + a(3,atom1)*txi + a(6,atom1)*tyi + a(9,atom1)*tzi
224
225 t(1,atom2) = t(1,atom2) + a(1,atom2)*txj + a(4,atom2)*tyj + a(7,atom2)*tzj
226 t(2,atom2) = t(2,atom2) + a(2,atom2)*txj + a(5,atom2)*tyj + a(8,atom2)*tzj
227 t(3,atom2) = t(3,atom2) + a(3,atom2)*txj + a(6,atom2)*tyj + a(9,atom2)*tzj
228 #endif
229 ! Now, on to the forces:
230
231 ! first rotate the i terms back into the lab frame:
232
233 #ifdef IS_MPI
234 fxii = a_Row(1,atom1)*(s*dwidx+sp*dwipdx) + &
235 a_Row(4,atom1)*(s*dwidy+sp*dwipdy) + &
236 a_Row(7,atom1)*(s*dwidz+sp*dwipdz)
237 fyii = a_Row(2,atom1)*(s*dwidx+sp*dwipdx) + &
238 a_Row(5,atom1)*(s*dwidy+sp*dwipdy) + &
239 a_Row(8,atom1)*(s*dwidz+sp*dwipdz)
240 fzii = a_Row(3,atom1)*(s*dwidx+sp*dwipdx) + &
241 a_Row(6,atom1)*(s*dwidy+sp*dwipdy) + &
242 a_Row(9,atom1)*(s*dwidz+sp*dwipdz)
243
244 fxjj = a_Col(1,atom2)*(s*dwjdx+sp*dwjpdx) + &
245 a_Col(4,atom2)*(s*dwjdy+sp*dwjpdy) + &
246 a_Col(7,atom2)*(s*dwjdz+sp*dwjpdz)
247 fyjj = a_Col(2,atom2)*(s*dwjdx+sp*dwjpdx) + &
248 a_Col(5,atom2)*(s*dwjdy+sp*dwjpdy) + &
249 a_Col(8,atom2)*(s*dwjdz+sp*dwjpdz)
250 fzjj = a_Col(3,atom2)*(s*dwjdx+sp*dwjpdx)+ &
251 a_Col(6,atom2)*(s*dwjdy+sp*dwjpdy) + &
252 a_Col(9,atom2)*(s*dwjdz+sp*dwjpdz)
253 #else
254 fxii = a(1,atom1)*(s*dwidx+sp*dwipdx) + &
255 a(4,atom1)*(s*dwidy+sp*dwipdy) + &
256 a(7,atom1)*(s*dwidz+sp*dwipdz)
257 fyii = a(2,atom1)*(s*dwidx+sp*dwipdx) + &
258 a(5,atom1)*(s*dwidy+sp*dwipdy) + &
259 a(8,atom1)*(s*dwidz+sp*dwipdz)
260 fzii = a(3,atom1)*(s*dwidx+sp*dwipdx) + &
261 a(6,atom1)*(s*dwidy+sp*dwipdy) + &
262 a(9,atom1)*(s*dwidz+sp*dwipdz)
263
264 fxjj = a(1,atom2)*(s*dwjdx+sp*dwjpdx) + &
265 a(4,atom2)*(s*dwjdy+sp*dwjpdy) + &
266 a(7,atom2)*(s*dwjdz+sp*dwjpdz)
267 fyjj = a(2,atom2)*(s*dwjdx+sp*dwjpdx) + &
268 a(5,atom2)*(s*dwjdy+sp*dwjpdy) + &
269 a(8,atom2)*(s*dwjdz+sp*dwjpdz)
270 fzjj = a(3,atom2)*(s*dwjdx+sp*dwjpdx)+ &
271 a(6,atom2)*(s*dwjdy+sp*dwjpdy) + &
272 a(9,atom2)*(s*dwjdz+sp*dwjpdz)
273 #endif
274
275 fxij = -fxii
276 fyij = -fyii
277 fzij = -fzii
278
279 fxji = -fxjj
280 fyji = -fyjj
281 fzji = -fzjj
282
283 ! now assemble these with the radial-only terms:
284
285 fxradial = 0.5d0*SSD_v0*(dsdr*drdx*w + dspdr*drdx*wp + fxii + fxji)
286 fyradial = 0.5d0*SSD_v0*(dsdr*drdy*w + dspdr*drdy*wp + fyii + fyji)
287 fzradial = 0.5d0*SSD_v0*(dsdr*drdz*w + dspdr*drdz*wp + fzii + fzji)
288
289 #ifdef IS_MPI
290 f_Row(1,atom1) = f_Row(1,atom1) + fxradial
291 f_Row(2,atom1) = f_Row(2,atom1) + fyradial
292 f_Row(3,atom1) = f_Row(3,atom1) + fzradial
293
294 f_Col(1,atom2) = f_Col(1,atom2) + 0.5d0*SSD_v0*(-dsdr*drdx*w - &
295 dspdr*drdx*wp + fxjj + fxij)
296 f_Col(2,atom2) = f_Col(2,atom2) + 0.5d0*SSD_v0*(-dsdr*drdy*w - &
297 dspdr*drdy*wp + fyjj + fyij)
298 f_Col(3,atom2) = f_Col(3,atom2) + 0.5d0*SSD_v0*(-dsdr*drdz*w - &
299 dspdr*drdz*wp + fzjj + fzij)
300 #else
301 f(1,atom1) = f(1,atom1) + fxradial
302 f(2,atom1) = f(2,atom1) + fyradial
303 f(3,atom1) = f(3,atom1) + fzradial
304
305 f(1,atom2) = f(1,atom2) + 0.5d0*SSD_v0*(-dsdr*drdx*w - dspdr*drdx*wp + &
306 fxjj + fxij)
307 f(2,atom2) = f(2,atom2) + 0.5d0*SSD_v0*(-dsdr*drdy*w - dspdr*drdy*wp + &
308 fyjj + fyij)
309 f(3,atom2) = f(3,atom2) + 0.5d0*SSD_v0*(-dsdr*drdz*w - dspdr*drdz*wp + &
310 fzjj + fzij)
311 #endif
312
313 if (doStress()) then
314 tau_Temp(1) = tau_Temp(1) + fxradial * d(1)
315 tau_Temp(2) = tau_Temp(2) + fxradial * d(2)
316 tau_Temp(3) = tau_Temp(3) + fxradial * d(3)
317 tau_Temp(4) = tau_Temp(4) + fyradial * d(1)
318 tau_Temp(5) = tau_Temp(5) + fyradial * d(2)
319 tau_Temp(6) = tau_Temp(6) + fyradial * d(3)
320 tau_Temp(7) = tau_Temp(7) + fzradial * d(1)
321 tau_Temp(8) = tau_Temp(8) + fzradial * d(2)
322 tau_Temp(9) = tau_Temp(9) + fzradial * d(3)
323 virial_Temp = virial_Temp + (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
324 endif
325
326 end subroutine do_sticky_pair
327
328 !! calculates the switching functions and their derivatives for a given
329 subroutine calc_sw_fnc(r, s, sp, dsdr, dspdr)
330
331 real (kind=dp), intent(in) :: r
332 real (kind=dp), intent(inout) :: s, sp, dsdr, dspdr
333
334 ! distances must be in angstroms
335
336 if (r.lt.SSD_rl) then
337 s = 1.0d0
338 sp = 1.0d0
339 dsdr = 0.0d0
340 dspdr = 0.0d0
341 elseif (r.gt.SSD_rup) then
342 s = 0.0d0
343 sp = 0.0d0
344 dsdr = 0.0d0
345 dspdr = 0.0d0
346 else
347 sp = ((SSD_rup + 2.0d0*r - 3.0d0*SSD_rl) * (SSD_rup-r)**2) / &
348 ((SSD_rup - SSD_rl)**3)
349 dspdr = 6.0d0*(r-SSD_rup)*(r-SSD_rl)/((SSD_rup - SSD_rl)**3)
350
351 if (r.gt.SSD_ru) then
352 s = 0.0d0
353 dsdr = 0.0d0
354 else
355 s = ((SSD_ru + 2.0d0*r - 3.0d0*SSD_rl) * (SSD_ru-r)**2) / &
356 ((SSD_ru - SSD_rl)**3)
357 dsdr = 6.0d0*(r-SSD_ru)*(r-SSD_rl)/((SSD_ru - SSD_rl)**3)
358 endif
359 endif
360
361 return
362 end subroutine calc_sw_fnc
363 end module sticky_pair