ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/SHAPES/GridBuilder.cpp
Revision: 1287
Committed: Wed Jun 23 20:18:48 2004 UTC (20 years, 2 months ago) by chrisfen
File size: 6218 byte(s)
Log Message:
Major progress towards inclusion of spherical harmonic transform capability - still having some build issues...

File Contents

# User Rev Content
1 chrisfen 1277 #include "GridBuilder.hpp"
2     #define PI 3.14159265359
3    
4    
5 chrisfen 1285 GridBuilder::GridBuilder(RigidBody* rb, int gridWidth) {
6 chrisfen 1280 rbMol = rb;
7 chrisfen 1285 gridwidth = gridWidth;
8     thetaStep = PI / gridwidth;
9 chrisfen 1280 thetaMin = thetaStep / 2.0;
10     phiStep = thetaStep * 2.0;
11 chrisfen 1277 }
12    
13     GridBuilder::~GridBuilder() {
14     }
15    
16 gezelter 1283 void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid,
17     vector<double> sGrid, vector<double> epsGrid){
18 chrisfen 1281 ofstream sigmaOut("sigma.grid");
19     ofstream sOut("s.grid");
20     ofstream epsOut("eps.grid");
21 chrisfen 1280 double startDist;
22 chrisfen 1282 double phiVal;
23     double thetaVal;
24 chrisfen 1285 double sigTemp, sTemp, epsTemp, sigProbe;
25 chrisfen 1280 double minDist = 10.0; //minimum start distance
26 chrisfen 1277
27 chrisfen 1287 sigList = sigmaGrid;
28 chrisfen 1281 sList = sGrid;
29     epsList = epsGrid;
30 chrisfen 1280 forcefield = forceField;
31 chrisfen 1285
32     //load the probe atom parameters
33     switch(forcefield){
34     case 1:{
35     rparHe = 1.4800;
36     epsHe = -0.021270;
37     }; break;
38     case 2:{
39     rparHe = 1.14;
40     epsHe = 0.0203;
41     }; break;
42     case 3:{
43     rparHe = 2.28;
44     epsHe = 0.020269601874;
45     }; break;
46     case 4:{
47     rparHe = 2.5560;
48     epsHe = 0.0200;
49     }; break;
50     case 5:{
51     rparHe = 1.14;
52     epsHe = 0.0203;
53     }; break;
54     }
55 chrisfen 1280
56 chrisfen 1285 if (rparHe < 2.2)
57     sigProbe = 2*rparHe/1.12246204831;
58     else
59     sigProbe = rparHe;
60    
61     //determine the start distance - we always start at least minDist away
62 chrisfen 1280 startDist = rbMol->findMaxExtent() + minDist;
63     if (startDist < minDist)
64     startDist = minDist;
65 chrisfen 1281
66 chrisfen 1282 //set the initial orientation of the body and loop over theta values
67 gezelter 1283
68 chrisfen 1285 for (k =0; k < gridwidth; k++) {
69 gezelter 1283 thetaVal = thetaMin + k*thetaStep;
70 chrisfen 1285 printf("Theta step %i\n", k);
71     for (j=0; j < gridwidth; j++) {
72 gezelter 1283 phiVal = j*phiStep;
73    
74     rbMol->setEuler(0.0, thetaVal, phiVal);
75    
76 chrisfen 1280 releaseProbe(startDist);
77 chrisfen 1279
78 chrisfen 1285 //translate the values to sigma, s, and epsilon of the rigid body
79     sigTemp = 2*sigDist - sigProbe;
80     sTemp = (2*(sDist - sigDist))/(0.122462048309) - sigProbe;
81     epsTemp = pow(epsVal, 2)/fabs(epsHe);
82    
83     sigList.push_back(sigTemp);
84     sList.push_back(sTemp);
85     epsList.push_back(epsTemp);
86 chrisfen 1280 }
87     }
88 chrisfen 1277 }
89    
90     void GridBuilder::releaseProbe(double farPos){
91 chrisfen 1280 int tooClose;
92     double tempPotEnergy;
93     double interpRange;
94     double interpFrac;
95 chrisfen 1277
96 chrisfen 1280 probeCoor = farPos;
97     potProgress.clear();
98     distProgress.clear();
99     tooClose = 0;
100     epsVal = 0;
101     rhoStep = 0.1; //the distance the probe atom moves between steps
102 gezelter 1283
103 chrisfen 1280 while (!tooClose){
104     calcEnergy();
105     potProgress.push_back(potEnergy);
106     distProgress.push_back(probeCoor);
107 chrisfen 1277
108 chrisfen 1280 //if we've reached a new minimum, save the value and position
109     if (potEnergy < epsVal){
110     epsVal = potEnergy;
111     sDist = probeCoor;
112     }
113 chrisfen 1277
114 chrisfen 1280 //test if the probe reached the origin - if so, stop stepping closer
115     if (probeCoor < 0){
116     sigDist = 0.0;
117     tooClose = 1;
118     }
119 chrisfen 1277
120 chrisfen 1280 //test if the probe beyond the contact point - if not, take a step closer
121     if (potEnergy < 0){
122     sigDist = probeCoor;
123     tempPotEnergy = potEnergy;
124     probeCoor -= rhoStep;
125     }
126     else {
127     //do a linear interpolation to obtain the sigDist
128     interpRange = potEnergy - tempPotEnergy;
129     interpFrac = potEnergy / interpRange;
130     interpFrac = interpFrac * rhoStep;
131     sigDist = probeCoor + interpFrac;
132 chrisfen 1277
133 chrisfen 1280 //end the loop
134     tooClose = 1;
135     }
136     }
137 chrisfen 1277 }
138    
139     void GridBuilder::calcEnergy(){
140 chrisfen 1281 double rXij, rYij, rZij;
141     double rijSquared;
142     double rValSquared, rValPowerSix;
143     double atomRpar, atomEps;
144     double rbAtomPos[3];
145 chrisfen 1285
146 chrisfen 1281 potEnergy = 0.0;
147 gezelter 1283
148 chrisfen 1281 for(i=0; i<rbMol->getNumAtoms(); i++){
149     rbMol->getAtomPos(rbAtomPos, i);
150    
151     rXij = rbAtomPos[0];
152     rYij = rbAtomPos[1];
153     rZij = rbAtomPos[2] - probeCoor;
154    
155     rijSquared = rXij * rXij + rYij * rYij + rZij * rZij;
156    
157 chrisfen 1285 //in the interest of keeping the code more compact, we are being less
158     //efficient by placing a switch statement in the calculation loop
159 chrisfen 1281 switch(forcefield){
160     case 1:{
161     //we are using the CHARMm force field
162     atomRpar = rbMol->getAtomRpar(i);
163     atomEps = rbMol->getAtomEps(i);
164    
165     rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared);
166     rValPowerSix = rValSquared * rValSquared * rValSquared;
167     potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0));
168     }; break;
169    
170     case 2:{
171     //we are using the AMBER force field
172     atomRpar = rbMol->getAtomRpar(i);
173     atomEps = rbMol->getAtomEps(i);
174    
175     rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared);
176     rValPowerSix = rValSquared * rValSquared * rValSquared;
177     potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0));
178     }; break;
179    
180     case 3:{
181     //we are using Allen-Tildesley LJ parameters
182     atomRpar = rbMol->getAtomRpar(i);
183     atomEps = rbMol->getAtomEps(i);
184    
185     rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (4*rijSquared);
186     rValPowerSix = rValSquared * rValSquared * rValSquared;
187     potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0));
188    
189     }; break;
190    
191     case 4:{
192     //we are using the OPLS force field
193     atomRpar = rbMol->getAtomRpar(i);
194     atomEps = rbMol->getAtomEps(i);
195    
196     rValSquared = (pow(sqrt(rparHe+atomRpar),2)) / (rijSquared);
197     rValPowerSix = rValSquared * rValSquared * rValSquared;
198     potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0));
199     }; break;
200    
201     case 5:{
202     //we are using the GAFF force field
203     atomRpar = rbMol->getAtomRpar(i);
204     atomEps = rbMol->getAtomEps(i);
205    
206     rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared);
207     rValPowerSix = rValSquared * rValSquared * rValSquared;
208     potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0));
209     }; break;
210     }
211     }
212     }
213 chrisfen 1277
214 chrisfen 1281 void GridBuilder::printGridFiles(){
215     ofstream sigmaOut("sigma.grid");
216     ofstream sOut("s.grid");
217     ofstream epsOut("eps.grid");
218    
219     for (k=0; k<sigList.size(); k++){
220     sigmaOut << sigList[k] << "\n0\n";
221     sOut << sList[k] << "\n0\n";
222     epsOut << epsList[k] << "\n0\n";
223     }
224 gezelter 1283 }
225 chrisfen 1287