ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/SHAPES/GridBuilder.cpp
Revision: 1293
Committed: Wed Jun 23 23:47:56 2004 UTC (20 years ago) by chrisfen
File size: 6184 byte(s)
Log Message:
Added more friendly progress comments

File Contents

# User Rev Content
1 chrisfen 1277 #include "GridBuilder.hpp"
2     #define PI 3.14159265359
3    
4    
5 chrisfen 1285 GridBuilder::GridBuilder(RigidBody* rb, int gridWidth) {
6 chrisfen 1280 rbMol = rb;
7 chrisfen 1285 gridwidth = gridWidth;
8     thetaStep = PI / gridwidth;
9 chrisfen 1280 thetaMin = thetaStep / 2.0;
10     phiStep = thetaStep * 2.0;
11 chrisfen 1277 }
12    
13     GridBuilder::~GridBuilder() {
14     }
15    
16 gezelter 1283 void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid,
17     vector<double> sGrid, vector<double> epsGrid){
18 chrisfen 1281 ofstream sigmaOut("sigma.grid");
19     ofstream sOut("s.grid");
20     ofstream epsOut("eps.grid");
21 chrisfen 1280 double startDist;
22 chrisfen 1282 double phiVal;
23     double thetaVal;
24 chrisfen 1285 double sigTemp, sTemp, epsTemp, sigProbe;
25 chrisfen 1280 double minDist = 10.0; //minimum start distance
26 chrisfen 1277
27 chrisfen 1287 sigList = sigmaGrid;
28 chrisfen 1281 sList = sGrid;
29     epsList = epsGrid;
30 chrisfen 1280 forcefield = forceField;
31 chrisfen 1285
32     //load the probe atom parameters
33     switch(forcefield){
34     case 1:{
35     rparHe = 1.4800;
36     epsHe = -0.021270;
37     }; break;
38     case 2:{
39     rparHe = 1.14;
40     epsHe = 0.0203;
41     }; break;
42     case 3:{
43     rparHe = 2.28;
44     epsHe = 0.020269601874;
45     }; break;
46     case 4:{
47     rparHe = 2.5560;
48     epsHe = 0.0200;
49     }; break;
50     case 5:{
51     rparHe = 1.14;
52     epsHe = 0.0203;
53     }; break;
54     }
55 chrisfen 1280
56 chrisfen 1285 if (rparHe < 2.2)
57     sigProbe = 2*rparHe/1.12246204831;
58     else
59     sigProbe = rparHe;
60    
61     //determine the start distance - we always start at least minDist away
62 chrisfen 1280 startDist = rbMol->findMaxExtent() + minDist;
63     if (startDist < minDist)
64     startDist = minDist;
65 chrisfen 1281
66 chrisfen 1282 //set the initial orientation of the body and loop over theta values
67 gezelter 1283
68 chrisfen 1285 for (k =0; k < gridwidth; k++) {
69 gezelter 1283 thetaVal = thetaMin + k*thetaStep;
70 chrisfen 1285 for (j=0; j < gridwidth; j++) {
71 gezelter 1283 phiVal = j*phiStep;
72    
73     rbMol->setEuler(0.0, thetaVal, phiVal);
74    
75 chrisfen 1280 releaseProbe(startDist);
76 chrisfen 1279
77 chrisfen 1285 //translate the values to sigma, s, and epsilon of the rigid body
78     sigTemp = 2*sigDist - sigProbe;
79     sTemp = (2*(sDist - sigDist))/(0.122462048309) - sigProbe;
80     epsTemp = pow(epsVal, 2)/fabs(epsHe);
81    
82     sigList.push_back(sigTemp);
83     sList.push_back(sTemp);
84     epsList.push_back(epsTemp);
85 chrisfen 1280 }
86     }
87 chrisfen 1277 }
88    
89     void GridBuilder::releaseProbe(double farPos){
90 chrisfen 1280 int tooClose;
91     double tempPotEnergy;
92     double interpRange;
93     double interpFrac;
94 chrisfen 1277
95 chrisfen 1280 probeCoor = farPos;
96     potProgress.clear();
97     distProgress.clear();
98     tooClose = 0;
99     epsVal = 0;
100     rhoStep = 0.1; //the distance the probe atom moves between steps
101 gezelter 1283
102 chrisfen 1280 while (!tooClose){
103     calcEnergy();
104     potProgress.push_back(potEnergy);
105     distProgress.push_back(probeCoor);
106 chrisfen 1277
107 chrisfen 1280 //if we've reached a new minimum, save the value and position
108     if (potEnergy < epsVal){
109     epsVal = potEnergy;
110     sDist = probeCoor;
111     }
112 chrisfen 1277
113 chrisfen 1280 //test if the probe reached the origin - if so, stop stepping closer
114     if (probeCoor < 0){
115     sigDist = 0.0;
116     tooClose = 1;
117     }
118 chrisfen 1277
119 chrisfen 1280 //test if the probe beyond the contact point - if not, take a step closer
120     if (potEnergy < 0){
121     sigDist = probeCoor;
122     tempPotEnergy = potEnergy;
123     probeCoor -= rhoStep;
124     }
125     else {
126     //do a linear interpolation to obtain the sigDist
127     interpRange = potEnergy - tempPotEnergy;
128     interpFrac = potEnergy / interpRange;
129     interpFrac = interpFrac * rhoStep;
130     sigDist = probeCoor + interpFrac;
131 chrisfen 1277
132 chrisfen 1280 //end the loop
133     tooClose = 1;
134     }
135     }
136 chrisfen 1277 }
137    
138     void GridBuilder::calcEnergy(){
139 chrisfen 1281 double rXij, rYij, rZij;
140     double rijSquared;
141     double rValSquared, rValPowerSix;
142     double atomRpar, atomEps;
143     double rbAtomPos[3];
144 chrisfen 1285
145 chrisfen 1281 potEnergy = 0.0;
146 gezelter 1283
147 chrisfen 1281 for(i=0; i<rbMol->getNumAtoms(); i++){
148     rbMol->getAtomPos(rbAtomPos, i);
149    
150     rXij = rbAtomPos[0];
151     rYij = rbAtomPos[1];
152     rZij = rbAtomPos[2] - probeCoor;
153    
154     rijSquared = rXij * rXij + rYij * rYij + rZij * rZij;
155    
156 chrisfen 1285 //in the interest of keeping the code more compact, we are being less
157     //efficient by placing a switch statement in the calculation loop
158 chrisfen 1281 switch(forcefield){
159     case 1:{
160     //we are using the CHARMm force field
161     atomRpar = rbMol->getAtomRpar(i);
162     atomEps = rbMol->getAtomEps(i);
163    
164     rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared);
165     rValPowerSix = rValSquared * rValSquared * rValSquared;
166     potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0));
167     }; break;
168    
169     case 2:{
170     //we are using the AMBER force field
171     atomRpar = rbMol->getAtomRpar(i);
172     atomEps = rbMol->getAtomEps(i);
173    
174     rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared);
175     rValPowerSix = rValSquared * rValSquared * rValSquared;
176     potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0));
177     }; break;
178    
179     case 3:{
180     //we are using Allen-Tildesley LJ parameters
181     atomRpar = rbMol->getAtomRpar(i);
182     atomEps = rbMol->getAtomEps(i);
183    
184     rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (4*rijSquared);
185     rValPowerSix = rValSquared * rValSquared * rValSquared;
186     potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0));
187    
188     }; break;
189    
190     case 4:{
191     //we are using the OPLS force field
192     atomRpar = rbMol->getAtomRpar(i);
193     atomEps = rbMol->getAtomEps(i);
194    
195     rValSquared = (pow(sqrt(rparHe+atomRpar),2)) / (rijSquared);
196     rValPowerSix = rValSquared * rValSquared * rValSquared;
197     potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0));
198     }; break;
199    
200     case 5:{
201     //we are using the GAFF force field
202     atomRpar = rbMol->getAtomRpar(i);
203     atomEps = rbMol->getAtomEps(i);
204    
205     rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared);
206     rValPowerSix = rValSquared * rValSquared * rValSquared;
207     potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0));
208     }; break;
209     }
210     }
211     }
212 chrisfen 1277
213 chrisfen 1281 void GridBuilder::printGridFiles(){
214     ofstream sigmaOut("sigma.grid");
215     ofstream sOut("s.grid");
216     ofstream epsOut("eps.grid");
217    
218     for (k=0; k<sigList.size(); k++){
219     sigmaOut << sigList[k] << "\n0\n";
220     sOut << sList[k] << "\n0\n";
221     epsOut << epsList[k] << "\n0\n";
222     }
223 gezelter 1283 }
224 chrisfen 1287