# | Line 4 | Line 4 | GridBuilder::GridBuilder(RigidBody* rb, int bandWidth) | |
---|---|---|
4 | ||
5 | ||
6 | GridBuilder::GridBuilder(RigidBody* rb, int bandWidth) { | |
7 | < | rbMol = rb; |
8 | < | bandwidth = bandWidth; |
9 | < | thetaStep = PI / bandwidth; |
10 | < | thetaMin = thetaStep / 2.0; |
11 | < | phiStep = thetaStep * 2.0; |
12 | < | |
13 | < | //zero out the rot mats |
14 | < | for (i=0; i<3; i++) { |
15 | < | for (j=0; j<3; j++) { |
16 | < | rotX[i][j] = 0.0; |
17 | < | rotZ[i][j] = 0.0; |
18 | < | rbMatrix[i][j] = 0.0; |
19 | < | } |
20 | < | } |
7 | > | rbMol = rb; |
8 | > | bandwidth = bandWidth; |
9 | > | thetaStep = PI / bandwidth; |
10 | > | thetaMin = thetaStep / 2.0; |
11 | > | phiStep = thetaStep * 2.0; |
12 | } | |
13 | ||
14 | GridBuilder::~GridBuilder() { | |
15 | } | |
16 | ||
17 | < | void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, vector<double> sGrid, |
18 | < | vector<double> epsGrid){ |
19 | < | double startDist; |
20 | < | double minDist = 10.0; //minimum start distance |
17 | > | void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, |
18 | > | vector<double> sGrid, vector<double> epsGrid){ |
19 | > | ofstream sigmaOut("sigma.grid"); |
20 | > | ofstream sOut("s.grid"); |
21 | > | ofstream epsOut("eps.grid"); |
22 | > | double startDist; |
23 | > | double phiVal; |
24 | > | double thetaVal; |
25 | > | double minDist = 10.0; //minimum start distance |
26 | ||
27 | < | //first determine the start distance - we always start at least minDist away |
28 | < | startDist = rbMol->findMaxExtent() + minDist; |
29 | < | if (startDist < minDist) |
30 | < | startDist = minDist; |
31 | < | |
32 | < | initBody(); |
33 | < | for (i=0; i<bandwidth; i++){ |
34 | < | for (j=0; j<bandwidth; j++){ |
35 | < | releaseProbe(startDist); |
27 | > | sList = sGrid; |
28 | > | sigList = sigmaGrid; |
29 | > | epsList = epsGrid; |
30 | > | forcefield = forceField; |
31 | > | |
32 | > | //first determine the start distance - we always start at least minDist away |
33 | > | startDist = rbMol->findMaxExtent() + minDist; |
34 | > | if (startDist < minDist) |
35 | > | startDist = minDist; |
36 | ||
37 | < | sigmaGrid.push_back(sigDist); |
42 | < | sGrid.push_back(sDist); |
43 | < | epsGrid.push_back(epsVal); |
44 | < | |
45 | < | stepPhi(phiStep); |
46 | < | } |
47 | < | stepTheta(thetaStep); |
48 | < | } |
49 | < | |
50 | < | } |
37 | > | printf("startDist = %lf\n", startDist); |
38 | ||
39 | < | void GridBuilder::initBody(){ |
40 | < | //set up the rigid body in the starting configuration |
41 | < | stepTheta(thetaMin); |
39 | > | //set the initial orientation of the body and loop over theta values |
40 | > | |
41 | > | for (k =0; k < bandwidth; k++) { |
42 | > | thetaVal = thetaMin + k*thetaStep; |
43 | > | for (j=0; j < bandwidth; j++) { |
44 | > | phiVal = j*phiStep; |
45 | > | |
46 | > | printf("setting Euler, phi = %lf\ttheta = %lf\n", phiVal, thetaVal); |
47 | > | |
48 | > | rbMol->setEuler(0.0, thetaVal, phiVal); |
49 | > | |
50 | > | releaseProbe(startDist); |
51 | > | |
52 | > | printf("found sigDist = %lf\t sDist = %lf \t epsVal = %lf\n", |
53 | > | sigDist, sDist, epsVal); |
54 | > | |
55 | > | sigList.push_back(sigDist); |
56 | > | sList.push_back(sDist); |
57 | > | epsList.push_back(epsVal); |
58 | > | |
59 | > | } |
60 | > | } |
61 | } | |
62 | ||
63 | void GridBuilder::releaseProbe(double farPos){ | |
64 | < | int tooClose; |
65 | < | double tempPotEnergy; |
66 | < | double interpRange; |
67 | < | double interpFrac; |
64 | > | int tooClose; |
65 | > | double tempPotEnergy; |
66 | > | double interpRange; |
67 | > | double interpFrac; |
68 | ||
69 | < | probeCoor = farPos; |
70 | < | potProgress.clear(); |
71 | < | distProgress.clear(); |
72 | < | tooClose = 0; |
73 | < | epsVal = 0; |
74 | < | rhoStep = 0.1; //the distance the probe atom moves between steps |
69 | < | |
70 | < | |
71 | < | while (!tooClose){ |
72 | < | calcEnergy(); |
73 | < | potProgress.push_back(potEnergy); |
74 | < | distProgress.push_back(probeCoor); |
69 | > | probeCoor = farPos; |
70 | > | potProgress.clear(); |
71 | > | distProgress.clear(); |
72 | > | tooClose = 0; |
73 | > | epsVal = 0; |
74 | > | rhoStep = 0.1; //the distance the probe atom moves between steps |
75 | ||
76 | < | //if we've reached a new minimum, save the value and position |
77 | < | if (potEnergy < epsVal){ |
78 | < | epsVal = potEnergy; |
79 | < | sDist = probeCoor; |
80 | < | } |
76 | > | while (!tooClose){ |
77 | > | calcEnergy(); |
78 | > | potProgress.push_back(potEnergy); |
79 | > | distProgress.push_back(probeCoor); |
80 | ||
81 | < | //test if the probe reached the origin - if so, stop stepping closer |
82 | < | if (probeCoor < 0){ |
83 | < | sigDist = 0.0; |
84 | < | tooClose = 1; |
85 | < | } |
81 | > | //if we've reached a new minimum, save the value and position |
82 | > | if (potEnergy < epsVal){ |
83 | > | epsVal = potEnergy; |
84 | > | sDist = probeCoor; |
85 | > | } |
86 | ||
87 | < | //test if the probe beyond the contact point - if not, take a step closer |
88 | < | if (potEnergy < 0){ |
89 | < | sigDist = probeCoor; |
90 | < | tempPotEnergy = potEnergy; |
91 | < | probeCoor -= rhoStep; |
92 | < | } |
93 | < | else { |
94 | < | //do a linear interpolation to obtain the sigDist |
95 | < | interpRange = potEnergy - tempPotEnergy; |
96 | < | interpFrac = potEnergy / interpRange; |
97 | < | interpFrac = interpFrac * rhoStep; |
98 | < | sigDist = probeCoor + interpFrac; |
87 | > | //test if the probe reached the origin - if so, stop stepping closer |
88 | > | if (probeCoor < 0){ |
89 | > | sigDist = 0.0; |
90 | > | tooClose = 1; |
91 | > | } |
92 | > | |
93 | > | //test if the probe beyond the contact point - if not, take a step closer |
94 | > | if (potEnergy < 0){ |
95 | > | sigDist = probeCoor; |
96 | > | tempPotEnergy = potEnergy; |
97 | > | probeCoor -= rhoStep; |
98 | > | } |
99 | > | else { |
100 | > | //do a linear interpolation to obtain the sigDist |
101 | > | interpRange = potEnergy - tempPotEnergy; |
102 | > | interpFrac = potEnergy / interpRange; |
103 | > | interpFrac = interpFrac * rhoStep; |
104 | > | sigDist = probeCoor + interpFrac; |
105 | ||
106 | < | //end the loop |
107 | < | tooClose = 1; |
108 | < | } |
109 | < | } |
106 | > | //end the loop |
107 | > | tooClose = 1; |
108 | > | } |
109 | > | } |
110 | } | |
111 | ||
112 | void GridBuilder::calcEnergy(){ | |
113 | < | |
114 | < | } |
113 | > | double rXij, rYij, rZij; |
114 | > | double rijSquared; |
115 | > | double rValSquared, rValPowerSix; |
116 | > | double rparHe, epsHe; |
117 | > | double atomRpar, atomEps; |
118 | > | double rbAtomPos[3]; |
119 | > | |
120 | > | //first get the probe atom parameters |
121 | > | switch(forcefield){ |
122 | > | case 1:{ |
123 | > | rparHe = 1.4800; |
124 | > | epsHe = -0.021270; |
125 | > | }; break; |
126 | > | case 2:{ |
127 | > | rparHe = 1.14; |
128 | > | epsHe = 0.0203; |
129 | > | }; break; |
130 | > | case 3:{ |
131 | > | rparHe = 2.28; |
132 | > | epsHe = 0.020269601874; |
133 | > | }; break; |
134 | > | case 4:{ |
135 | > | rparHe = 2.5560; |
136 | > | epsHe = 0.0200; |
137 | > | }; break; |
138 | > | case 5:{ |
139 | > | rparHe = 1.14; |
140 | > | epsHe = 0.0203; |
141 | > | }; break; |
142 | > | } |
143 | > | |
144 | > | potEnergy = 0.0; |
145 | ||
146 | < | void GridBuilder::stepTheta(double increment){ |
112 | < | //zero out the euler angles |
113 | < | for (i=0; i<3; i++) |
114 | < | angles[i] = 0.0; |
115 | < | |
116 | < | //the second euler angle is for rotation about the x-axis (we use the zxz convention) |
117 | < | angles[1] = increment; |
118 | < | |
119 | < | //obtain the rotation matrix through the rigid body class |
120 | < | rbMol->doEulerToRotMat(angles, rotX); |
121 | < | |
122 | < | //rotate the rigid body |
123 | < | rbMol->getA(rbMatrix); |
124 | < | matMul3(rotX, rbMatrix, rotatedMat); |
125 | < | rbMol->setA(rotatedMat); |
126 | < | |
127 | < | } |
146 | > | rbMol->getAtomPos(rbAtomPos, 0); |
147 | ||
148 | < | void GridBuilder::stepPhi(double increment){ |
149 | < | //zero out the euler angles |
150 | < | for (i=0; i<3; i++) |
151 | < | angles[i] = 0.0; |
152 | < | |
153 | < | //the phi euler angle is for rotation about the z-axis (we use the zxz convention) |
154 | < | angles[0] = increment; |
155 | < | |
156 | < | //obtain the rotation matrix through the rigid body class |
157 | < | rbMol->doEulerToRotMat(angles, rotZ); |
158 | < | |
159 | < | //rotate the rigid body |
160 | < | rbMol->getA(rbMatrix); |
161 | < | matMul3(rotZ, rbMatrix, rotatedMat); |
162 | < | rbMol->setA(rotatedMat); |
163 | < | |
148 | > | printf("atom0 pos = %lf\t%lf\t%lf\n", rbAtomPos[0], rbAtomPos[1], rbAtomPos[2]); |
149 | > | |
150 | > | |
151 | > | |
152 | > | for(i=0; i<rbMol->getNumAtoms(); i++){ |
153 | > | rbMol->getAtomPos(rbAtomPos, i); |
154 | > | |
155 | > | rXij = rbAtomPos[0]; |
156 | > | rYij = rbAtomPos[1]; |
157 | > | rZij = rbAtomPos[2] - probeCoor; |
158 | > | |
159 | > | rijSquared = rXij * rXij + rYij * rYij + rZij * rZij; |
160 | > | |
161 | > | //in the interest of keeping the code more compact, we are being less efficient by placing |
162 | > | //a switch statement in the calculation loop |
163 | > | switch(forcefield){ |
164 | > | case 1:{ |
165 | > | //we are using the CHARMm force field |
166 | > | atomRpar = rbMol->getAtomRpar(i); |
167 | > | atomEps = rbMol->getAtomEps(i); |
168 | > | |
169 | > | rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
170 | > | rValPowerSix = rValSquared * rValSquared * rValSquared; |
171 | > | potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
172 | > | }; break; |
173 | > | |
174 | > | case 2:{ |
175 | > | //we are using the AMBER force field |
176 | > | atomRpar = rbMol->getAtomRpar(i); |
177 | > | atomEps = rbMol->getAtomEps(i); |
178 | > | |
179 | > | rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
180 | > | rValPowerSix = rValSquared * rValSquared * rValSquared; |
181 | > | potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
182 | > | }; break; |
183 | > | |
184 | > | case 3:{ |
185 | > | //we are using Allen-Tildesley LJ parameters |
186 | > | atomRpar = rbMol->getAtomRpar(i); |
187 | > | atomEps = rbMol->getAtomEps(i); |
188 | > | |
189 | > | rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (4*rijSquared); |
190 | > | rValPowerSix = rValSquared * rValSquared * rValSquared; |
191 | > | potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); |
192 | > | |
193 | > | }; break; |
194 | > | |
195 | > | case 4:{ |
196 | > | //we are using the OPLS force field |
197 | > | atomRpar = rbMol->getAtomRpar(i); |
198 | > | atomEps = rbMol->getAtomEps(i); |
199 | > | |
200 | > | rValSquared = (pow(sqrt(rparHe+atomRpar),2)) / (rijSquared); |
201 | > | rValPowerSix = rValSquared * rValSquared * rValSquared; |
202 | > | potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); |
203 | > | }; break; |
204 | > | |
205 | > | case 5:{ |
206 | > | //we are using the GAFF force field |
207 | > | atomRpar = rbMol->getAtomRpar(i); |
208 | > | atomEps = rbMol->getAtomEps(i); |
209 | > | |
210 | > | rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
211 | > | rValPowerSix = rValSquared * rValSquared * rValSquared; |
212 | > | potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
213 | > | }; break; |
214 | > | } |
215 | > | } |
216 | > | } |
217 | > | |
218 | > | void GridBuilder::printGridFiles(){ |
219 | > | ofstream sigmaOut("sigma.grid"); |
220 | > | ofstream sOut("s.grid"); |
221 | > | ofstream epsOut("eps.grid"); |
222 | > | |
223 | > | for (k=0; k<sigList.size(); k++){ |
224 | > | sigmaOut << sigList[k] << "\n0\n"; |
225 | > | sOut << sList[k] << "\n0\n"; |
226 | > | epsOut << epsList[k] << "\n0\n"; |
227 | > | } |
228 | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |