# | Line 25 | Line 25 | void GridBuilder::launchProbe(int forceField, vector<d | |
---|---|---|
25 | ||
26 | void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, vector<double> sGrid, | |
27 | vector<double> epsGrid){ | |
28 | + | ofstream sigmaOut("sigma.grid"); |
29 | + | ofstream sOut("s.grid"); |
30 | + | ofstream epsOut("eps.grid"); |
31 | double startDist; | |
32 | + | double phiVal; |
33 | + | double thetaVal; |
34 | double minDist = 10.0; //minimum start distance | |
35 | ||
36 | + | sList = sGrid; |
37 | + | sigList = sigmaGrid; |
38 | + | epsList = epsGrid; |
39 | forcefield = forceField; | |
40 | ||
41 | //first determine the start distance - we always start at least minDist away | |
42 | startDist = rbMol->findMaxExtent() + minDist; | |
43 | if (startDist < minDist) | |
44 | startDist = minDist; | |
45 | < | |
46 | < | initBody(); |
47 | < | for (i=0; i<bandwidth; i++){ |
45 | > | |
46 | > | //set the initial orientation of the body and loop over theta values |
47 | > | phiVal = 0.0; |
48 | > | thetaVal = thetaMin; |
49 | > | rotBody(phiVal, thetaVal); |
50 | > | for (k=0; k<bandwidth; k++){ |
51 | > | //loop over phi values starting with phi = 0.0 |
52 | for (j=0; j<bandwidth; j++){ | |
53 | releaseProbe(startDist); | |
54 | ||
55 | < | sigmaGrid.push_back(sigDist); |
56 | < | sGrid.push_back(sDist); |
57 | < | epsGrid.push_back(epsVal); |
58 | < | |
59 | < | stepPhi(phiStep); |
55 | > | sigList.push_back(sigDist); |
56 | > | sList.push_back(sDist); |
57 | > | epsList.push_back(epsVal); |
58 | > | |
59 | > | phiVal += phiStep; |
60 | > | rotBody(phiVal, thetaVal); |
61 | } | |
62 | < | stepTheta(thetaStep); |
62 | > | phiVal = 0.0; |
63 | > | thetaVal += thetaStep; |
64 | > | rotBody(phiVal, thetaVal); |
65 | > | printf("step theta %i\n",k); |
66 | } | |
67 | } | |
68 | ||
53 | – | void GridBuilder::initBody(){ |
54 | – | //set up the rigid body in the starting configuration |
55 | – | stepTheta(thetaMin); |
56 | – | } |
57 | – | |
69 | void GridBuilder::releaseProbe(double farPos){ | |
70 | int tooClose; | |
71 | double tempPotEnergy; | |
# | Line 106 | Line 117 | void GridBuilder::calcEnergy(){ | |
117 | } | |
118 | ||
119 | void GridBuilder::calcEnergy(){ | |
120 | < | |
121 | < | } |
120 | > | double rXij, rYij, rZij; |
121 | > | double rijSquared; |
122 | > | double rValSquared, rValPowerSix; |
123 | > | double rparHe, epsHe; |
124 | > | double atomRpar, atomEps; |
125 | > | double rbAtomPos[3]; |
126 | > | |
127 | > | //first get the probe atom parameters |
128 | > | switch(forcefield){ |
129 | > | case 1:{ |
130 | > | rparHe = 1.4800; |
131 | > | epsHe = -0.021270; |
132 | > | }; break; |
133 | > | case 2:{ |
134 | > | rparHe = 1.14; |
135 | > | epsHe = 0.0203; |
136 | > | }; break; |
137 | > | case 3:{ |
138 | > | rparHe = 2.28; |
139 | > | epsHe = 0.020269601874; |
140 | > | }; break; |
141 | > | case 4:{ |
142 | > | rparHe = 2.5560; |
143 | > | epsHe = 0.0200; |
144 | > | }; break; |
145 | > | case 5:{ |
146 | > | rparHe = 1.14; |
147 | > | epsHe = 0.0203; |
148 | > | }; break; |
149 | > | } |
150 | > | |
151 | > | potEnergy = 0.0; |
152 | > | |
153 | > | for(i=0; i<rbMol->getNumAtoms(); i++){ |
154 | > | rbMol->getAtomPos(rbAtomPos, i); |
155 | > | |
156 | > | rXij = rbAtomPos[0]; |
157 | > | rYij = rbAtomPos[1]; |
158 | > | rZij = rbAtomPos[2] - probeCoor; |
159 | > | |
160 | > | rijSquared = rXij * rXij + rYij * rYij + rZij * rZij; |
161 | > | |
162 | > | //in the interest of keeping the code more compact, we are being less efficient by placing |
163 | > | //a switch statement in the calculation loop |
164 | > | switch(forcefield){ |
165 | > | case 1:{ |
166 | > | //we are using the CHARMm force field |
167 | > | atomRpar = rbMol->getAtomRpar(i); |
168 | > | atomEps = rbMol->getAtomEps(i); |
169 | > | |
170 | > | rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
171 | > | rValPowerSix = rValSquared * rValSquared * rValSquared; |
172 | > | potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
173 | > | }; break; |
174 | > | |
175 | > | case 2:{ |
176 | > | //we are using the AMBER force field |
177 | > | atomRpar = rbMol->getAtomRpar(i); |
178 | > | atomEps = rbMol->getAtomEps(i); |
179 | > | |
180 | > | rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
181 | > | rValPowerSix = rValSquared * rValSquared * rValSquared; |
182 | > | potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
183 | > | }; break; |
184 | > | |
185 | > | case 3:{ |
186 | > | //we are using Allen-Tildesley LJ parameters |
187 | > | atomRpar = rbMol->getAtomRpar(i); |
188 | > | atomEps = rbMol->getAtomEps(i); |
189 | > | |
190 | > | rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (4*rijSquared); |
191 | > | rValPowerSix = rValSquared * rValSquared * rValSquared; |
192 | > | potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); |
193 | > | |
194 | > | }; break; |
195 | > | |
196 | > | case 4:{ |
197 | > | //we are using the OPLS force field |
198 | > | atomRpar = rbMol->getAtomRpar(i); |
199 | > | atomEps = rbMol->getAtomEps(i); |
200 | > | |
201 | > | rValSquared = (pow(sqrt(rparHe+atomRpar),2)) / (rijSquared); |
202 | > | rValPowerSix = rValSquared * rValSquared * rValSquared; |
203 | > | potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0)); |
204 | > | }; break; |
205 | > | |
206 | > | case 5:{ |
207 | > | //we are using the GAFF force field |
208 | > | atomRpar = rbMol->getAtomRpar(i); |
209 | > | atomEps = rbMol->getAtomEps(i); |
210 | > | |
211 | > | rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared); |
212 | > | rValPowerSix = rValSquared * rValSquared * rValSquared; |
213 | > | potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0)); |
214 | > | }; break; |
215 | > | } |
216 | > | } |
217 | > | } |
218 | ||
219 | < | void GridBuilder::stepTheta(double increment){ |
219 | > | void GridBuilder::rotBody(double pValue, double tValue){ |
220 | //zero out the euler angles | |
221 | < | for (i=0; i<3; i++) |
221 | > | for (l=0; l<3; l++) |
222 | angles[i] = 0.0; | |
223 | ||
224 | + | //the phi euler angle is for rotation about the z-axis (we use the zxz convention) |
225 | + | angles[0] = pValue; |
226 | //the second euler angle is for rotation about the x-axis (we use the zxz convention) | |
227 | < | angles[1] = increment; |
227 | > | angles[1] = tValue; |
228 | ||
229 | //obtain the rotation matrix through the rigid body class | |
230 | rbMol->doEulerToRotMat(angles, rotX); | |
231 | < | |
231 | > | |
232 | > | //start from the reference position |
233 | > | identityMat3(rbMatrix); |
234 | > | rbMol->setA(rbMatrix); |
235 | > | |
236 | //rotate the rigid body | |
124 | – | rbMol->getA(rbMatrix); |
237 | matMul3(rotX, rbMatrix, rotatedMat); | |
238 | rbMol->setA(rotatedMat); | |
239 | } | |
240 | ||
241 | < | void GridBuilder::stepPhi(double increment){ |
242 | < | //zero out the euler angles |
243 | < | for (i=0; i<3; i++) |
244 | < | angles[i] = 0.0; |
245 | < | |
246 | < | //the phi euler angle is for rotation about the z-axis (we use the zxz convention) |
247 | < | angles[0] = increment; |
248 | < | |
249 | < | //obtain the rotation matrix through the rigid body class |
250 | < | rbMol->doEulerToRotMat(angles, rotZ); |
251 | < | |
140 | < | //rotate the rigid body |
141 | < | rbMol->getA(rbMatrix); |
142 | < | matMul3(rotZ, rbMatrix, rotatedMat); |
143 | < | rbMol->setA(rotatedMat); |
144 | < | } |
241 | > | void GridBuilder::printGridFiles(){ |
242 | > | ofstream sigmaOut("sigma.grid"); |
243 | > | ofstream sOut("s.grid"); |
244 | > | ofstream epsOut("eps.grid"); |
245 | > | |
246 | > | for (k=0; k<sigList.size(); k++){ |
247 | > | sigmaOut << sigList[k] << "\n0\n"; |
248 | > | sOut << sList[k] << "\n0\n"; |
249 | > | epsOut << epsList[k] << "\n0\n"; |
250 | > | } |
251 | > | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |