# | Line 3 | Line 3 | |
---|---|---|
3 | #define PI 3.14159265359 | |
4 | ||
5 | ||
6 | < | GridBuilder::GridBuilder(RigidBody* rb, int bandWidth) { |
6 | > | GridBuilder::GridBuilder(RigidBody* rb, int gridWidth) { |
7 | rbMol = rb; | |
8 | < | bandwidth = bandWidth; |
9 | < | thetaStep = PI / bandwidth; |
8 | > | gridwidth = gridWidth; |
9 | > | thetaStep = PI / gridwidth; |
10 | thetaMin = thetaStep / 2.0; | |
11 | phiStep = thetaStep * 2.0; | |
12 | } | |
# | Line 22 | Line 22 | void GridBuilder::launchProbe(int forceField, vector<d | |
22 | double startDist; | |
23 | double phiVal; | |
24 | double thetaVal; | |
25 | + | double sigTemp, sTemp, epsTemp, sigProbe; |
26 | double minDist = 10.0; //minimum start distance | |
27 | ||
28 | sList = sGrid; | |
29 | sigList = sigmaGrid; | |
30 | epsList = epsGrid; | |
31 | forcefield = forceField; | |
32 | + | |
33 | + | //load the probe atom parameters |
34 | + | switch(forcefield){ |
35 | + | case 1:{ |
36 | + | rparHe = 1.4800; |
37 | + | epsHe = -0.021270; |
38 | + | }; break; |
39 | + | case 2:{ |
40 | + | rparHe = 1.14; |
41 | + | epsHe = 0.0203; |
42 | + | }; break; |
43 | + | case 3:{ |
44 | + | rparHe = 2.28; |
45 | + | epsHe = 0.020269601874; |
46 | + | }; break; |
47 | + | case 4:{ |
48 | + | rparHe = 2.5560; |
49 | + | epsHe = 0.0200; |
50 | + | }; break; |
51 | + | case 5:{ |
52 | + | rparHe = 1.14; |
53 | + | epsHe = 0.0203; |
54 | + | }; break; |
55 | + | } |
56 | ||
57 | < | //first determine the start distance - we always start at least minDist away |
57 | > | if (rparHe < 2.2) |
58 | > | sigProbe = 2*rparHe/1.12246204831; |
59 | > | else |
60 | > | sigProbe = rparHe; |
61 | > | |
62 | > | //determine the start distance - we always start at least minDist away |
63 | startDist = rbMol->findMaxExtent() + minDist; | |
64 | if (startDist < minDist) | |
65 | startDist = minDist; | |
66 | ||
37 | – | printf("startDist = %lf\n", startDist); |
38 | – | |
67 | //set the initial orientation of the body and loop over theta values | |
68 | ||
69 | < | for (k =0; k < bandwidth; k++) { |
69 | > | for (k =0; k < gridwidth; k++) { |
70 | thetaVal = thetaMin + k*thetaStep; | |
71 | < | for (j=0; j < bandwidth; j++) { |
71 | > | printf("Theta step %i\n", k); |
72 | > | for (j=0; j < gridwidth; j++) { |
73 | phiVal = j*phiStep; | |
74 | ||
46 | – | printf("setting Euler, phi = %lf\ttheta = %lf\n", phiVal, thetaVal); |
47 | – | |
75 | rbMol->setEuler(0.0, thetaVal, phiVal); | |
76 | ||
77 | releaseProbe(startDist); | |
78 | ||
79 | < | printf("found sigDist = %lf\t sDist = %lf \t epsVal = %lf\n", |
80 | < | sigDist, sDist, epsVal); |
81 | < | |
82 | < | sigList.push_back(sigDist); |
83 | < | sList.push_back(sDist); |
84 | < | epsList.push_back(epsVal); |
85 | < | |
79 | > | //translate the values to sigma, s, and epsilon of the rigid body |
80 | > | sigTemp = 2*sigDist - sigProbe; |
81 | > | sTemp = (2*(sDist - sigDist))/(0.122462048309) - sigProbe; |
82 | > | epsTemp = pow(epsVal, 2)/fabs(epsHe); |
83 | > | |
84 | > | sigList.push_back(sigTemp); |
85 | > | sList.push_back(sTemp); |
86 | > | epsList.push_back(epsTemp); |
87 | } | |
88 | } | |
89 | } | |
# | Line 113 | Line 141 | void GridBuilder::calcEnergy(){ | |
141 | double rXij, rYij, rZij; | |
142 | double rijSquared; | |
143 | double rValSquared, rValPowerSix; | |
116 | – | double rparHe, epsHe; |
144 | double atomRpar, atomEps; | |
145 | double rbAtomPos[3]; | |
146 | < | |
120 | < | //first get the probe atom parameters |
121 | < | switch(forcefield){ |
122 | < | case 1:{ |
123 | < | rparHe = 1.4800; |
124 | < | epsHe = -0.021270; |
125 | < | }; break; |
126 | < | case 2:{ |
127 | < | rparHe = 1.14; |
128 | < | epsHe = 0.0203; |
129 | < | }; break; |
130 | < | case 3:{ |
131 | < | rparHe = 2.28; |
132 | < | epsHe = 0.020269601874; |
133 | < | }; break; |
134 | < | case 4:{ |
135 | < | rparHe = 2.5560; |
136 | < | epsHe = 0.0200; |
137 | < | }; break; |
138 | < | case 5:{ |
139 | < | rparHe = 1.14; |
140 | < | epsHe = 0.0203; |
141 | < | }; break; |
142 | < | } |
143 | < | |
146 | > | |
147 | potEnergy = 0.0; | |
148 | ||
146 | – | rbMol->getAtomPos(rbAtomPos, 0); |
147 | – | |
148 | – | printf("atom0 pos = %lf\t%lf\t%lf\n", rbAtomPos[0], rbAtomPos[1], rbAtomPos[2]); |
149 | – | |
150 | – | |
151 | – | |
149 | for(i=0; i<rbMol->getNumAtoms(); i++){ | |
150 | rbMol->getAtomPos(rbAtomPos, i); | |
151 | ||
# | Line 158 | Line 155 | void GridBuilder::calcEnergy(){ | |
155 | ||
156 | rijSquared = rXij * rXij + rYij * rYij + rZij * rZij; | |
157 | ||
158 | < | //in the interest of keeping the code more compact, we are being less efficient by placing |
159 | < | //a switch statement in the calculation loop |
158 | > | //in the interest of keeping the code more compact, we are being less |
159 | > | //efficient by placing a switch statement in the calculation loop |
160 | switch(forcefield){ | |
161 | case 1:{ | |
162 | //we are using the CHARMm force field |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |