# | Line 1 | Line 1 | |
---|---|---|
1 | #include "GridBuilder.hpp" | |
2 | – | #include "MatVec3.h" |
2 | #define PI 3.14159265359 | |
3 | ||
4 | ||
5 | < | GridBuilder::GridBuilder(RigidBody* rb, int bandWidth) { |
5 | > | GridBuilder::GridBuilder(RigidBody* rb, int gridWidth) { |
6 | rbMol = rb; | |
7 | < | bandwidth = bandWidth; |
8 | < | thetaStep = PI / bandwidth; |
7 | > | gridwidth = gridWidth; |
8 | > | thetaStep = PI / gridwidth; |
9 | thetaMin = thetaStep / 2.0; | |
10 | phiStep = thetaStep * 2.0; | |
11 | } | |
# | Line 22 | Line 21 | void GridBuilder::launchProbe(int forceField, vector<d | |
21 | double startDist; | |
22 | double phiVal; | |
23 | double thetaVal; | |
24 | + | double sigTemp, sTemp, epsTemp, sigProbe; |
25 | double minDist = 10.0; //minimum start distance | |
26 | ||
27 | – | sList = sGrid; |
27 | sigList = sigmaGrid; | |
28 | + | sList = sGrid; |
29 | epsList = epsGrid; | |
30 | forcefield = forceField; | |
31 | + | |
32 | + | //load the probe atom parameters |
33 | + | switch(forcefield){ |
34 | + | case 1:{ |
35 | + | rparHe = 1.4800; |
36 | + | epsHe = -0.021270; |
37 | + | }; break; |
38 | + | case 2:{ |
39 | + | rparHe = 1.14; |
40 | + | epsHe = 0.0203; |
41 | + | }; break; |
42 | + | case 3:{ |
43 | + | rparHe = 2.28; |
44 | + | epsHe = 0.020269601874; |
45 | + | }; break; |
46 | + | case 4:{ |
47 | + | rparHe = 2.5560; |
48 | + | epsHe = 0.0200; |
49 | + | }; break; |
50 | + | case 5:{ |
51 | + | rparHe = 1.14; |
52 | + | epsHe = 0.0203; |
53 | + | }; break; |
54 | + | } |
55 | ||
56 | < | //first determine the start distance - we always start at least minDist away |
56 | > | if (rparHe < 2.2) |
57 | > | sigProbe = 2*rparHe/1.12246204831; |
58 | > | else |
59 | > | sigProbe = rparHe; |
60 | > | |
61 | > | //determine the start distance - we always start at least minDist away |
62 | startDist = rbMol->findMaxExtent() + minDist; | |
63 | if (startDist < minDist) | |
64 | startDist = minDist; | |
65 | ||
37 | – | printf("startDist = %lf\n", startDist); |
38 | – | |
66 | //set the initial orientation of the body and loop over theta values | |
67 | ||
68 | < | for (k =0; k < bandwidth; k++) { |
68 | > | for (k =0; k < gridwidth; k++) { |
69 | thetaVal = thetaMin + k*thetaStep; | |
70 | < | for (j=0; j < bandwidth; j++) { |
70 | > | printf("Theta step %i\n", k); |
71 | > | for (j=0; j < gridwidth; j++) { |
72 | phiVal = j*phiStep; | |
73 | ||
46 | – | printf("setting Euler, phi = %lf\ttheta = %lf\n", phiVal, thetaVal); |
47 | – | |
74 | rbMol->setEuler(0.0, thetaVal, phiVal); | |
75 | ||
76 | releaseProbe(startDist); | |
77 | ||
78 | < | printf("found sigDist = %lf\t sDist = %lf \t epsVal = %lf\n", |
79 | < | sigDist, sDist, epsVal); |
80 | < | |
81 | < | sigList.push_back(sigDist); |
82 | < | sList.push_back(sDist); |
83 | < | epsList.push_back(epsVal); |
84 | < | |
78 | > | //translate the values to sigma, s, and epsilon of the rigid body |
79 | > | sigTemp = 2*sigDist - sigProbe; |
80 | > | sTemp = (2*(sDist - sigDist))/(0.122462048309) - sigProbe; |
81 | > | epsTemp = pow(epsVal, 2)/fabs(epsHe); |
82 | > | |
83 | > | sigList.push_back(sigTemp); |
84 | > | sList.push_back(sTemp); |
85 | > | epsList.push_back(epsTemp); |
86 | } | |
87 | } | |
88 | } | |
# | Line 113 | Line 140 | void GridBuilder::calcEnergy(){ | |
140 | double rXij, rYij, rZij; | |
141 | double rijSquared; | |
142 | double rValSquared, rValPowerSix; | |
116 | – | double rparHe, epsHe; |
143 | double atomRpar, atomEps; | |
144 | double rbAtomPos[3]; | |
145 | < | |
120 | < | //first get the probe atom parameters |
121 | < | switch(forcefield){ |
122 | < | case 1:{ |
123 | < | rparHe = 1.4800; |
124 | < | epsHe = -0.021270; |
125 | < | }; break; |
126 | < | case 2:{ |
127 | < | rparHe = 1.14; |
128 | < | epsHe = 0.0203; |
129 | < | }; break; |
130 | < | case 3:{ |
131 | < | rparHe = 2.28; |
132 | < | epsHe = 0.020269601874; |
133 | < | }; break; |
134 | < | case 4:{ |
135 | < | rparHe = 2.5560; |
136 | < | epsHe = 0.0200; |
137 | < | }; break; |
138 | < | case 5:{ |
139 | < | rparHe = 1.14; |
140 | < | epsHe = 0.0203; |
141 | < | }; break; |
142 | < | } |
143 | < | |
145 | > | |
146 | potEnergy = 0.0; | |
147 | ||
146 | – | rbMol->getAtomPos(rbAtomPos, 0); |
147 | – | |
148 | – | printf("atom0 pos = %lf\t%lf\t%lf\n", rbAtomPos[0], rbAtomPos[1], rbAtomPos[2]); |
149 | – | |
150 | – | |
151 | – | |
148 | for(i=0; i<rbMol->getNumAtoms(); i++){ | |
149 | rbMol->getAtomPos(rbAtomPos, i); | |
150 | ||
# | Line 158 | Line 154 | void GridBuilder::calcEnergy(){ | |
154 | ||
155 | rijSquared = rXij * rXij + rYij * rYij + rZij * rZij; | |
156 | ||
157 | < | //in the interest of keeping the code more compact, we are being less efficient by placing |
158 | < | //a switch statement in the calculation loop |
157 | > | //in the interest of keeping the code more compact, we are being less |
158 | > | //efficient by placing a switch statement in the calculation loop |
159 | switch(forcefield){ | |
160 | case 1:{ | |
161 | //we are using the CHARMm force field | |
# | Line 226 | Line 222 | void GridBuilder::printGridFiles(){ | |
222 | epsOut << epsList[k] << "\n0\n"; | |
223 | } | |
224 | } | |
225 | + |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |