ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/SHAPES/GridBuilder.cpp
(Generate patch)

Comparing trunk/SHAPES/GridBuilder.cpp (file contents):
Revision 1280 by chrisfen, Fri Jun 18 19:40:31 2004 UTC vs.
Revision 1285 by chrisfen, Tue Jun 22 18:04:58 2004 UTC

# Line 3 | Line 3 | GridBuilder::GridBuilder(RigidBody* rb, int bandWidth)
3   #define PI 3.14159265359
4  
5  
6 < GridBuilder::GridBuilder(RigidBody* rb, int bandWidth) {
6 > GridBuilder::GridBuilder(RigidBody* rb, int gridWidth) {
7    rbMol = rb;
8 <  bandwidth = bandWidth;
9 <  thetaStep = PI / bandwidth;
8 >  gridwidth = gridWidth;
9 >  thetaStep = PI / gridwidth;
10    thetaMin = thetaStep / 2.0;
11    phiStep = thetaStep * 2.0;
12        
13  //zero out the rot mats
14  for (i=0; i<3; i++) {
15    for (j=0; j<3; j++) {
16      rotX[i][j] = 0.0;
17      rotZ[i][j] = 0.0;
18      rbMatrix[i][j] = 0.0;
19    }
20  }
12   }
13  
14   GridBuilder::~GridBuilder() {
15   }
16  
17 < void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, vector<double> sGrid,
18 <                              vector<double> epsGrid){
17 > void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid,
18 >                              vector<double> sGrid, vector<double> epsGrid){
19 >  ofstream sigmaOut("sigma.grid");
20 >  ofstream sOut("s.grid");
21 >  ofstream epsOut("eps.grid");
22    double startDist;
23 +  double phiVal;
24 +  double thetaVal;
25 +  double sigTemp, sTemp, epsTemp, sigProbe;
26    double minDist = 10.0; //minimum start distance
27          
28 +  sList = sGrid;
29 +  sigList = sigmaGrid;
30 +  epsList = epsGrid;
31    forcefield = forceField;
32 +  
33 +  //load the probe atom parameters
34 +  switch(forcefield){
35 +    case 1:{
36 +      rparHe = 1.4800;
37 +      epsHe = -0.021270;
38 +    }; break;
39 +    case 2:{
40 +      rparHe = 1.14;
41 +      epsHe = 0.0203;
42 +    }; break;
43 +    case 3:{
44 +      rparHe = 2.28;
45 +      epsHe = 0.020269601874;
46 +    }; break;
47 +    case 4:{
48 +      rparHe = 2.5560;
49 +      epsHe = 0.0200;
50 +    }; break;
51 +    case 5:{
52 +      rparHe = 1.14;
53 +      epsHe = 0.0203;
54 +    }; break;
55 +  }
56      
57 <  //first determine the start distance - we always start at least minDist away
57 >  if (rparHe < 2.2)
58 >    sigProbe = 2*rparHe/1.12246204831;
59 >  else
60 >    sigProbe = rparHe;
61 >  
62 >  //determine the start distance - we always start at least minDist away
63    startDist = rbMol->findMaxExtent() + minDist;
64    if (startDist < minDist)
65      startDist = minDist;
66 <        
67 <  initBody();
68 <  for (i=0; i<bandwidth; i++){          
69 <    for (j=0; j<bandwidth; j++){
66 >
67 >  //set the initial orientation of the body and loop over theta values
68 >
69 >  for (k =0; k < gridwidth; k++) {
70 >    thetaVal = thetaMin + k*thetaStep;
71 >    printf("Theta step %i\n", k);
72 >    for (j=0; j < gridwidth; j++) {
73 >      phiVal = j*phiStep;
74 >
75 >      rbMol->setEuler(0.0, thetaVal, phiVal);
76 >
77        releaseProbe(startDist);
78  
79 <      sigmaGrid.push_back(sigDist);
80 <      sGrid.push_back(sDist);
81 <      epsGrid.push_back(epsVal);
82 <                        
83 <      stepPhi(phiStep);
79 >      //translate the values to sigma, s, and epsilon of the rigid body
80 >      sigTemp = 2*sigDist - sigProbe;
81 >      sTemp = (2*(sDist - sigDist))/(0.122462048309) - sigProbe;
82 >      epsTemp = pow(epsVal, 2)/fabs(epsHe);
83 >      
84 >      sigList.push_back(sigTemp);
85 >      sList.push_back(sTemp);
86 >      epsList.push_back(epsTemp);
87      }
49    stepTheta(thetaStep);
88    }            
89   }
90  
53 void GridBuilder::initBody(){
54  //set up the rigid body in the starting configuration
55  stepTheta(thetaMin);
56 }
57
91   void GridBuilder::releaseProbe(double farPos){
92    int tooClose;
93    double tempPotEnergy;
# Line 67 | Line 100 | void GridBuilder::releaseProbe(double farPos){
100    tooClose = 0;
101    epsVal = 0;
102    rhoStep = 0.1; //the distance the probe atom moves between steps
103 <        
71 <        
103 >                
104    while (!tooClose){
105      calcEnergy();
106      potProgress.push_back(potEnergy);
# Line 106 | Line 138 | void GridBuilder::calcEnergy(){
138   }
139  
140   void GridBuilder::calcEnergy(){
141 <        
142 < }
141 >  double rXij, rYij, rZij;
142 >  double rijSquared;
143 >  double rValSquared, rValPowerSix;
144 >  double atomRpar, atomEps;
145 >  double rbAtomPos[3];
146 >    
147 >  potEnergy = 0.0;
148  
149 < void GridBuilder::stepTheta(double increment){
150 <  //zero out the euler angles
151 <  for (i=0; i<3; i++)
152 <    angles[i] = 0.0;
153 <        
154 <  //the second euler angle is for rotation about the x-axis (we use the zxz convention)
155 <  angles[1] = increment;
156 <        
157 <  //obtain the rotation matrix through the rigid body class
158 <  rbMol->doEulerToRotMat(angles, rotX);
159 <        
160 <  //rotate the rigid body
161 <  rbMol->getA(rbMatrix);
162 <  matMul3(rotX, rbMatrix, rotatedMat);
163 <  rbMol->setA(rotatedMat);      
164 < }
149 >  for(i=0; i<rbMol->getNumAtoms(); i++){
150 >    rbMol->getAtomPos(rbAtomPos, i);
151 >    
152 >    rXij = rbAtomPos[0];
153 >    rYij = rbAtomPos[1];
154 >    rZij = rbAtomPos[2] - probeCoor;
155 >    
156 >    rijSquared = rXij * rXij + rYij * rYij + rZij * rZij;
157 >    
158 >    //in the interest of keeping the code more compact, we are being less
159 >    //efficient by placing a switch statement in the calculation loop
160 >    switch(forcefield){
161 >      case 1:{
162 >        //we are using the CHARMm force field
163 >        atomRpar = rbMol->getAtomRpar(i);
164 >        atomEps = rbMol->getAtomEps(i);
165 >        
166 >        rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared);
167 >        rValPowerSix = rValSquared * rValSquared * rValSquared;
168 >        potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0));
169 >      }; break;
170 >      
171 >      case 2:{
172 >        //we are using the AMBER force field
173 >        atomRpar = rbMol->getAtomRpar(i);
174 >        atomEps = rbMol->getAtomEps(i);
175 >        
176 >        rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared);
177 >        rValPowerSix = rValSquared * rValSquared * rValSquared;
178 >        potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0));
179 >      }; break;
180 >      
181 >      case 3:{
182 >        //we are using Allen-Tildesley LJ parameters
183 >        atomRpar = rbMol->getAtomRpar(i);
184 >        atomEps = rbMol->getAtomEps(i);
185 >        
186 >        rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (4*rijSquared);
187 >        rValPowerSix = rValSquared * rValSquared * rValSquared;
188 >        potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0));
189 >        
190 >      }; break;
191 >      
192 >      case 4:{
193 >        //we are using the OPLS force field
194 >        atomRpar = rbMol->getAtomRpar(i);
195 >        atomEps = rbMol->getAtomEps(i);
196 >        
197 >        rValSquared = (pow(sqrt(rparHe+atomRpar),2)) / (rijSquared);
198 >        rValPowerSix = rValSquared * rValSquared * rValSquared;
199 >        potEnergy += 4*sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 1.0));
200 >      }; break;
201 >      
202 >      case 5:{
203 >        //we are using the GAFF force field
204 >        atomRpar = rbMol->getAtomRpar(i);
205 >        atomEps = rbMol->getAtomEps(i);
206 >        
207 >        rValSquared = ((rparHe+atomRpar)*(rparHe+atomRpar)) / (rijSquared);
208 >        rValPowerSix = rValSquared * rValSquared * rValSquared;
209 >        potEnergy += sqrt(epsHe*atomEps)*(rValPowerSix * (rValPowerSix - 2.0));
210 >      }; break;
211 >    }    
212 >  }
213 > }
214  
215 < void GridBuilder::stepPhi(double increment){
216 <  //zero out the euler angles
217 <  for (i=0; i<3; i++)
218 <    angles[i] = 0.0;
219 <        
220 <  //the phi euler angle is for rotation about the z-axis (we use the zxz convention)
221 <  angles[0] = increment;
222 <        
223 <  //obtain the rotation matrix through the rigid body class
224 <  rbMol->doEulerToRotMat(angles, rotZ);
139 <        
140 <  //rotate the rigid body
141 <  rbMol->getA(rbMatrix);
142 <  matMul3(rotZ, rbMatrix, rotatedMat);
143 <  rbMol->setA(rotatedMat);      
215 > void GridBuilder::printGridFiles(){
216 >  ofstream sigmaOut("sigma.grid");
217 >  ofstream sOut("s.grid");
218 >  ofstream epsOut("eps.grid");
219 >  
220 >  for (k=0; k<sigList.size(); k++){
221 >    sigmaOut << sigList[k] << "\n0\n";
222 >    sOut << sList[k] << "\n0\n";    
223 >    epsOut << epsList[k] << "\n0\n";
224 >  }
225   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines