| 1 |
#include "GridBuilder.hpp" |
| 2 |
#include "MatVec3.h" |
| 3 |
#define PI 3.14159265359 |
| 4 |
|
| 5 |
|
| 6 |
GridBuilder::GridBuilder(RigidBody* rb, int bandWidth) { |
| 7 |
rbMol = rb; |
| 8 |
bandwidth = bandWidth; |
| 9 |
thetaStep = PI / bandwidth; |
| 10 |
thetaMin = thetaStep / 2.0; |
| 11 |
phiStep = thetaStep * 2.0; |
| 12 |
|
| 13 |
//zero out the rot mats |
| 14 |
for (i=0; i<3; i++) { |
| 15 |
for (j=0; j<3; j++) { |
| 16 |
rotX[i][j] = 0.0; |
| 17 |
rotZ[i][j] = 0.0; |
| 18 |
rbMatrix[i][j] = 0.0; |
| 19 |
} |
| 20 |
} |
| 21 |
} |
| 22 |
|
| 23 |
GridBuilder::~GridBuilder() { |
| 24 |
} |
| 25 |
|
| 26 |
void GridBuilder::launchProbe(int forceField, vector<double> sigmaGrid, vector<double> sGrid, |
| 27 |
vector<double> epsGrid){ |
| 28 |
double startDist; |
| 29 |
double minDist = 10.0; //minimum start distance |
| 30 |
|
| 31 |
//first determine the start distance - we always start at least minDist away |
| 32 |
startDist = rbMol->findMaxExtent() + minDist; |
| 33 |
if (startDist < minDist) |
| 34 |
startDist = minDist; |
| 35 |
|
| 36 |
initBody(); |
| 37 |
for (i=0; i<bandwidth; i++){ |
| 38 |
for (j=0; j<bandwidth; j++){ |
| 39 |
releaseProbe(startDist); |
| 40 |
|
| 41 |
sigmaGrid.push_back(sigDist); |
| 42 |
sGrid.push_back(sDist); |
| 43 |
epsGrid.push_back(epsVal); |
| 44 |
|
| 45 |
stepPhi(phiStep); |
| 46 |
} |
| 47 |
stepTheta(thetaStep); |
| 48 |
} |
| 49 |
|
| 50 |
} |
| 51 |
|
| 52 |
void GridBuilder::initBody(){ |
| 53 |
//set up the rigid body in the starting configuration |
| 54 |
stepTheta(thetaMin); |
| 55 |
} |
| 56 |
|
| 57 |
void GridBuilder::releaseProbe(double farPos){ |
| 58 |
int tooClose; |
| 59 |
double tempPotEnergy; |
| 60 |
double interpRange; |
| 61 |
double interpFrac; |
| 62 |
|
| 63 |
probeCoor = farPos; |
| 64 |
tooClose = 0; |
| 65 |
epsVal = 0; |
| 66 |
rhoStep = 0.1; //the distance the probe atom moves between steps |
| 67 |
|
| 68 |
while (!tooClose){ |
| 69 |
calcEnergy(); |
| 70 |
potProgress.push_back(potEnergy); |
| 71 |
distProgress.push_back(probeCoor); |
| 72 |
|
| 73 |
//if we've reached a new minimum, save the value and position |
| 74 |
if (potEnergy < epsVal){ |
| 75 |
epsVal = potEnergy; |
| 76 |
sDist = probeCoor; |
| 77 |
} |
| 78 |
|
| 79 |
//test if the probe reached the origin - if so, stop stepping closer |
| 80 |
if (probeCoor < 0){ |
| 81 |
sigDist = 0.0; |
| 82 |
tooClose = 1; |
| 83 |
} |
| 84 |
|
| 85 |
//test if the probe beyond the contact point - if not, take a step closer |
| 86 |
if (potEnergy < 0){ |
| 87 |
sigDist = probeCoor; |
| 88 |
tempPotEnergy = potEnergy; |
| 89 |
probeCoor -= rhoStep; |
| 90 |
} |
| 91 |
else { |
| 92 |
//do a linear interpolation to obtain the sigDist |
| 93 |
interpRange = potEnergy - tempPotEnergy; |
| 94 |
interpFrac = potEnergy / interpRange; |
| 95 |
interpFrac = interpFrac * rhoStep; |
| 96 |
sigDist = probeCoor + interpFrac; |
| 97 |
|
| 98 |
//end the loop |
| 99 |
tooClose = 1; |
| 100 |
} |
| 101 |
} |
| 102 |
} |
| 103 |
|
| 104 |
void GridBuilder::calcEnergy(){ |
| 105 |
|
| 106 |
} |
| 107 |
|
| 108 |
void GridBuilder::stepTheta(double increment){ |
| 109 |
//zero out the euler angles |
| 110 |
for (i=0; i<3; i++) |
| 111 |
angles[i] = 0.0; |
| 112 |
|
| 113 |
//the second euler angle is for rotation about the x-axis (we use the zxz convention) |
| 114 |
angles[1] = increment; |
| 115 |
|
| 116 |
//obtain the rotation matrix through the rigid body class |
| 117 |
rbMol->doEulerToRotMat(angles, rotX); |
| 118 |
|
| 119 |
//rotate the rigid body |
| 120 |
rbMol->getA(rbMatrix); |
| 121 |
matMul3(rotX, rbMatrix, rotatedMat); |
| 122 |
rbMol->setA(rotatedMat); |
| 123 |
|
| 124 |
} |
| 125 |
|
| 126 |
void GridBuilder::stepPhi(double increment){ |
| 127 |
//zero out the euler angles |
| 128 |
for (i=0; i<3; i++) |
| 129 |
angles[i] = 0.0; |
| 130 |
|
| 131 |
//the phi euler angle is for rotation about the z-axis (we use the zxz convention) |
| 132 |
angles[0] = increment; |
| 133 |
|
| 134 |
//obtain the rotation matrix through the rigid body class |
| 135 |
rbMol->doEulerToRotMat(angles, rotZ); |
| 136 |
|
| 137 |
//rotate the rigid body |
| 138 |
rbMol->getA(rbMatrix); |
| 139 |
matMul3(rotZ, rbMatrix, rotatedMat); |
| 140 |
rbMol->setA(rotatedMat); |
| 141 |
|
| 142 |
} |