ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/SHAPES/MatVec3.c
Revision: 1271
Committed: Tue Jun 15 20:20:36 2004 UTC (20 years ago) by gezelter
Content type: text/plain
File size: 12568 byte(s)
Log Message:
Major changes for rigidbodies

File Contents

# Content
1 #include <stdio.h>
2 #include <math.h>
3 #include <stdlib.h>
4 #include "MatVec3.h"
5
6 /*
7 * Contains various utilities for dealing with 3x3 matrices and
8 * length 3 vectors
9 */
10
11 void identityMat3(double A[3][3]) {
12 int i;
13 for (i = 0; i < 3; i++) {
14 A[i][0] = A[i][1] = A[i][2] = 0.0;
15 A[i][i] = 1.0;
16 }
17 }
18
19 void swapVectors3(double v1[3], double v2[3]) {
20 int i;
21 for (i = 0; i < 3; i++) {
22 double tmp = v1[i];
23 v1[i] = v2[i];
24 v2[i] = tmp;
25 }
26 }
27
28 double normalize3(double x[3]) {
29 double den;
30 int i;
31 if ( (den = norm3(x)) != 0.0 ) {
32 for (i=0; i < 3; i++)
33 {
34 x[i] /= den;
35 }
36 }
37 return den;
38 }
39
40 void matMul3(double a[3][3], double b[3][3], double c[3][3]) {
41 double r00, r01, r02, r10, r11, r12, r20, r21, r22;
42
43 r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
44 r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
45 r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
46
47 r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
48 r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
49 r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
50
51 r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
52 r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
53 r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
54
55 c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
56 c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
57 c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
58 }
59
60 void matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
61 double a0, a1, a2;
62
63 a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2];
64
65 outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
66 outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
67 outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
68 }
69
70 double matDet3(double a[3][3]) {
71 int i, j, k;
72 double determinant;
73
74 determinant = 0.0;
75
76 for(i = 0; i < 3; i++) {
77 j = (i+1)%3;
78 k = (i+2)%3;
79
80 determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
81 }
82
83 return determinant;
84 }
85
86 void invertMat3(double a[3][3], double b[3][3]) {
87
88 int i, j, k, l, m, n;
89 double determinant;
90
91 determinant = matDet3( a );
92
93 if (determinant == 0.0) {
94 printf(
95 "Can't invert a matrix with a zero determinant!\n");
96 exit(-1);
97 }
98
99 for (i=0; i < 3; i++) {
100 j = (i+1)%3;
101 k = (i+2)%3;
102 for(l = 0; l < 3; l++) {
103 m = (l+1)%3;
104 n = (l+2)%3;
105
106 b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
107 }
108 }
109 }
110
111 void transposeMat3(double in[3][3], double out[3][3]) {
112 double temp[3][3];
113 int i, j;
114
115 for (i = 0; i < 3; i++) {
116 for (j = 0; j < 3; j++) {
117 temp[j][i] = in[i][j];
118 }
119 }
120 for (i = 0; i < 3; i++) {
121 for (j = 0; j < 3; j++) {
122 out[i][j] = temp[i][j];
123 }
124 }
125 }
126
127 void printMat3(double A[3][3] ){
128
129 fprintf(stderr, "[ %g, %g, %g ]\n[ %g, %g, %g ]\n[ %g, %g, %g ]\n",
130 A[0][0] , A[0][1] , A[0][2],
131 A[1][0] , A[1][1] , A[1][2],
132 A[2][0] , A[2][1] , A[2][2]) ;
133 }
134
135 void printMat9(double A[9] ){
136
137 fprintf(stderr, "[ %g, %g, %g ]\n[ %g, %g, %g ]\n[ %g, %g, %g ]\n",
138 A[0], A[1], A[2],
139 A[3], A[4], A[5],
140 A[6], A[7], A[8]);
141 }
142
143 double matTrace3(double m[3][3]){
144 double trace;
145 trace = m[0][0] + m[1][1] + m[2][2];
146
147 return trace;
148 }
149
150 void crossProduct3(double a[3],double b[3], double out[3]){
151
152 out[0] = a[1] * b[2] - a[2] * b[1];
153 out[1] = a[2] * b[0] - a[0] * b[2] ;
154 out[2] = a[0] * b[1] - a[1] * b[0];
155
156 }
157
158 double dotProduct3(double a[3], double b[3]){
159 return a[0]*b[0] + a[1]*b[1]+ a[2]*b[2];
160 }
161
162 //----------------------------------------------------------------------------
163 // Extract the eigenvalues and eigenvectors from a 3x3 matrix.
164 // The eigenvectors (the columns of V) will be normalized.
165 // The eigenvectors are aligned optimally with the x, y, and z
166 // axes respectively.
167
168 void diagonalize3x3(const double A[3][3], double w[3], double V[3][3]) {
169 int i,j,k,maxI;
170 double tmp, maxVal;
171
172 // do the matrix[3][3] to **matrix conversion for Jacobi
173 double C[3][3];
174 double *ATemp[3],*VTemp[3];
175 for (i = 0; i < 3; i++)
176 {
177 C[i][0] = A[i][0];
178 C[i][1] = A[i][1];
179 C[i][2] = A[i][2];
180 ATemp[i] = C[i];
181 VTemp[i] = V[i];
182 }
183
184 // diagonalize using Jacobi
185 JacobiN(ATemp,3,w,VTemp);
186
187 // if all the eigenvalues are the same, return identity matrix
188 if (w[0] == w[1] && w[0] == w[2])
189 {
190 identityMat3(V);
191 return;
192 }
193
194 // transpose temporarily, it makes it easier to sort the eigenvectors
195 transposeMat3(V,V);
196
197 // if two eigenvalues are the same, re-orthogonalize to optimally line
198 // up the eigenvectors with the x, y, and z axes
199 for (i = 0; i < 3; i++)
200 {
201 if (w[(i+1)%3] == w[(i+2)%3]) // two eigenvalues are the same
202 {
203 // find maximum element of the independant eigenvector
204 maxVal = fabs(V[i][0]);
205 maxI = 0;
206 for (j = 1; j < 3; j++)
207 {
208 if (maxVal < (tmp = fabs(V[i][j])))
209 {
210 maxVal = tmp;
211 maxI = j;
212 }
213 }
214 // swap the eigenvector into its proper position
215 if (maxI != i)
216 {
217 tmp = w[maxI];
218 w[maxI] = w[i];
219 w[i] = tmp;
220 swapVectors3(V[i],V[maxI]);
221 }
222 // maximum element of eigenvector should be positive
223 if (V[maxI][maxI] < 0)
224 {
225 V[maxI][0] = -V[maxI][0];
226 V[maxI][1] = -V[maxI][1];
227 V[maxI][2] = -V[maxI][2];
228 }
229
230 // re-orthogonalize the other two eigenvectors
231 j = (maxI+1)%3;
232 k = (maxI+2)%3;
233
234 V[j][0] = 0.0;
235 V[j][1] = 0.0;
236 V[j][2] = 0.0;
237 V[j][j] = 1.0;
238 crossProduct3(V[maxI],V[j],V[k]);
239 normalize3(V[k]);
240 crossProduct3(V[k],V[maxI],V[j]);
241
242 // transpose vectors back to columns
243 transposeMat3(V,V);
244 return;
245 }
246 }
247
248 // the three eigenvalues are different, just sort the eigenvectors
249 // to align them with the x, y, and z axes
250
251 // find the vector with the largest x element, make that vector
252 // the first vector
253 maxVal = fabs(V[0][0]);
254 maxI = 0;
255 for (i = 1; i < 3; i++)
256 {
257 if (maxVal < (tmp = fabs(V[i][0])))
258 {
259 maxVal = tmp;
260 maxI = i;
261 }
262 }
263 // swap eigenvalue and eigenvector
264 if (maxI != 0)
265 {
266 tmp = w[maxI];
267 w[maxI] = w[0];
268 w[0] = tmp;
269 swapVectors3(V[maxI],V[0]);
270 }
271 // do the same for the y element
272 if (fabs(V[1][1]) < fabs(V[2][1]))
273 {
274 tmp = w[2];
275 w[2] = w[1];
276 w[1] = tmp;
277 swapVectors3(V[2],V[1]);
278 }
279
280 // ensure that the sign of the eigenvectors is correct
281 for (i = 0; i < 2; i++)
282 {
283 if (V[i][i] < 0)
284 {
285 V[i][0] = -V[i][0];
286 V[i][1] = -V[i][1];
287 V[i][2] = -V[i][2];
288 }
289 }
290 // set sign of final eigenvector to ensure that determinant is positive
291 if (matDet3(V) < 0)
292 {
293 V[2][0] = -V[2][0];
294 V[2][1] = -V[2][1];
295 V[2][2] = -V[2][2];
296 }
297
298 // transpose the eigenvectors back again
299 transposeMat3(V,V);
300 }
301
302
303 #define MAT_ROTATE(a,i,j,k,l) g=a[i][j];h=a[k][l];a[i][j]=g-s*(h+g*tau); a[k][l]=h+s*(g-h*tau);
304
305 #define MAX_ROTATIONS 20
306
307 // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn
308 // real symmetric matrix. Square nxn matrix a; size of matrix in n;
309 // output eigenvalues in w; and output eigenvectors in v. Resulting
310 // eigenvalues/vectors are sorted in decreasing order; eigenvectors are
311 // normalized.
312 int JacobiN(double **a, int n, double *w, double **v) {
313
314 int i, j, k, iq, ip, numPos;
315 double tresh, theta, tau, t, sm, s, h, g, c, tmp;
316 double bspace[4], zspace[4];
317 double *b = bspace;
318 double *z = zspace;
319
320 // only allocate memory if the matrix is large
321 if (n > 4)
322 {
323 b = (double *) calloc(n, sizeof(double));
324 z = (double *) calloc(n, sizeof(double));
325 }
326
327 // initialize
328 for (ip=0; ip<n; ip++)
329 {
330 for (iq=0; iq<n; iq++)
331 {
332 v[ip][iq] = 0.0;
333 }
334 v[ip][ip] = 1.0;
335 }
336 for (ip=0; ip<n; ip++)
337 {
338 b[ip] = w[ip] = a[ip][ip];
339 z[ip] = 0.0;
340 }
341
342 // begin rotation sequence
343 for (i=0; i<MAX_ROTATIONS; i++)
344 {
345 sm = 0.0;
346 for (ip=0; ip<n-1; ip++)
347 {
348 for (iq=ip+1; iq<n; iq++)
349 {
350 sm += fabs(a[ip][iq]);
351 }
352 }
353 if (sm == 0.0)
354 {
355 break;
356 }
357
358 if (i < 3) // first 3 sweeps
359 {
360 tresh = 0.2*sm/(n*n);
361 }
362 else
363 {
364 tresh = 0.0;
365 }
366
367 for (ip=0; ip<n-1; ip++)
368 {
369 for (iq=ip+1; iq<n; iq++)
370 {
371 g = 100.0*fabs(a[ip][iq]);
372
373 // after 4 sweeps
374 if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip])
375 && (fabs(w[iq])+g) == fabs(w[iq]))
376 {
377 a[ip][iq] = 0.0;
378 }
379 else if (fabs(a[ip][iq]) > tresh)
380 {
381 h = w[iq] - w[ip];
382 if ( (fabs(h)+g) == fabs(h))
383 {
384 t = (a[ip][iq]) / h;
385 }
386 else
387 {
388 theta = 0.5*h / (a[ip][iq]);
389 t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta));
390 if (theta < 0.0)
391 {
392 t = -t;
393 }
394 }
395 c = 1.0 / sqrt(1+t*t);
396 s = t*c;
397 tau = s/(1.0+c);
398 h = t*a[ip][iq];
399 z[ip] -= h;
400 z[iq] += h;
401 w[ip] -= h;
402 w[iq] += h;
403 a[ip][iq]=0.0;
404
405 // ip already shifted left by 1 unit
406 for (j = 0;j <= ip-1;j++)
407 {
408 MAT_ROTATE(a,j,ip,j,iq)
409 }
410 // ip and iq already shifted left by 1 unit
411 for (j = ip+1;j <= iq-1;j++)
412 {
413 MAT_ROTATE(a,ip,j,j,iq)
414 }
415 // iq already shifted left by 1 unit
416 for (j=iq+1; j<n; j++)
417 {
418 MAT_ROTATE(a,ip,j,iq,j)
419 }
420 for (j=0; j<n; j++)
421 {
422 MAT_ROTATE(v,j,ip,j,iq)
423 }
424 }
425 }
426 }
427
428 for (ip=0; ip<n; ip++)
429 {
430 b[ip] += z[ip];
431 w[ip] = b[ip];
432 z[ip] = 0.0;
433 }
434 }
435
436 //// this is NEVER called
437 if ( i >= MAX_ROTATIONS )
438 {
439 printf( "Jacobi: Error extracting eigenfunctions!\n");
440 exit(-1);
441 }
442
443 // sort eigenfunctions these changes do not affect accuracy
444 for (j=0; j<n-1; j++) // boundary incorrect
445 {
446 k = j;
447 tmp = w[k];
448 for (i=j+1; i<n; i++) // boundary incorrect, shifted already
449 {
450 if (w[i] >= tmp) // why exchage if same?
451 {
452 k = i;
453 tmp = w[k];
454 }
455 }
456 if (k != j)
457 {
458 w[k] = w[j];
459 w[j] = tmp;
460 for (i=0; i<n; i++)
461 {
462 tmp = v[i][j];
463 v[i][j] = v[i][k];
464 v[i][k] = tmp;
465 }
466 }
467 }
468 // insure eigenvector consistency (i.e., Jacobi can compute vectors that
469 // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can
470 // reek havoc in hyperstreamline/other stuff. We will select the most
471 // positive eigenvector.
472 int ceil_half_n = (n >> 1) + (n & 1);
473 for (j=0; j<n; j++)
474 {
475 for (numPos=0, i=0; i<n; i++)
476 {
477 if ( v[i][j] >= 0.0 )
478 {
479 numPos++;
480 }
481 }
482 // if ( numPos < ceil(double(n)/double(2.0)) )
483 if ( numPos < ceil_half_n)
484 {
485 for(i=0; i<n; i++)
486 {
487 v[i][j] *= -1.0;
488 }
489 }
490 }
491
492 if (n > 4)
493 {
494 free(b);
495 free(z);
496 }
497 return 1;
498 }
499
500 #undef MAT_ROTATE
501 #undef MAX_ROTATIONS