1 |
module shapes |
2 |
implicit none |
3 |
PRIVATE |
4 |
|
5 |
INTEGER, PARAMETER:: CHEBYSHEV_TN = 1 |
6 |
INTEGER, PARAMETER:: CHEBYSHEV_UN = 2 |
7 |
INTEGER, PARAMETER:: LAGUERRE = 3 |
8 |
INTEGER, PARAMETER:: HERMITE = 4 |
9 |
|
10 |
public :: do_shape_pair |
11 |
|
12 |
|
13 |
SUBROUTINE Get_Associated_Legendre(x, l, m, lmax, plm, dlm) |
14 |
|
15 |
! Purpose: Compute the associated Legendre functions |
16 |
! Plm(x) and their derivatives Plm'(x) |
17 |
! Input : x --- Argument of Plm(x) |
18 |
! l --- Order of Plm(x), l = 0,1,2,...,n |
19 |
! m --- Degree of Plm(x), m = 0,1,2,...,N |
20 |
! lmax --- Physical dimension of PLM and DLM |
21 |
! Output: PLM(l,m) --- Plm(x) |
22 |
! DLM(l,m) --- Plm'(x) |
23 |
|
24 |
real (kind=8), intent(in) :: x |
25 |
integer, intent(in) :: lmax, l, m |
26 |
real (kind=8), dimension(0:MM,0:N), intent(inout) :: PLM(0:lmax, 0:m) |
27 |
real (kind=8), dimension(0:MM,0:N), intent(inout) :: DLM(0:lmax, 0:m) |
28 |
integer :: i, j |
29 |
real (kind=8) :: xq, xs |
30 |
integer :: ls |
31 |
|
32 |
! zero out both arrays: |
33 |
DO I = 0, m |
34 |
DO J = 0, l |
35 |
PLM(J,I) = 0.0D0 |
36 |
DLM(J,I) = 0.0D0 |
37 |
end DO |
38 |
end DO |
39 |
|
40 |
! start with 0,0: |
41 |
PLM(0,0) = 1.0D0 |
42 |
|
43 |
! x = +/- 1 functions are easy: |
44 |
IF (abs(X).EQ.1.0D0) THEN |
45 |
DO I = 1, m |
46 |
PLM(0, I) = X**I |
47 |
DLM(0, I) = 0.5D0*I*(I+1.0D0)*X**(I+1) |
48 |
end DO |
49 |
DO J = 1, m |
50 |
DO I = 1, l |
51 |
IF (I.EQ.1) THEN |
52 |
DLM(I, J) = 1.0D+300 |
53 |
ELSE IF (I.EQ.2) THEN |
54 |
DLM(I, J) = -0.25D0*(J+2)*(J+1)*J*(J-1)*X**(J+1) |
55 |
ENDIF |
56 |
end DO |
57 |
end DO |
58 |
RETURN |
59 |
ENDIF |
60 |
|
61 |
LS = 1 |
62 |
IF (abs(X).GT.1.0D0) LS = -1 |
63 |
XQ = sqrt(LS*(1.0D0-X*X)) |
64 |
XS = LS*(1.0D0-X*X) |
65 |
|
66 |
DO I = 1, l |
67 |
PLM(I, I) = -LS*(2.0D0*I-1.0D0)*XQ*PLM(I-1, I-1) |
68 |
enddo |
69 |
|
70 |
DO I = 0, l |
71 |
PLM(I, I+1)=(2.0D0*I+1.0D0)*X*PLM(I, I) |
72 |
enddo |
73 |
|
74 |
DO I = 0, l |
75 |
DO J = I+2, m |
76 |
PLM(I, J)=((2.0D0*J-1.0D0)*X*PLM(I,J-1) - (I+J-1.0D0)*PLM(I,J-2))/(J-I) |
77 |
end DO |
78 |
end DO |
79 |
|
80 |
DLM(0, 0)=0.0D0 |
81 |
|
82 |
DO J = 1, m |
83 |
DLM(0, J)=LS*J*(PLM(0,J-1)-X*PLM(0,J))/XS |
84 |
end DO |
85 |
|
86 |
DO I = 1, l |
87 |
DO J = I, m |
88 |
DLM(I,J) = LS*I*X*PLM(I, J)/XS + (J+I)*(J-I+1.0D0)/XQ*PLM(I-1, J) |
89 |
end DO |
90 |
end DO |
91 |
|
92 |
RETURN |
93 |
END SUBROUTINE Get_Associated_Legendre |
94 |
|
95 |
|
96 |
subroutine Get_Orthogonal_Polynomial(x, m, function_type, pl, dpl) |
97 |
|
98 |
! Purpose: Compute orthogonal polynomials: Tn(x) or Un(x), |
99 |
! or Ln(x) or Hn(x), and their derivatives |
100 |
! Input : function_type --- Function code |
101 |
! =1 for Chebyshev polynomial Tn(x) |
102 |
! =2 for Chebyshev polynomial Un(x) |
103 |
! =3 for Laguerre polynomial Ln(x) |
104 |
! =4 for Hermite polynomial Hn(x) |
105 |
! n --- Order of orthogonal polynomials |
106 |
! x --- Argument of orthogonal polynomials |
107 |
! Output: PL(n) --- Tn(x) or Un(x) or Ln(x) or Hn(x) |
108 |
! DPL(n)--- Tn'(x) or Un'(x) or Ln'(x) or Hn'(x) |
109 |
|
110 |
real(kind=8), intent(in) :: x |
111 |
integer, intent(in):: m |
112 |
integer, intent(in):: function_type |
113 |
real(kind=8), dimension(0:n), intent(inout) :: pl, dpl |
114 |
|
115 |
real(kind=8) :: a, b, c, y0, y1, dy0, dy1 |
116 |
|
117 |
A = 2.0D0 |
118 |
B = 0.0D0 |
119 |
C = 1.0D0 |
120 |
Y0 = 1.0D0 |
121 |
Y1 = 2.0D0*X |
122 |
DY0 = 0.0D0 |
123 |
DY1 = 2.0D0 |
124 |
PL(0) = 1.0D0 |
125 |
PL(1) = 2.0D0*X |
126 |
DPL(0) = 0.0D0 |
127 |
DPL(1) = 2.0D0 |
128 |
IF (function_type.EQ.CHEBYSHEV_TN) THEN |
129 |
Y1 = X |
130 |
DY1 = 1.0D0 |
131 |
PL(1) = X |
132 |
DPL(1) = 1.0D0 |
133 |
ELSE IF (function_type.EQ.LAGUERRE) THEN |
134 |
Y1 = 1.0D0-X |
135 |
DY1 = -1.0D0 |
136 |
PL(1) = 1.0D0-X |
137 |
DPL(1) = -1.0D0 |
138 |
ENDIF |
139 |
DO K = 2, N |
140 |
IF (function_type.EQ.LAGUERRE) THEN |
141 |
A = -1.0D0/K |
142 |
B = 2.0D0+A |
143 |
C = 1.0D0+A |
144 |
ELSE IF (function_type.EQ.HERMITE) THEN |
145 |
C = 2.0D0*(K-1.0D0) |
146 |
ENDIF |
147 |
YN = (A*X+B)*Y1-C*Y0 |
148 |
DYN = A*Y1+(A*X+B)*DY1-C*DY0 |
149 |
PL(K) = YN |
150 |
DPL(K) = DYN |
151 |
Y0 = Y1 |
152 |
Y1 = YN |
153 |
DY0 = DY1 |
154 |
DY1 = DYN |
155 |
end DO |
156 |
RETURN |
157 |
|
158 |
end subroutine Get_Orthogonal_Polynomial |