ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/chainLength/thiolsRNEMD.bib
Revision: 3819
Committed: Mon Dec 17 18:42:55 2012 UTC (11 years, 8 months ago) by gezelter
File size: 87607 byte(s)
Log Message:
Adding references, force fields, ordering

File Contents

# User Rev Content
1 kstocke1 3801 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 gezelter 3819 %% Created for Dan Gezelter at 2012-12-17 13:38:45 -0500
6 kstocke1 3801
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11 gezelter 3819 @string{acp = {Adv. Chem. Phys.}}
12 kstocke1 3801
13 gezelter 3819 @string{bj = {Biophys. J.}}
14    
15     @string{ccp5 = {CCP5 Information Quarterly}}
16    
17     @string{cp = {Chem. Phys.}}
18    
19     @string{cpl = {Chem. Phys. Lett.}}
20    
21     @string{ea = {Electrochim. Acta}}
22    
23     @string{jacs = {J. Am. Chem. Soc.}}
24    
25     @string{jbc = {J. Biol. Chem.}}
26    
27     @string{jcat = {J. Catalysis}}
28    
29     @string{jcc = {J. Comp. Chem.}}
30    
31     @string{jcop = {J. Comp. Phys.}}
32    
33     @string{jcp = {J. Chem. Phys.}}
34    
35     @string{jctc = {J. Chem. Theory Comp.}}
36    
37     @string{jmc = {J. Med. Chem.}}
38    
39     @string{jml = {J. Mol. Liq.}}
40    
41     @string{jmm = {J. Mol. Model.}}
42    
43     @string{jpc = {J. Phys. Chem.}}
44    
45     @string{jpca = {J. Phys. Chem. A}}
46    
47     @string{jpcb = {J. Phys. Chem. B}}
48    
49     @string{jpcc = {J. Phys. Chem. C}}
50    
51     @string{jpcl = {J. Phys. Chem. Lett.}}
52    
53     @string{mp = {Mol. Phys.}}
54    
55     @string{pams = {Proc. Am. Math Soc.}}
56    
57     @string{pccp = {Phys. Chem. Chem. Phys.}}
58    
59     @string{pnas = {Proc. Natl. Acad. Sci. USA}}
60    
61     @string{pr = {Phys. Rev.}}
62    
63     @string{pra = {Phys. Rev. A}}
64    
65     @string{prb = {Phys. Rev. B}}
66    
67     @string{pre = {Phys. Rev. E}}
68    
69     @string{prl = {Phys. Rev. Lett.}}
70    
71     @string{rmp = {Rev. Mod. Phys.}}
72    
73     @string{ss = {Surf. Sci.}}
74    
75    
76     @article{doi:10.1021/jp034405s,
77     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
78     Author = {Leng, Y. and Keffer, David J. and Cummings, Peter T.},
79     Date-Added = {2012-12-17 18:38:38 +0000},
80     Date-Modified = {2012-12-17 18:38:38 +0000},
81     Doi = {10.1021/jp034405s},
82     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
83     Journal = {J. Phys. Chem. B},
84     Number = {43},
85     Pages = {11940-11950},
86     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
87     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
88     Volume = {107},
89     Year = {2003},
90     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
91     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
92    
93     @article{hautman:4994,
94     Author = {Joseph Hautman and Michael L. Klein},
95     Date-Added = {2012-12-17 18:38:26 +0000},
96     Date-Modified = {2012-12-17 18:38:26 +0000},
97     Doi = {10.1063/1.457621},
98     Journal = {J. Chem. Phys.},
99     Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
100     Number = {8},
101     Pages = {4994-5001},
102     Publisher = {AIP},
103     Title = {Simulation of a monolayer of alkyl thiol chains},
104     Url = {http://link.aip.org/link/?JCP/91/4994/1},
105     Volume = {91},
106     Year = {1989},
107     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
108     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
109    
110     @article{vlugt:cpc2007154,
111     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
112     Date-Added = {2012-12-17 18:38:20 +0000},
113     Date-Modified = {2012-12-17 18:38:20 +0000},
114     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
115     Issn = {0010-4655},
116     Journal = {Comput. Phys. Commun.},
117     Keywords = {Gold nanocrystals},
118     Note = {Proceedings of the Conference on Computational Physics 2006 - CCP 2006, Conference on Computational Physics 2006},
119     Number = {1-2},
120     Pages = {154 - 157},
121     Title = {Selective adsorption of alkyl thiols on gold in different geometries},
122     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
123     Volume = {177},
124     Year = {2007},
125     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
126     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
127    
128     @article{landman:1998,
129     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
130     Author = {Luedtke, W. D. and Landman, Uzi},
131     Date-Added = {2012-12-17 18:38:13 +0000},
132     Date-Modified = {2012-12-17 18:38:13 +0000},
133     Doi = {10.1021/jp981745i},
134     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
135     Journal = {J. Phys. Chem. B},
136     Number = {34},
137     Pages = {6566-6572},
138     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
139     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
140     Volume = {102},
141     Year = {1998},
142     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
143     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
144    
145     @article{PhysRevLett.96.186101,
146     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
147     Date-Added = {2012-12-17 17:44:53 +0000},
148     Date-Modified = {2012-12-17 17:44:53 +0000},
149     Doi = {10.1103/PhysRevLett.96.186101},
150     Journal = prl,
151     Month = {May},
152     Number = {18},
153     Numpages = {4},
154     Pages = {186101},
155     Publisher = {American Physical Society},
156     Title = {Thermal Conductance of Hydrophilic and Hydrophobic Interfaces},
157     Volume = {96},
158     Year = {2006},
159     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.96.186101}}
160    
161     @article{Larson:2007hw,
162     Abstract = {Nanoparticles which consist of a plasmonic layer and an iron oxide moiety could provide a promising platform for development of multimodal imaging and therapy approaches in future medicine. However, the feasibility of this platform has yet to be fully explored. In this study we demonstrated the use of gold-coated iron oxide hybrid nanoparticles for combined molecular specific MRI/optical imaging and photothermal therapy of cancer cells. The gold layer exhibits a surface plasmon resonance that provides optical contrast due to light scattering in the visible region and also presents a convenient surface for conjugating targeting moieties, while the iron oxide cores give strong T-2 (spin-spin relaxation time) contrast. The strong optical absorption of the plasmonic gold layer also makes these nanoparticles a promising agent for photothermal therapy. We synthesized hybrid nanoparticles which specifically target epidermal growth factor receptor (EGFR), a common biomarker for many epithelial cancers. We demonstrated molecular specific MRI and optical imaging in MDA-MB-468 breast cancer cells. Furthermore, we showed that receptor-mediated aggregation of anti-EGFR hybrid nanoparticles allows selective destruction of highly proliferative cancer cells using a nanosecond pulsed laser at 700 nm wavelength, a significant shift from the peak absorbance of isolated hybrid nanoparticles at 532 nm.},
163     Address = {DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND},
164     Author = {Larson, Timothy A. and Bankson, James and Aaron, Jesse and Sokolov, Konstantin},
165     Date = {AUG 15 2007},
166     Date-Added = {2012-12-17 17:44:44 +0000},
167     Date-Modified = {2012-12-17 17:44:44 +0000},
168     Doi = {ARTN 325101},
169     Journal = {Nanotechnology},
170     Publisher = {IOP PUBLISHING LTD},
171     Timescited = {5},
172     Title = {Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells},
173     Volume = {18},
174     Year = {2007},
175     Bdsk-Url-1 = {http://dx.doi.org/325101}}
176    
177     @article{Huff:2007ye,
178     Abstract = {Plasmon-resonant gold nanorods, which have large absorption cross sections at near-infrared frequencies, are excellent candidates as multifunctional agents for image-guided therapies based on localized hyperthermia. The controlled modification of the surface chemistry of the nanorods is of critical importance, as issues of cell-specific targeting and nonspecific uptake must be addressed prior to clinical evaluation. Nanorods coated with cetyltrimethylammonium bromide (a cationic surfactant used in nanorod synthesis) are internalized within hours into KB cells by a nonspecific uptake pathway, whereas the careful removal of cetyltrimethylammonium bromide from nanorods functionalized with folate results in their accumulation on the cell surface over the same time interval. In either case, the nanorods render the tumor cells highly susceptible to photothermal damage when irradiated at the nanorods' longitudinal plasmon resonance, generating extensive blebbing of the cell membrane at laser fluences as low as 30 J/cm(2).},
179     Address = {UNITEC HOUSE, 3RD FLOOR, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON, N3 1QB, ENGLAND},
180     Author = {Huff, Terry B. and Tong, Ling and Zhao, Yan and Hansen, Matthew N. and Cheng, Ji-Xin and Wei, Alexander},
181     Date = {FEB 2007},
182     Date-Added = {2012-12-17 17:44:36 +0000},
183     Date-Modified = {2012-12-17 17:44:36 +0000},
184     Doi = {DOI 10.2217/17435889.2.1.125},
185     Journal = {Nanomedicine},
186     Keywords = {folate receptor; hyperthermia; imaging; nanorods; nonlinear optical microscopy; plasmon resonance; targeted therapy},
187     Pages = {125-132},
188     Publisher = {FUTURE MEDICINE LTD},
189     Timescited = {13},
190     Title = {Hyperthermic effects of gold nanorods on tumor cells},
191     Volume = {2},
192     Year = {2007},
193     Bdsk-Url-1 = {http://dx.doi.org/10.2217/17435889.2.1.125}}
194    
195     @article{2012MolPh.110..691K,
196     Adsnote = {Provided by the SAO/NASA Astrophysics Data System},
197     Adsurl = {http://adsabs.harvard.edu/abs/2012MolPh.110..691K},
198     Author = {{Kuang}, S. and {Gezelter}, J.~D.},
199     Date-Added = {2012-12-17 16:57:32 +0000},
200     Date-Modified = {2012-12-17 16:57:32 +0000},
201     Doi = {10.1080/00268976.2012.680512},
202     Journal = mp,
203     Month = may,
204     Pages = {691-701},
205     Title = {{Velocity shearing and scaling RNEMD: a minimally perturbing method for simulating temperature and momentum gradients}},
206     Volume = 110,
207     Year = 2012,
208     Bdsk-Url-1 = {http://dx.doi.org/10.1080/00268976.2012.680512}}
209    
210     @article{Kuang:2010uq,
211     Abstract = {We present a new method for introducing stable nonequilibrium velocity and temperature gradients in molecular dynamics simulations of heterogeneous systems. This method extends earlier reverse nonequilibrium molecular dynamics (RNEMD) methods which use momentum exchange swapping moves. The standard swapping moves can create nonthermal velocity distributions and are difficult to use for interfacial calculations. By using nonisotropic velocity scaling (NIVS) on the molecules in specific regions of a system, it is possible to impose momentum or thermal flux between regions of a simulation while conserving the linear momentum and total energy of the system. To test the method, we have computed the thermal conductivity of model liquid and solid systems as well as the interfacial thermal conductivity of a metal-water interface. We find that the NIVS-RNEMD improves the problematic velocity distributions that develop in other RNEMD methods. (C) 2010 American Institute of Physics. [doi:10.1063/1.3499947]},
212     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
213     Author = {Kuang, Shenyu and Gezelter, J. Daniel},
214     Date-Added = {2012-12-17 16:57:32 +0000},
215     Date-Modified = {2012-12-17 16:57:32 +0000},
216     Doi = {DOI 10.1063/1.3499947},
217     Isi = {000283753600002},
218     Isi-Recid = {193016794},
219     Isi-Ref-Recids = {60145802 144493351 117276201 115646662 123505188 127776876 130292830 85727532 119238135 150775186 59492217 125039697 193016795 175378314 85968509 172836401 122778971 54857943 86405859 172632609 156107458 159097542 142688207 82674909 100685406 99953572 110174777 171920521 130851765 180726558 137551818 109033408 79855786 78429093 145194994 126857514 146930943 71842426 69663514 185905461 119238036 160903603 137423992 156192449 156192449 66976670 108571354 144824430 127920256 109783788 145710667 179637533},
220     Journal = jcp,
221     Month = oct,
222     Number = {16},
223     Pages = {164101},
224     Publisher = {AMER INST PHYSICS},
225     Times-Cited = {0},
226     Title = {A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity},
227     Volume = {133},
228     Year = {2010},
229     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000283753600002}}
230    
231     @article{JiangHao_jp802942v,
232     Abstract = {Abstract: Nonequilibrium molecular dynamics simulations with the nonpolarizable SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121, 9549) force fields have been employed to calculate the thermal conductivity and other associated properties of methane hydrate over a temperature range from 30 to 260 K. The calculated results are compared to experimental data over this same range. The values of the thermal conductivity calculated with the COS/G2 model are closer to the experimental values than are those calculated with the nonpolarizable SPC/E model. The calculations match the temperature trend in the experimental data at temperatures below 50 K; however, they exhibit a slight decrease in thermal conductivity at higher temperatures in comparison to an opposite trend in the experimental data. The calculated thermal conductivity values are found to be relatively insensitive to the occupancy of the cages except at low (T d 50 K) temperatures, which indicates that the differences between the two lattice structures may have a more dominant role than generally thought in explaining the low thermal conductivity of methane hydrate compared to ice Ih. The introduction of defects into the water lattice is found to cause a reduction in the thermal conductivity but to have a negligible impact on its temperature dependence.},
233     Affiliation = {National Energy Technology Laboratory, U.S. Department of Energy, Post Office Box 10940, Pittsburgh, Pennsylvania 15236, Department of Chemistry and Center for Molecular and Materials Simulations, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and Parsons Project Services, Inc., South Park, Pennsylvania 15129},
234     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
235     Date-Added = {2012-12-17 16:57:19 +0000},
236     Date-Modified = {2012-12-17 16:57:19 +0000},
237     Doi = {10.1021/jp802942v},
238     Issn = {1520-6106},
239     Journal = jpcb,
240     Title = {Molecular Dynamics Simulations of the Thermal Conductivity of Methane Hydrate},
241     Year = {2008},
242     Bdsk-Url-1 = {http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp802942v}}
243    
244     @article{Schelling:2002dp,
245     Author = {Schelling, P. K. and Phillpot, S. R. and Keblinski, P.},
246     Date = {APR 1 2002},
247     Date-Added = {2012-12-17 16:57:10 +0000},
248     Date-Modified = {2012-12-17 16:57:10 +0000},
249     Doi = {10.1103/PhysRevB.65.144306},
250     Isi = {WOS:000174980300055},
251     Issn = {1098-0121},
252     Journal = prb,
253     Month = {Apr},
254     Number = {14},
255     Pages = {144306},
256     Publication-Type = {J},
257     Times-Cited = {288},
258     Title = {Comparison of atomic-level simulation methods for computing thermal conductivity},
259     Volume = {65},
260     Year = {2002},
261     Z8 = {12},
262     Z9 = {296},
263     Zb = {0},
264     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.65.144306}}
265    
266     @article{Evans:2002ai,
267     Author = {Evans, D. J. and Searles, D. J.},
268     Date = {NOV 2002},
269     Date-Added = {2012-12-17 16:56:59 +0000},
270     Date-Modified = {2012-12-17 16:56:59 +0000},
271     Doi = {10.1080/00018730210155133},
272     Isi = {WOS:000179448200001},
273     Issn = {0001-8732},
274     Journal = {Adv. Phys.},
275     Month = {Nov},
276     Number = {7},
277     Pages = {1529--1585},
278     Publication-Type = {J},
279     Times-Cited = {309},
280     Title = {The fluctuation theorem},
281     Volume = {51},
282     Year = {2002},
283     Z8 = {3},
284     Z9 = {311},
285     Zb = {9},
286     Bdsk-Url-1 = {http://dx.doi.org/10.1080/00018730210155133}}
287    
288     @article{Berthier:2002ij,
289     Author = {Berthier, L. and Barrat, J. L.},
290     Date = {APR 8 2002},
291     Date-Added = {2012-12-17 16:56:47 +0000},
292     Date-Modified = {2012-12-17 16:56:47 +0000},
293     Doi = {10.1063/1.1460862},
294     Isi = {WOS:000174634200036},
295     Issn = {0021-9606},
296     Journal = jcp,
297     Month = {Apr},
298     Number = {14},
299     Pages = {6228--6242},
300     Publication-Type = {J},
301     Times-Cited = {172},
302     Title = {Nonequilibrium dynamics and fluctuation-dissipation relation in a sheared fluid},
303     Volume = {116},
304     Year = {2002},
305     Z8 = {0},
306     Z9 = {172},
307     Zb = {1},
308     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1460862}}
309    
310     @article{MAGINN:1993hc,
311     Author = {MAGINN, E. J. and BELL, A. T. and THEODOROU, D. N.},
312     Date = {APR 22 1993},
313     Date-Added = {2012-12-17 16:56:40 +0000},
314     Date-Modified = {2012-12-17 16:56:40 +0000},
315     Doi = {10.1021/j100118a038},
316     Isi = {WOS:A1993KY46600039},
317     Issn = {0022-3654},
318     Journal = jpc,
319     Month = {Apr},
320     Number = {16},
321     Pages = {4173--4181},
322     Publication-Type = {J},
323     Times-Cited = {198},
324     Title = {TRANSPORT DIFFUSIVITY OF METHANE IN SILICALITE FROM EQUILIBRIUM AND NONEQUILIBRIUM SIMULATIONS},
325     Volume = {97},
326     Year = {1993},
327     Z8 = {4},
328     Z9 = {201},
329     Zb = {0},
330     Bdsk-Url-1 = {http://dx.doi.org/10.1021/j100118a038}}
331    
332     @article{ERPENBECK:1984sp,
333     Author = {ERPENBECK, J. J.},
334     Date = {1984},
335     Date-Added = {2012-12-17 16:56:32 +0000},
336     Date-Modified = {2012-12-17 16:56:32 +0000},
337     Doi = {10.1103/PhysRevLett.52.1333},
338     Isi = {WOS:A1984SK96700021},
339     Issn = {0031-9007},
340     Journal = prl,
341     Number = {15},
342     Pages = {1333--1335},
343     Publication-Type = {J},
344     Times-Cited = {189},
345     Title = {SHEAR VISCOSITY OF THE HARD-SPHERE FLUID VIA NONEQUILIBRIUM MOLECULAR-DYNAMICS},
346     Volume = {52},
347     Year = {1984},
348     Z8 = {0},
349     Z9 = {189},
350     Zb = {1},
351     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.52.1333}}
352    
353     @article{Evans:1982zk,
354     Author = {Evans, Denis J.},
355     Date-Added = {2012-12-17 16:56:24 +0000},
356     Date-Modified = {2012-12-17 16:56:24 +0000},
357     Journal = {Physics Letters A},
358     Number = {9},
359     Pages = {457--460},
360     Title = {Homogeneous NEMD algorithm for thermal conductivity--Application of non-canonical linear response theory},
361     Ty = {JOUR},
362     Url = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50},
363     Volume = {91},
364     Year = {1982},
365     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50}}
366    
367     @article{ASHURST:1975tg,
368     Author = {ASHURST, W. T. and HOOVER, W. G.},
369     Date = {1975},
370     Date-Added = {2012-12-17 16:56:05 +0000},
371     Date-Modified = {2012-12-17 16:56:05 +0000},
372     Doi = {10.1103/PhysRevA.11.658},
373     Isi = {WOS:A1975V548400036},
374     Issn = {1050-2947},
375     Journal = pra,
376     Number = {2},
377     Pages = {658--678},
378     Publication-Type = {J},
379     Times-Cited = {295},
380     Title = {DENSE-FLUID SHEAR VISCOSITY VIA NONEQUILIBRIUM MOLECULAR-DYNAMICS},
381     Volume = {11},
382     Year = {1975},
383     Z8 = {3},
384     Z9 = {298},
385     Zb = {1},
386     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.11.658}}
387    
388     @article{kinaci:014106,
389     Author = {A. Kinaci and J. B. Haskins and T. \c{C}a\u{g}in},
390     Date-Added = {2012-12-17 16:55:56 +0000},
391     Date-Modified = {2012-12-17 16:55:56 +0000},
392     Doi = {10.1063/1.4731450},
393     Eid = {014106},
394     Journal = jcp,
395     Keywords = {argon; elemental semiconductors; Ge-Si alloys; molecular dynamics method; nanostructured materials; porous semiconductors; silicon; thermal conductivity},
396     Number = {1},
397     Numpages = {8},
398     Pages = {014106},
399     Publisher = {AIP},
400     Title = {On calculation of thermal conductivity from Einstein relation in equilibrium molecular dynamics},
401     Url = {http://link.aip.org/link/?JCP/137/014106/1},
402     Volume = {137},
403     Year = {2012},
404     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/137/014106/1},
405     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.4731450}}
406    
407     @article{che:6888,
408     Author = {Jianwei Che and Tahir Cagin and Weiqiao Deng and William A. Goddard III},
409     Date-Added = {2012-12-17 16:55:48 +0000},
410     Date-Modified = {2012-12-17 16:55:48 +0000},
411     Doi = {10.1063/1.1310223},
412     Journal = jcp,
413     Keywords = {diamond; thermal conductivity; digital simulation; vacancies (crystal); Green's function methods; isotope effects},
414     Number = {16},
415     Pages = {6888-6900},
416     Publisher = {AIP},
417     Title = {Thermal conductivity of diamond and related materials from molecular dynamics simulations},
418     Url = {http://link.aip.org/link/?JCP/113/6888/1},
419     Volume = {113},
420     Year = {2000},
421     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/113/6888/1},
422     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1310223}}
423    
424     @article{Viscardy:2007rp,
425     Abstract = {The thermal conductivity is calculated with the Helfand-moment method in the Lennard-Jones fluid near the triple point. The Helfand moment of thermal conductivity is here derived for molecular dynamics with periodic boundary conditions. Thermal conductivity is given by a generalized Einstein relation with this Helfand moment. The authors compute thermal conductivity by this new method and compare it with their own values obtained by the standard Green-Kubo method. The agreement is excellent. (C) 2007 American Institute of Physics.},
426     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
427     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
428     Date = {MAY 14 2007},
429     Date-Added = {2012-12-17 16:55:32 +0000},
430     Date-Modified = {2012-12-17 16:55:32 +0000},
431     Doi = {ARTN 184513},
432     Journal = jcp,
433     Publisher = {AMER INST PHYSICS},
434     Timescited = {1},
435     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
436     Volume = {126},
437     Year = {2007},
438     Bdsk-Url-1 = {http://dx.doi.org/184513}}
439    
440     @article{PhysRev.119.1,
441     Author = {Helfand, Eugene},
442     Date-Added = {2012-12-17 16:55:19 +0000},
443     Date-Modified = {2012-12-17 16:55:19 +0000},
444     Doi = {10.1103/PhysRev.119.1},
445     Journal = {Phys. Rev.},
446     Month = {Jul},
447     Number = {1},
448     Numpages = {8},
449     Pages = {1--9},
450     Publisher = {American Physical Society},
451     Title = {Transport Coefficients from Dissipation in a Canonical Ensemble},
452     Volume = {119},
453     Year = {1960},
454     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRev.119.1}}
455    
456     @article{PhysRevA.34.1449,
457     Author = {Evans, Denis J.},
458     Date-Added = {2012-12-17 16:55:19 +0000},
459     Date-Modified = {2012-12-17 16:55:19 +0000},
460     Doi = {10.1103/PhysRevA.34.1449},
461     Journal = {Phys. Rev. A},
462     Month = {Aug},
463     Number = {2},
464     Numpages = {4},
465     Pages = {1449--1453},
466     Publisher = {American Physical Society},
467     Title = {Thermal conductivity of the Lennard-Jones fluid},
468     Volume = {34},
469     Year = {1986},
470     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.34.1449}}
471    
472     @article{MASSOBRIO:1984bl,
473     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
474     Author = {MASSOBRIO, C and CICCOTTI, G},
475     Date = {1984},
476     Date-Added = {2012-12-17 16:55:03 +0000},
477     Date-Modified = {2012-12-17 16:55:03 +0000},
478     Journal = pra,
479     Pages = {3191-3197},
480     Publisher = {AMERICAN PHYSICAL SOC},
481     Timescited = {29},
482     Title = {LENNARD-JONES TRIPLE-POINT CONDUCTIVITY VIA WEAK EXTERNAL FIELDS},
483     Volume = {30},
484     Year = {1984}}
485    
486     @article{PhysRevB.37.5677,
487     Author = {Heyes, David M.},
488     Date-Added = {2012-12-17 16:54:55 +0000},
489     Date-Modified = {2012-12-17 16:54:55 +0000},
490     Doi = {10.1103/PhysRevB.37.5677},
491     Journal = prb,
492     Month = {Apr},
493     Number = {10},
494     Numpages = {19},
495     Pages = {5677--5696},
496     Publisher = {American Physical Society},
497     Title = {Transport coefficients of Lennard-Jones fluids: A molecular-dynamics and effective-hard-sphere treatment},
498     Volume = {37},
499     Year = {1988},
500     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.37.5677}}
501    
502     @article{PhysRevB.80.195406,
503     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
504     Date-Added = {2012-12-17 16:54:55 +0000},
505     Date-Modified = {2012-12-17 16:54:55 +0000},
506     Doi = {10.1103/PhysRevB.80.195406},
507     Journal = prb,
508     Month = {Nov},
509     Number = {19},
510     Numpages = {6},
511     Pages = {195406},
512     Publisher = {American Physical Society},
513     Title = {Cooling dynamics and thermal interface resistance of glass-embedded metal nanoparticles},
514     Volume = {80},
515     Year = {2009},
516     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
517    
518     @article{Wang10082007,
519     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
520     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
521     Date-Added = {2012-12-17 16:54:31 +0000},
522     Date-Modified = {2012-12-17 16:54:31 +0000},
523     Doi = {10.1126/science.1145220},
524     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
525     Journal = {Science},
526     Number = {5839},
527     Pages = {787-790},
528     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
529     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
530     Volume = {317},
531     Year = {2007},
532     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
533     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
534    
535     @article{doi:10.1021/la904855s,
536     Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
537     Date-Added = {2012-12-17 16:54:12 +0000},
538     Date-Modified = {2012-12-17 16:54:12 +0000},
539     Doi = {10.1021/la904855s},
540     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
541     Journal = {Langmuir},
542     Note = {PMID: 20166728},
543     Number = {6},
544     Pages = {3786-3789},
545     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
546     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
547     Volume = {26},
548     Year = {2010},
549     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
550     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
551    
552     @article{doi:10.1021/jp048375k,
553     Abstract = { Water- and alcohol-soluble AuPd nanoparticles have been investigated to determine the effect of the organic stabilizing group on the thermal conductance G of the particle/fluid interface. The thermal decays of tiopronin-stabilized 3−5-nm diameter AuPd alloy nanoparticles, thioalkylated ethylene glycol-stabilized 3−5-nm diameter AuPd nanoparticles, and cetyltrimethylammonium bromide-stabilized 22-nm diameter Au-core/AuPd-shell nanoparticles give thermal conductances G ≈ 100−300 MW m-2 K-1 for the particle/water interfaces, approximately an order of magnitude larger than the conductance of the interfaces between alkanethiol-terminated AuPd nanoparticles and toluene. The similar values of G for particles ranging in size from 3 to 24 nm with widely varying surface chemistry indicate that the thermal coupling between AuPd nanoparticles and water is strong regardless of the self-assembled stabilizing group. },
554     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
555     Date-Added = {2012-12-17 16:54:03 +0000},
556     Date-Modified = {2012-12-17 16:54:03 +0000},
557     Doi = {10.1021/jp048375k},
558     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048375k},
559     Journal = jpcb,
560     Number = {49},
561     Pages = {18870-18875},
562     Title = {AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution},
563     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
564     Volume = {108},
565     Year = {2004},
566     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
567     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048375k}}
568    
569     @article{doi:10.1021/jp8051888,
570     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
571     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
572     Date-Added = {2012-12-17 16:54:03 +0000},
573     Date-Modified = {2012-12-17 16:54:03 +0000},
574     Doi = {10.1021/jp8051888},
575     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
576     Journal = jpcc,
577     Number = {35},
578     Pages = {13320-13323},
579     Title = {Probing the Gold Nanorod−Ligand−Solvent Interface by Plasmonic Absorption and Thermal Decay},
580     Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
581     Volume = {112},
582     Year = {2008},
583     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
584     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
585    
586     @article{PhysRevB.67.054302,
587     Author = {Costescu, Ruxandra M. and Wall, Marcel A. and Cahill, David G.},
588     Date-Added = {2012-12-17 16:53:48 +0000},
589     Date-Modified = {2012-12-17 16:53:48 +0000},
590     Doi = {10.1103/PhysRevB.67.054302},
591     Journal = prb,
592     Month = {Feb},
593     Number = {5},
594     Numpages = {5},
595     Pages = {054302},
596     Publisher = {American Physical Society},
597     Title = {Thermal conductance of epitaxial interfaces},
598     Volume = {67},
599     Year = {2003},
600     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.67.054302}}
601    
602     @article{cahill:793,
603     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
604     Date-Added = {2012-12-17 16:53:36 +0000},
605     Date-Modified = {2012-12-17 16:53:36 +0000},
606     Doi = {10.1063/1.1524305},
607     Journal = {J. Appl. Phys.},
608     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
609     Number = {2},
610     Pages = {793-818},
611     Publisher = {AIP},
612     Title = {Nanoscale thermal transport},
613     Url = {http://link.aip.org/link/?JAP/93/793/1},
614     Volume = {93},
615     Year = {2003},
616     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
617     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
618    
619     @article{Eapen:2007mw,
620     Abstract = {In a well-dispersed nanofluid with strong cluster-fluid attraction, thermal conduction paths can arise through percolating amorphouslike interfacial structures. This results in a thermal conductivity enhancement beyond the Maxwell limit of 3 phi, with phi being the nanoparticle volume fraction. Our findings from nonequilibrium molecular dynamics simulations, which are amenable to experimental verification, can provide a theoretical basis for the development of future nanofluids.},
621     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
622     Author = {Eapen, Jacob and Li, Ju and Yip, Sidney},
623     Date = {DEC 2007},
624     Date-Added = {2012-12-17 16:53:30 +0000},
625     Date-Modified = {2012-12-17 16:53:30 +0000},
626     Doi = {ARTN 062501},
627     Journal = pre,
628     Publisher = {AMER PHYSICAL SOC},
629     Timescited = {0},
630     Title = {Beyond the Maxwell limit: Thermal conduction in nanofluids with percolating fluid structures},
631     Volume = {76},
632     Year = {2007},
633     Bdsk-Url-1 = {http://dx.doi.org/062501}}
634    
635     @article{Xue:2003ya,
636     Abstract = {Using nonequilibrium molecular dynamics simulations in which a temperature gradient is imposed, we determine the thermal resistance of a model liquid-solid interface. Our simulations reveal that the strength of the bonding between liquid and solid atoms plays a key role in determining interfacial thermal resistance. Moreover, we find that the functional dependence of the thermal resistance on the strength of the liquid-solid interactions exhibits two distinct regimes: (i) exponential dependence for weak bonding (nonwetting liquid) and (ii) power law dependence for strong bonding (wetting liquid). The identification of the two regimes of the Kapitza resistance has profound implications for understanding and designing the thermal properties of nanocomposite materials. (C) 2003 American Institute of Physics.},
637     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
638     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
639     Date = {JAN 1 2003},
640     Date-Added = {2012-12-17 16:53:22 +0000},
641     Date-Modified = {2012-12-17 16:53:22 +0000},
642     Doi = {DOI 10.1063/1.1525806},
643     Journal = jcp,
644     Pages = {337-339},
645     Publisher = {AMER INST PHYSICS},
646     Timescited = {19},
647     Title = {Two regimes of thermal resistance at a liquid-solid interface},
648     Volume = {118},
649     Year = {2003},
650     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1525806}}
651    
652     @article{Xue:2004oa,
653     Abstract = {Using non-equilibrium molecular dynamics simulations in which a temperature gradient is imposed, we study how the ordering of the liquid at the liquid-solid interface affects the interfacial thermal resistance. Our simulations of a simple monoatomic liquid show no effect on the thermal transport either normal to the surface or parallel to the surface. Even for of a liquid that is highly confined between two solids, we find no effect on thermal conductivity. This contrasts with well-known significant effect of confinement on the viscoelastic response. Our findings suggest that the experimentally observed large enhancement of thermal conductivity in suspensions of solid nanosized particles (nanofluids) can not be explained by altered thermal transport properties of the layered liquid. (C) 2004 Elsevier Ltd. All rights reserved.},
654     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
655     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
656     Date = {SEP 2004},
657     Date-Added = {2012-12-17 16:53:22 +0000},
658     Date-Modified = {2012-12-17 16:53:22 +0000},
659     Doi = {DOI 10.1016/ijheatmasstransfer.2004.05.016},
660     Journal = {International Journal of Heat and Mass Transfer},
661     Keywords = {interfacial thermal resistance; liquid-solid interface; molecular dynamics simulations; nanofluids},
662     Pages = {4277-4284},
663     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
664     Timescited = {29},
665     Title = {Effect of liquid layering at the liquid-solid interface on thermal transport},
666     Volume = {47},
667     Year = {2004},
668     Bdsk-Url-1 = {http://dx.doi.org/10.1016/ijheatmasstransfer.2004.05.016}}
669    
670     @article{Lee:1999ct,
671     Abstract = {Oxide nanofluids were produced and their thermal conductivities were measured by a transient hot-wire method. The experimental results show that these nanofluids, containing a small amount of nanoparticles, have substantially higher thermal conductivities than the same liquids without nanoparticles. Comparisons between experiments and the Hamilton and Crosser model show that the model can predict the thermal conductivity of nanofluids containing large agglomerated Al2O3 particles. However, the model appears to be inadequate for nanofluids containing CuO particles. This suggests that not only particle shape but size is considered to be dominant in enhancing the thermal conductivity of nanofluids.},
672     Address = {345 E 47TH ST, NEW YORK, NY 10017 USA},
673     Author = {Lee, S and Choi, SUS and Li, S and Eastman, JA},
674     Date = {MAY 1999},
675     Date-Added = {2012-12-17 16:53:15 +0000},
676     Date-Modified = {2012-12-17 16:53:15 +0000},
677     Journal = {Journal of Heat Transfer-Transactions of the Asme},
678     Keywords = {conduction; enhancement; heat transfer; nanoscale; two-phase},
679     Pages = {280-289},
680     Publisher = {ASME-AMER SOC MECHANICAL ENG},
681     Timescited = {183},
682     Title = {Measuring thermal conductivity of fluids containing oxide nanoparticles},
683     Volume = {121},
684     Year = {1999}}
685    
686     @article{Keblinski:2002bx,
687     Abstract = {Recent measurements on nanofluids have demonstrated that the thermal conductivity increases with decreasing grain size. However, Such increases cannot be explained by existing theories. We explore four possible explanations for this anomalous increase: Brownian motion of the particles, molecular-level layering of the liquid at the liquid/particle interface, the nature of heat transport in the nanoparticles. and the effects of nanoparticle clustering. We show that the key factors in understanding thermal properties of nanofluids are the ballistic, rather than diffusive, nature of heat transport in the nanoparticles, combined with direct or fluid-mediated clustering effects that provide paths for rapid heat transport. (C) 2001 Elsevier Science Ltd. All rights reserved.},
688     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
689     Author = {Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
690     Date = {FEB 2002},
691     Date-Added = {2012-12-17 16:53:06 +0000},
692     Date-Modified = {2012-12-17 16:53:06 +0000},
693     Journal = {International Journal of Heat and Mass Transfer},
694     Keywords = {thermal conductivity; nanofluids; molecular dynamics simulations; ballistic heat transport},
695     Pages = {855-863},
696     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
697     Timescited = {161},
698     Title = {Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)},
699     Volume = {45},
700     Year = {2002}}
701    
702     @article{Eastman:2001wb,
703     Abstract = {It is shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure ethylene glycol or ethylene glycol containing the same volume fraction of dispersed oxide nanoparticles. The effective thermal conductivity of ethylene glycol is shown to be increased by up to 40\% for a nanofluid consisting of ethylene glycol containing approximately 0.3 vol \% Cu nanoparticles of mean diameter < 10 nm. The results are anomalous based on previous theoretical calculations that had predicted a strong effect of particle shape on effective nanofluid thermal conductivity, but no effect of either particle size or particle thermal conductivity. (C) 2001 American Institute of Physics.},
704     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
705     Author = {Eastman, JA and Choi, SUS and Li, S and Yu, W and Thompson, LJ},
706     Date = {FEB 5 2001},
707     Date-Added = {2012-12-17 16:52:55 +0000},
708     Date-Modified = {2012-12-17 16:52:55 +0000},
709     Journal = {Applied Physics Letters},
710     Pages = {718-720},
711     Publisher = {AMER INST PHYSICS},
712     Timescited = {246},
713     Title = {Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles},
714     Volume = {78},
715     Year = {2001}}
716    
717     @article{Eapen:2007th,
718     Abstract = {Transient hot-wire data on thermal conductivity of suspensions of silica and perfluorinated particles show agreement with the mean-field theory of Maxwell but not with the recently postulated microconvection mechanism. The influence of interfacial thermal resistance, convective effects at microscales, and the possibility of thermal conductivity enhancements beyond the Maxwell limit are discussed.},
719     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
720     Author = {Eapen, Jacob and Williams, Wesley C. and Buongiorno, Jacopo and Hu, Lin-Wen and Yip, Sidney and Rusconi, Roberto and Piazza, Roberto},
721     Date = {AUG 31 2007},
722     Date-Added = {2012-12-17 16:52:46 +0000},
723     Date-Modified = {2012-12-17 16:52:46 +0000},
724     Doi = {ARTN 095901},
725     Journal = prl,
726     Publisher = {AMER PHYSICAL SOC},
727     Timescited = {8},
728     Title = {Mean-field versus microconvection effects in nanofluid thermal conduction},
729     Volume = {99},
730     Year = {2007},
731     Bdsk-Url-1 = {http://dx.doi.org/095901}}
732    
733     @article{Plech:2005kx,
734     Abstract = {The transient structural response of laser excited gold nanoparticle sols has been recorded by pulsed X-ray scattering. Time resolved wide angle and small angle scattering (SAXS) record the changes in structure both of the nanoparticles and the water environment subsequent to femtosecond laser excitation. Within the first nanosecond after the excitation of the nanoparticles, the water phase shows a signature of compression, induced by a heat-induced evaporation of the water shell close to the heated nanoparticles. The particles themselves undergo a melting transition and are fragmented to Form new clusters in the nanometer range. (C) 2004 Elsevier B.V. All rights reserved.},
735     Author = {Plech, A and Kotaidis, V and Lorenc, M and Wulff, M},
736     Date-Added = {2012-12-17 16:52:34 +0000},
737     Date-Modified = {2012-12-17 16:52:34 +0000},
738     Doi = {DOI 10.1016/j.cplett.2004.11.072},
739     Journal = cpl,
740     Local-Url = {file://localhost/Users/charles/Documents/Papers/sdarticle3.pdf},
741     Pages = {565-569},
742     Title = {Thermal dynamics in laser excited metal nanoparticles},
743     Volume = {401},
744     Year = {2005},
745     Bdsk-Url-1 = {http://dx.doi.org/10.1016/j.cplett.2004.11.072}}
746    
747     @article{Wilson:2002uq,
748     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
749     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
750     Date-Added = {2012-12-17 16:52:22 +0000},
751     Date-Modified = {2012-12-17 16:52:22 +0000},
752     Doi = {ARTN 224301},
753     Journal = {Phys. Rev. B},
754     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
755     Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
756     Volume = {66},
757     Year = {2002},
758     Bdsk-Url-1 = {http://dx.doi.org/224301}}
759    
760     @article{Mazzaglia:2008to,
761     Abstract = {Amphiphilic cyclodextrins (CDs) modified in the upper rim with thiohexyl groups and in the lower rim with oligoethylene amino (SC6NH2) or oligoethylene hydroxyl groups (SC6OH) can bind gold colloids, yielding Au/CD particles with an average hydrodynamic radius (RH) of 2 and 25 rim in water solution. The systems were investigated by UV-vis, quasi-elastic light scattering, and FTIR-ATR techniques. The concentration of amphiphiles was kept above the concentration of gold colloids to afford complete covering. In the case of SC6NH2, basic conditions (Et3N, pH 11) yield promptly the decoration of Au, which can be stabilized by linkage of CD amino and/or thioether groups. The critical aggregation concentration of SC6NH2 was measured (similar to 4 mu M) by surface tension measurements, pointing out that about 50\% of CDs are present in nonaggregated form. Whereas Au/SC6NH2 colloids were stable in size and morphology for at least one month, the size of the Au/SC6OH system increases remarkably, forming nanoaggregates of 20 and 80 rim in two hours. Under physiological conditions, the gold/amino amphiphiles system can internalize in HeLa cells, as shown by extinction spectra registered on the immobilized cells. The gold delivered by cyclodextrins can induce photothermal damage upon irradiation, doubling the cell mortality with respect to uncovered gold colloids. These findings can open useful perspectives to the application of these self-assembled systems in cancer photothermal therapy.},
762     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
763     Author = {Mazzaglia, Antonino and Trapani, Mariachiara and Villari, Valentina and Micali, Norberto and Merlo, Francesca Marino and Zaccaria, Daniela and Sciortino, Maria Teresa and Previti, Francesco and Patane, Salvatore and Scolaro, Luigi Monsu},
764     Date = {MAY 1 2008},
765     Date-Added = {2012-12-17 16:52:15 +0000},
766     Date-Modified = {2012-12-17 16:52:15 +0000},
767     Doi = {DOI 10.1021/jp7120033},
768     Journal = jpcc,
769     Pages = {6764-6769},
770     Publisher = {AMER CHEMICAL SOC},
771     Timescited = {0},
772     Title = {Amphiphilic cyclodextrins as capping agents for gold colloids: A spectroscopic investigation with perspectives in photothermal therapy},
773     Volume = {112},
774     Year = {2008},
775     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp7120033}}
776    
777     @article{Gnyawali:2008lp,
778     Abstract = {Tissue surface temperature distribution on the treatment site can serve as an indicator for the effectiveness of a photothermal therapy. In this study, both infrared thermography and theoretical simulation were used to determine the surface temperature distribution during laser irradiation of both gel phantom and animal tumors. Selective photothermal interaction was attempted by using intratumoral indocyanine green enhancement and irradiation via a near-infrared laser. An immunoadjuvant was also used to enhance immunological responses during tumor treatment. Monte Carlo method for tissue absorption of light and finite difference method for heat diffusion in tissue were used to simulate the temperature distribution during the selective laser photothermal interaction. An infrared camera was used to capture the thermal images during the laser treatment and the surface temperature was determined. Our findings show that the theoretical and experimental results are in good agreement and that the surface temperature of irradiated tissue can be controlled with appropriate dye and adjuvant enhancement. These results can be used to control the laser tumor treatment parameters and to optimize the treatment outcome. More importantly, when used with immunotherapy as a precursor of immunological responses, the selective photothermal treatment can be guided by the tissue temperature profiles both in the tumor and on the surface.},
779     Address = {TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY},
780     Author = {Gnyawali, Surya C. and Chen, Yicho and Wu, Feng and Bartels, Kenneth E. and Wicksted, James P. and Liu, Hong and Sen, Chandan K. and Chen, Wei R.},
781     Date = {FEB 2008},
782     Date-Added = {2012-12-17 16:52:08 +0000},
783     Date-Modified = {2012-12-17 16:52:08 +0000},
784     Doi = {DOI 10.1007/s11517-007-0251-5},
785     Journal = {Medical \& Biological Engineering \& Computing},
786     Keywords = {infrared thermography; indocyanine green; glycated chitosan; surface temperature; Monte Carlo simulation},
787     Pages = {159-168},
788     Publisher = {SPRINGER HEIDELBERG},
789     Timescited = {0},
790     Title = {Temperature measurement on tissue surface during laser irradiation},
791     Volume = {46},
792     Year = {2008},
793     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11517-007-0251-5}}
794    
795     @article{Petrova:2007ad,
796     Abstract = {This paper describes our recent time-resolved spectroscopy studies of the properties of gold particles at high laser excitation levels. In these experiments, an intense pump laser pulse rapidly heats the particle, creating very high lattice temperatures - up to the melting point of bulk gold. These high temperatures can have dramatic effects on the particle and the surroundings. The lattice temperature created is determined by observing the coherently excited the vibrational modes of the particles. The periods of these modes depend on temperature, thus, they act as an internal thermometer. We have used these experiments to provide values for the threshold temperatures for explosive boiling of the solvent surrounding the particles, and laser induced structural transformations in non-spherical particles. The results of these experiments are relevant to the use of metal nanoparticles in photothermal therapy, where laser induced heating is used to selectively kill cells.},
797     Address = {LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY},
798     Author = {Petrova, Hristina and Hu, Min and Hartland, Gregory V.},
799     Date = {2007},
800     Date-Added = {2012-12-17 16:52:01 +0000},
801     Date-Modified = {2012-12-17 16:52:01 +0000},
802     Doi = {DOI 10.1524/zpch.2007.221.3.361},
803     Journal = {Zeitschrift Fur Physikalische Chemie-International Journal of Research In Physical Chemistry \& Chemical Physics},
804     Keywords = {metal nanoparticles; phonon modes; photothermal properties; laser-induced heating},
805     Pages = {361-376},
806     Publisher = {OLDENBOURG VERLAG},
807     Timescited = {2},
808     Title = {Photothermal properties of gold nanoparticles},
809     Volume = {221},
810     Year = {2007},
811     Bdsk-Url-1 = {http://dx.doi.org/10.1524/zpch.2007.221.3.361}}
812    
813     @article{Jain:2007ux,
814     Abstract = {Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this review, we discuss the SPR-enhanced optical properties of noble metal nanoparticles, with an emphasis on the recent advances in the utility of these plasmonic properties in molecular-specific imaging and sensing, photo-diagnostics, and selective photothermal therapy. The strongly enhanced SPR scattering from Au nanoparticles makes them useful as bright optical tags for molecular-specific biological imaging and detection using simple dark-field optical microscopy. On the other hand, the SPR absorption of the nanoparticles has allowed their use in the selective laser photothermal therapy of cancer. We also discuss the sensitivity of the nanoparticle SPR frequency to the local medium dielectric constant, which has been successfully exploited for the optical sensing of chemical and biological analytes. Plasmon coupling between metal nanoparticle pairs is also discussed, which forms the basis for nanoparticle assembly-based biodiagnostics and the plasmon ruler for dynamic measurement of nanoscale distances in biological systems.},
815     Address = {233 SPRING STREET, NEW YORK, NY 10013 USA},
816     Author = {Jain, Prashant K. and Huang, Xiaohua and El-Sayed, Ivan H. and El-Sayad, Mostafa A.},
817     Date = {SEP 2007},
818     Date-Added = {2012-12-17 16:51:52 +0000},
819     Date-Modified = {2012-12-17 16:51:52 +0000},
820     Doi = {DOI 10.1007/s11468-007-9031-1},
821     Journal = {Plasmonics},
822     Keywords = {surface plasmon resonance (SPR); SPR sensing; Mie scattering; metal nanocrystals for biodiagnostics; photothermal therapy; plasmon coupling},
823     Number = {3},
824     Pages = {107-118},
825     Publisher = {SPRINGER},
826     Timescited = {2},
827     Title = {Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems},
828     Volume = {2},
829     Year = {2007},
830     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11468-007-9031-1}}
831    
832 kstocke1 3801 @techreport{Goddard1998,
833     Author = {Kimura, Y. and Cagin, T. and Goddard III, W.A.},
834 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
835     Date-Modified = {2012-12-05 22:18:01 +0000},
836 kstocke1 3801 Institution = {California Institute of Technology},
837     Lastchecked = {January 19, 2011},
838     Number = {003},
839     Title = {The Quantum Sutton-Chen Many Body Potential for Properties of fcc Metals},
840     Url = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf},
841     Year = {1998},
842     Bdsk-Url-1 = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf}}
843    
844     @article{Hase2010,
845     Author = {Yue Zhang and George L. Barnes and Tianying Yan and William L. Hase},
846 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
847     Date-Modified = {2012-12-05 22:18:01 +0000},
848 kstocke1 3801 Journal = {Phys. Chem. Chem. Phys.},
849     Keywords = {fcc/hcp, non-equilibrium, thiols},
850     Pages = {4435-4445},
851     Title = {Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer},
852     Volume = {12},
853     Year = {2010}}
854    
855     @article{Kuang2010,
856     Author = {Shenyu Kuang and J. Daniel Gezelter},
857 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
858     Date-Modified = {2012-12-05 22:18:01 +0000},
859 kstocke1 3801 Journal = {J. Chem. Phys.},
860     Keywords = {NIVS, RNEMD, NIVS-RNEMD},
861     Month = {October},
862     Pages = {164101-1 - 164101-9},
863     Title = {A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity},
864     Volume = {133},
865     Year = {2010}}
866    
867     @article{Kuang2011,
868     Author = {Shenyu Kuang and J. Daniel Gezelter},
869 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
870     Date-Modified = {2012-12-05 22:18:01 +0000},
871 kstocke1 3801 Journal = {J. Phys. Chem. C},
872     Keywords = {thiols, RNEMD},
873     Month = {October},
874     Pages = {22475-22483},
875     Title = {Simulating Interfacial Thermal Conductance at Metal-Solvent Interfaces: The Role of Chemical Capping Agents},
876     Volume = {115},
877     Year = {2011}}
878    
879     @article{Kuang2012,
880     Author = {Shenyu Kuang and J. Daniel Gezelter},
881 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
882     Date-Modified = {2012-12-05 22:18:01 +0000},
883 kstocke1 3801 Journal = {Mol. Phys.},
884     Keywords = {VSS, RNEMD, VSS-RNEMD},
885     Month = {May},
886     Number = {9-10},
887     Pages = {691-701},
888     Title = {Velocity shearing and scaling RNEMD: a minimally perturbing method for simulating temperature and momentum gradients},
889     Volume = {110},
890     Year = {2012}}
891 kstocke1 3804
892     @misc{open_md,
893     Author = {Shenyu Kuang and Joseph Michalka and Kelsey M. Stocker and James Marr and Teng Lin and Charles F. Vardeman II and Christopher J. Fennell and Xiuquan Sun and Chunlei Li and Kyle Daily and Yang Zheng and Matthew A. Meineke and J. Daniel Gezelter},
894     Date-Added = {2012-12-05 22:18:01 +0000},
895     Date-Modified = {2012-12-05 22:18:01 +0000},
896     Howpublished = {http://openmd.net},
897     Keywords = {OpenMD},
898     Lastchecked = {January 18, 2011},
899     Title = {OpenMD, an open source engine for molecular dynamics},
900     Bdsk-Url-1 = {http://openmd.net}}
901    
902     @article{doi:10.1080/0026897031000068578,
903     Abstract = { Using equilibrium and non-equilibrium molecular dynamics simulations, we determine the Kapitza resistance (or thermal contact resistance) at a model liquid-solid interface. The Kapitza resistance (or the associated Kapitza length) can reach appreciable values when the liquid does not wet the solid. The analogy with the hydrodynamic slip length is discussed. },
904     Author = {Barrat, Jean-Louis and Chiaruttini, Fran{\c c}ois},
905     Date-Added = {2011-12-13 17:17:05 -0500},
906     Date-Modified = {2011-12-13 17:17:05 -0500},
907     Doi = {10.1080/0026897031000068578},
908     Eprint = {http://tandfprod.literatumonline.com/doi/pdf/10.1080/0026897031000068578},
909     Journal = {Mol. Phys.},
910     Number = {11},
911     Pages = {1605-1610},
912     Title = {Kapitza resistance at the liquid---solid interface},
913     Url = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
914     Volume = {101},
915     Year = {2003},
916     Bdsk-Url-1 = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
917     Bdsk-Url-2 = {http://dx.doi.org/10.1080/0026897031000068578}}
918    
919     @article{Medina2011,
920     Abstract = {Molecular dynamics (MD) simulations are carried out on a system of rigid or flexible water molecules at a series of temperatures between 273 and 368&#xa0;K. Collective transport coefficients, such as shear and bulk viscosities are calculated, and their behavior is systematically investigated as a function of flexibility and temperature. It is found that by including the intramolecular terms in the potential the calculated viscosity values are in overall much better agreement, compared to earlier and recent available experimental data, than those obtained with the rigid SPC/E model. The effect of the intramolecular degrees of freedom on transport properties of liquid water is analyzed and the incorporation of polarizability is discussed for further improvements. To our knowledge the present study constitutes the first compendium of results on viscosities for pure liquid water, including flexible models, that has been assembled.},
921     Author = {J.S. Medina and R. Prosmiti and P. Villarreal and G. Delgado-Barrio and G. Winter and B. Gonz{\'a}lez and J.V. Alem{\'a}n and C. Collado},
922     Date-Added = {2011-12-13 17:08:34 -0500},
923     Date-Modified = {2011-12-13 17:08:49 -0500},
924     Doi = {10.1016/j.chemphys.2011.07.001},
925     Issn = {0301-0104},
926     Journal = {Chemical Physics},
927     Keywords = {Viscosity calculations},
928     Number = {1-3},
929     Pages = {9 - 18},
930     Title = {Molecular dynamics simulations of rigid and flexible water models: Temperature dependence of viscosity},
931     Url = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
932     Volume = {388},
933     Year = {2011},
934     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
935     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.chemphys.2011.07.001}}
936    
937     @book{WagnerKruse,
938     Address = {Berlin},
939     Author = {W. Wagner and A. Kruse},
940     Date-Added = {2011-12-13 14:57:08 -0500},
941     Date-Modified = {2011-12-13 14:57:08 -0500},
942     Publisher = {Springer-Verlag},
943     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
944     Year = {1998}}
945    
946     @article{garde:PhysRevLett2009,
947     Author = {Shenogina, Natalia and Godawat, Rahul and Keblinski, Pawel and Garde, Shekhar},
948     Date-Added = {2011-12-13 12:48:51 -0500},
949     Date-Modified = {2011-12-13 12:48:51 -0500},
950     Doi = {10.1103/PhysRevLett.102.156101},
951     Journal = {Phys. Rev. Lett.},
952     Month = {Apr},
953     Number = {15},
954     Numpages = {4},
955     Pages = {156101},
956     Publisher = {American Physical Society},
957     Title = {How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces},
958     Volume = {102},
959     Year = {2009},
960     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.102.156101}}
961    
962     @article{garde:nl2005,
963     Abstract = { Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water−organic liquid, water−surfactant, surfactant−organic liquid, is relatively high (in the range of 65−370 MW/m2 K) compared to that for solid−liquid interfaces (∼10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid−liquid interfaces. },
964     Author = {Patel, Harshit A. and Garde, Shekhar and Keblinski, Pawel},
965     Date-Added = {2011-12-13 12:48:51 -0500},
966     Date-Modified = {2011-12-13 12:48:51 -0500},
967     Doi = {10.1021/nl051526q},
968     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl051526q},
969     Journal = {Nano Lett.},
970     Note = {PMID: 16277458},
971     Number = {11},
972     Pages = {2225-2231},
973     Title = {Thermal Resistance of Nanoscopic Liquid−Liquid Interfaces:  Dependence on Chemistry and Molecular Architecture},
974     Url = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
975     Volume = {5},
976     Year = {2005},
977     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
978     Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl051526q}}
979    
980     @article{melchionna93,
981     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
982     Date-Added = {2011-12-12 17:52:15 -0500},
983     Date-Modified = {2011-12-12 17:52:15 -0500},
984     Journal = {Mol. Phys.},
985     Pages = {533-544},
986     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
987     Volume = 78,
988     Year = 1993}
989    
990     @article{TraPPE-UA.thiols,
991     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
992     Date-Added = {2011-12-07 15:06:12 -0500},
993     Date-Modified = {2011-12-07 15:06:12 -0500},
994     Doi = {10.1021/jp0549125},
995     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
996     Journal = {J. Phys. Chem. B},
997     Number = {50},
998     Pages = {24100-24107},
999     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
1000     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
1001     Volume = {109},
1002     Year = {2005},
1003     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
1004     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
1005    
1006     @article{TraPPE-UA.alkylbenzenes,
1007     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
1008     Date-Added = {2011-12-07 15:06:12 -0500},
1009     Date-Modified = {2011-12-07 15:06:12 -0500},
1010     Doi = {10.1021/jp001044x},
1011     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
1012     Journal = {J. Phys. Chem. B},
1013     Number = {33},
1014     Pages = {8008-8016},
1015     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
1016     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1017     Volume = {104},
1018     Year = {2000},
1019     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1020     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
1021    
1022     @article{TraPPE-UA.alkanes,
1023     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
1024     Date-Added = {2011-12-07 15:06:12 -0500},
1025     Date-Modified = {2011-12-07 15:06:12 -0500},
1026     Doi = {10.1021/jp972543+},
1027     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
1028     Journal = {J. Phys. Chem. B},
1029     Number = {14},
1030     Pages = {2569-2577},
1031     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
1032     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
1033     Volume = {102},
1034     Year = {1998},
1035     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
1036     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+},
1037     Bdsk-Url-3 = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B}}
1038    
1039     @article{ISI:000167766600035,
1040     Abstract = {Molecular dynamics simulations are used to
1041     investigate the separation of water films adjacent
1042     to a hot metal surface. The simulations clearly show
1043     that the water layers nearest the surface overheat
1044     and undergo explosive boiling. For thick films, the
1045     expansion of the vaporized molecules near the
1046     surface forces the outer water layers to move away
1047     from the surface. These results are of interest for
1048     mass spectrometry of biological molecules, steam
1049     cleaning of surfaces, and medical procedures.},
1050     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1051     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1052     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1053     Date-Added = {2011-12-07 15:02:32 -0500},
1054     Date-Modified = {2011-12-07 15:02:32 -0500},
1055     Doc-Delivery-Number = {416ED},
1056     Issn = {1089-5639},
1057     Journal = {J. Phys. Chem. A},
1058     Journal-Iso = {J. Phys. Chem. A},
1059     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1060     Language = {English},
1061     Month = {MAR 29},
1062     Number = {12},
1063     Number-Of-Cited-References = {65},
1064     Pages = {2748-2755},
1065     Publisher = {AMER CHEMICAL SOC},
1066     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1067     Times-Cited = {66},
1068     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
1069     Type = {Article},
1070     Unique-Id = {ISI:000167766600035},
1071     Volume = {105},
1072     Year = {2001}}
1073    
1074     @article{Chen90,
1075     Author = {A.~P. Sutton and J. Chen},
1076     Date-Added = {2011-12-07 15:01:59 -0500},
1077     Date-Modified = {2011-12-07 15:01:59 -0500},
1078     Journal = {Philos. Mag. Lett.},
1079     Pages = {139-146},
1080     Title = {Long-Range Finnis Sinclair Potentials},
1081     Volume = 61,
1082     Year = {1990}}
1083    
1084     @article{PhysRevB.59.3527,
1085     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
1086     Date-Added = {2011-12-07 15:01:36 -0500},
1087     Date-Modified = {2011-12-07 15:01:36 -0500},
1088     Doi = {10.1103/PhysRevB.59.3527},
1089     Journal = {Phys. Rev. B},
1090     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
1091     Month = {Feb},
1092     Number = {5},
1093     Numpages = {6},
1094     Pages = {3527-3533},
1095     Publisher = {American Physical Society},
1096     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
1097     Volume = {59},
1098     Year = {1999},
1099     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
1100    
1101     @article{Bedrov:2000,
1102     Abstract = {We have applied a new nonequilibrium molecular
1103     dynamics (NEMD) method {[}F. Muller-Plathe,
1104     J. Chem. Phys. 106, 6082 (1997)] previously applied
1105     to monatomic Lennard-Jones fluids in the
1106     determination of the thermal conductivity of
1107     molecular fluids. The method was modified in order
1108     to be applicable to systems with holonomic
1109     constraints. Because the method involves imposing a
1110     known heat flux it is particularly attractive for
1111     systems involving long-range and many-body
1112     interactions where calculation of the microscopic
1113     heat flux is difficult. The predicted thermal
1114     conductivities of liquid n-butane and water using
1115     the imposed-flux NEMD method were found to be in a
1116     good agreement with previous simulations and
1117     experiment. (C) 2000 American Institute of
1118     Physics. {[}S0021-9606(00)50841-1].},
1119     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1120     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1121     Author = {Bedrov, D and Smith, GD},
1122     Date-Added = {2011-12-07 15:00:27 -0500},
1123     Date-Modified = {2011-12-07 15:00:27 -0500},
1124     Doc-Delivery-Number = {369BF},
1125     Issn = {0021-9606},
1126     Journal = {J. Chem. Phys.},
1127     Journal-Iso = {J. Chem. Phys.},
1128     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1129     Language = {English},
1130     Month = {NOV 8},
1131     Number = {18},
1132     Number-Of-Cited-References = {26},
1133     Pages = {8080-8084},
1134     Publisher = {AMER INST PHYSICS},
1135     Read = {1},
1136     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1137     Times-Cited = {23},
1138     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
1139     Type = {Article},
1140     Unique-Id = {ISI:000090151400044},
1141     Volume = {113},
1142     Year = {2000}}
1143    
1144     @article{10.1063/1.3330544,
1145     Author = {Miguel Angel Gonz{\'a}lez and Jos{\'e} L. F. Abascal},
1146     Coden = {JCPSA6},
1147     Date-Added = {2011-12-07 14:59:20 -0500},
1148     Date-Modified = {2011-12-15 13:10:11 -0500},
1149     Doi = {DOI:10.1063/1.3330544},
1150     Eissn = {10897690},
1151     Issn = {00219606},
1152     Journal = {J. Chem. Phys.},
1153     Keywords = {shear strength; viscosity;},
1154     Number = {9},
1155     Pages = {096101},
1156     Publisher = {AIP},
1157     Title = {The shear viscosity of rigid water models},
1158     Url = {http://dx.doi.org/doi/10.1063/1.3330544},
1159     Volume = {132},
1160     Year = {2010},
1161     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3330544},
1162     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3330544}}
1163    
1164     @article{doi:10.1021/jp048434u,
1165     Abstract = { The different possible proton-ordered structures of ice Ih for an orthorombic unit cell with 8 water molecules were derived. The number of unique structures was found to be 16. The crystallographic coordinates of these are reported. The energetics of the different polymorphs were investigated by quantum-mechanical density-functional theory calculations and for comparison by molecular-mechanics analytical potential models. The polymorphs were found to be close in energy, i.e., within approximately 0.25 kcal/mol H2O, on the basis of the quantum-chemical DFT methods. At 277 K, the different energy levels are about evenly populated, but at a lower temperature, a transition to an ordered form is expected. This form was found to agree with the ice phase XI. The difference in lattice energies among the polymorphs was rationalized in terms of structural characteristics. The most important parameters to determine the lattice energies were found to be the distributions of water dimer H-bonded pair conformations, in an intricate manner. },
1166     Author = {Hirsch, Tomas K. and Ojam{\"a}e, Lars},
1167     Date-Added = {2011-12-07 14:38:30 -0500},
1168     Date-Modified = {2011-12-07 14:38:30 -0500},
1169     Doi = {10.1021/jp048434u},
1170     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048434u},
1171     Journal = {J. Phys. Chem. B},
1172     Number = {40},
1173     Pages = {15856-15864},
1174     Title = {Quantum-Chemical and Force-Field Investigations of Ice Ih:  Computation of Proton-Ordered Structures and Prediction of Their Lattice Energies},
1175     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1176     Volume = {108},
1177     Year = {2004},
1178     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1179     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048434u}}
1180    
1181     @article{Meineke:2005gd,
1182     Abstract = {OOPSE is a new molecular dynamics simulation program
1183     that is capable of efficiently integrating equations
1184     of motion for atom types with orientational degrees
1185     of freedom (e.g. #sticky# atoms and point
1186     dipoles). Transition metals can also be simulated
1187     using the embedded atom method (EAM) potential
1188     included in the code. Parallel simulations are
1189     carried out using the force-based decomposition
1190     method. Simulations are specified using a very
1191     simple C-based meta-data language. A number of
1192     advanced integrators are included, and the basic
1193     integrator for orientational dynamics provides
1194     substantial improvements over older quaternion-based
1195     schemes.},
1196     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1197     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1198     Date-Added = {2011-12-07 13:33:04 -0500},
1199     Date-Modified = {2011-12-07 13:33:04 -0500},
1200     Doi = {DOI 10.1002/jcc.20161},
1201     Isi = {000226558200006},
1202     Isi-Recid = {142688207},
1203     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1204     Journal = {J. Comput. Chem.},
1205     Keywords = {OOPSE; molecular dynamics},
1206     Month = feb,
1207     Number = {3},
1208     Pages = {252-271},
1209     Publisher = {JOHN WILEY \& SONS INC},
1210     Times-Cited = {9},
1211     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1212     Volume = {26},
1213     Year = {2005},
1214     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1215     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1216    
1217     @article{hoover85,
1218     Author = {W.~G. Hoover},
1219     Date-Added = {2011-12-06 14:23:41 -0500},
1220     Date-Modified = {2011-12-06 14:23:41 -0500},
1221     Journal = {Phys. Rev. A},
1222     Pages = 1695,
1223     Title = {Canonical dynamics: Equilibrium phase-space distributions},
1224     Volume = 31,
1225     Year = 1985}
1226    
1227     @article{Maginn:2010,
1228     Abstract = {The reverse nonequilibrium molecular dynamics
1229     (RNEMD) method calculates the shear viscosity of a
1230     fluid by imposing a nonphysical exchange of momentum
1231     and measuring the resulting shear velocity
1232     gradient. In this study we investigate the range of
1233     momentum flux values over which RNEMD yields usable
1234     (linear) velocity gradients. We find that nonlinear
1235     velocity profiles result primarily from gradients in
1236     fluid temperature and density. The temperature
1237     gradient results from conversion of heat into bulk
1238     kinetic energy, which is transformed back into heat
1239     elsewhere via viscous heating. An expression is
1240     derived to predict the temperature profile resulting
1241     from a specified momentum flux for a given fluid and
1242     simulation cell. Although primarily bounded above,
1243     we also describe milder low-flux limitations. RNEMD
1244     results for a Lennard-Jones fluid agree with
1245     equilibrium molecular dynamics and conventional
1246     nonequilibrium molecular dynamics calculations at
1247     low shear, but RNEMD underpredicts viscosity
1248     relative to conventional NEMD at high shear.},
1249     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1250     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1251     Article-Number = {014103},
1252     Author = {Tenney, Craig M. and Maginn, Edward J.},
1253     Author-Email = {ed@nd.edu},
1254     Date-Added = {2011-12-05 18:29:08 -0500},
1255     Date-Modified = {2011-12-05 18:29:08 -0500},
1256     Doc-Delivery-Number = {542DQ},
1257     Doi = {10.1063/1.3276454},
1258     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1259     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1260     Issn = {0021-9606},
1261     Journal = {J. Chem. Phys.},
1262     Journal-Iso = {J. Chem. Phys.},
1263     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1264     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1265     Language = {English},
1266     Month = {JAN 7},
1267     Number = {1},
1268     Number-Of-Cited-References = {20},
1269     Pages = {014103},
1270     Publisher = {AMER INST PHYSICS},
1271     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1272     Times-Cited = {0},
1273     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
1274     Type = {Article},
1275     Unique-Id = {ISI:000273472300004},
1276     Volume = {132},
1277     Year = {2010},
1278     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1279    
1280     @article{ISI:000080382700030,
1281     Abstract = {A nonequilibrium method for calculating the shear
1282     viscosity is presented. It reverses the
1283     cause-and-effect picture customarily used in
1284     nonequilibrium molecular dynamics: the effect, the
1285     momentum flux or stress, is imposed, whereas the
1286     cause, the velocity gradient or shear rate, is
1287     obtained from the simulation. It differs from other
1288     Norton-ensemble methods by the way in which the
1289     steady-state momentum flux is maintained. This
1290     method involves a simple exchange of particle
1291     momenta, which is easy to implement. Moreover, it
1292     can be made to conserve the total energy as well as
1293     the total linear momentum, so no coupling to an
1294     external temperature bath is needed. The resulting
1295     raw data, the velocity profile, is a robust and
1296     rapidly converging property. The method is tested on
1297     the Lennard-Jones fluid near its triple point. It
1298     yields a viscosity of 3.2-3.3, in Lennard-Jones
1299     reduced units, in agreement with literature
1300     results. {[}S1063-651X(99)03105-0].},
1301     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1302     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1303     Author = {M\"{u}ller-Plathe, F},
1304     Date-Added = {2011-12-05 18:18:37 -0500},
1305     Date-Modified = {2011-12-05 18:18:37 -0500},
1306     Doc-Delivery-Number = {197TX},
1307     Issn = {1063-651X},
1308     Journal = {Phys. Rev. E},
1309     Journal-Iso = {Phys. Rev. E},
1310     Language = {English},
1311     Month = {MAY},
1312     Number = {5, Part A},
1313     Number-Of-Cited-References = {17},
1314     Pages = {4894-4898},
1315     Publisher = {AMERICAN PHYSICAL SOC},
1316     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1317     Times-Cited = {57},
1318     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1319     Type = {Article},
1320     Unique-Id = {ISI:000080382700030},
1321     Volume = {59},
1322     Year = {1999}}
1323    
1324     @article{MullerPlathe:1997xw,
1325     Abstract = {A nonequilibrium molecular dynamics method for
1326     calculating the thermal conductivity is
1327     presented. It reverses the usual cause and effect
1328     picture. The ''effect,'' the heat flux, is imposed
1329     on the system and the ''cause,'' the temperature
1330     gradient is obtained from the simulation. Besides
1331     being very simple to implement, the scheme offers
1332     several advantages such as compatibility with
1333     periodic boundary conditions, conservation of total
1334     energy and total linear momentum, and the sampling
1335     of a rapidly converging quantity (temperature
1336     gradient) rather than a slowly converging one (heat
1337     flux). The scheme is tested on the Lennard-Jones
1338     fluid. (C) 1997 American Institute of Physics.},
1339     Address = {WOODBURY},
1340     Author = {M\"{u}ller-Plathe, F.},
1341     Cited-Reference-Count = {13},
1342     Date = {APR 8},
1343     Date-Added = {2011-12-05 18:18:37 -0500},
1344     Date-Modified = {2011-12-05 18:18:37 -0500},
1345     Document-Type = {Article},
1346     Isi = {ISI:A1997WR62000032},
1347     Isi-Document-Delivery-Number = {WR620},
1348     Iso-Source-Abbreviation = {J. Chem. Phys.},
1349     Issn = {0021-9606},
1350     Journal = {J. Chem. Phys.},
1351     Language = {English},
1352     Month = {Apr},
1353     Number = {14},
1354     Page-Count = {4},
1355     Pages = {6082--6085},
1356     Publication-Type = {J},
1357     Publisher = {AMER INST PHYSICS},
1358     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1359     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1360     Source = {J CHEM PHYS},
1361     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1362     Times-Cited = {106},
1363     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1364     Volume = {106},
1365     Year = {1997}}
1366    
1367     @article{priezjev:204704,
1368     Author = {Nikolai V. Priezjev},
1369     Date-Added = {2011-11-28 14:39:18 -0500},
1370     Date-Modified = {2011-11-28 14:39:18 -0500},
1371     Doi = {10.1063/1.3663384},
1372     Eid = {204704},
1373     Journal = {J. Chem. Phys.},
1374     Keywords = {channel flow; diffusion; flow simulation; hydrodynamics; molecular dynamics method; pattern formation; random processes; shear flow; slip flow; wetting},
1375     Number = {20},
1376     Numpages = {9},
1377     Pages = {204704},
1378     Publisher = {AIP},
1379     Title = {Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures},
1380     Url = {http://link.aip.org/link/?JCP/135/204704/1},
1381     Volume = {135},
1382     Year = {2011},
1383     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/135/204704/1},
1384     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3663384}}
1385    
1386     @article{bryk:10258,
1387     Author = {Taras Bryk and A. D. J. Haymet},
1388     Date-Added = {2011-11-22 17:06:35 -0500},
1389     Date-Modified = {2011-11-22 17:06:35 -0500},
1390     Doi = {10.1063/1.1519538},
1391     Journal = {J. Chem. Phys.},
1392     Keywords = {liquid structure; molecular dynamics method; water; ice; interface structure},
1393     Number = {22},
1394     Pages = {10258-10268},
1395     Publisher = {AIP},
1396     Title = {Ice 1h/water interface of the SPC/E model: Molecular dynamics simulations of the equilibrium basal and prism interfaces},
1397     Url = {http://link.aip.org/link/?JCP/117/10258/1},
1398     Volume = {117},
1399     Year = {2002},
1400     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/117/10258/1},
1401     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1519538}}
1402    
1403     @article{kuang:164101,
1404     Author = {Shenyu Kuang and J. Daniel Gezelter},
1405     Date-Added = {2011-11-18 15:32:23 -0500},
1406     Date-Modified = {2011-11-18 15:32:23 -0500},
1407     Doi = {10.1063/1.3499947},
1408     Eid = {164101},
1409     Journal = {J. Chem. Phys.},
1410     Keywords = {linear momentum; molecular dynamics method; thermal conductivity; total energy; viscosity},
1411     Number = {16},
1412     Numpages = {9},
1413     Pages = {164101},
1414     Publisher = {AIP},
1415     Title = {A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity},
1416     Url = {http://link.aip.org/link/?JCP/133/164101/1},
1417     Volume = {133},
1418     Year = {2010},
1419     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/133/164101/1},
1420     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3499947}}
1421    
1422     @misc{openmd,
1423     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
1424     Date-Added = {2011-11-18 15:32:23 -0500},
1425     Date-Modified = {2011-11-18 15:32:23 -0500},
1426     Howpublished = {Available at {\tt http://openmd.net}},
1427     Title = {{OpenMD, an open source engine for molecular dynamics}}}
1428    
1429     @article{kuang:AuThl,
1430     Author = {Kuang, Shenyu and Gezelter, J. Daniel},
1431     Date-Added = {2011-11-18 13:03:06 -0500},
1432     Date-Modified = {2011-12-05 17:58:01 -0500},
1433     Doi = {10.1021/jp2073478},
1434     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp2073478},
1435     Journal = {J. Phys. Chem. C},
1436     Number = {45},
1437     Pages = {22475-22483},
1438     Title = {Simulating Interfacial Thermal Conductance at Metal-Solvent Interfaces: The Role of Chemical Capping Agents},
1439     Url = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1440     Volume = {115},
1441     Year = {2011},
1442     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1443     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp2073478}}
1444    
1445     @article{10.1063/1.2772547,
1446     Author = {Hideo Kaburaki and Ju Li and Sidney Yip and Hajime Kimizuka},
1447     Coden = {JAPIAU},
1448     Date-Added = {2011-11-01 16:46:32 -0400},
1449     Date-Modified = {2011-11-01 16:46:32 -0400},
1450     Doi = {DOI:10.1063/1.2772547},
1451     Eissn = {10897550},
1452     Issn = {00218979},
1453     Keywords = {argon; Lennard-Jones potential; phonons; thermal conductivity;},
1454     Number = {4},
1455     Pages = {043514},
1456     Publisher = {AIP},
1457     Title = {Dynamical thermal conductivity of argon crystal},
1458     Url = {http://dx.doi.org/10.1063/1.2772547},
1459     Volume = {102},
1460     Year = {2007},
1461     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2772547}}
1462    
1463     @article{PhysRevLett.82.4671,
1464     Author = {Barrat, Jean-Louis and Bocquet, Lyd\'eric},
1465     Date-Added = {2011-11-01 16:44:29 -0400},
1466     Date-Modified = {2011-11-01 16:44:29 -0400},
1467     Doi = {10.1103/PhysRevLett.82.4671},
1468     Issue = {23},
1469     Journal = {Phys. Rev. Lett.},
1470     Month = {Jun},
1471     Pages = {4671--4674},
1472     Publisher = {American Physical Society},
1473     Title = {Large Slip Effect at a Nonwetting Fluid-Solid Interface},
1474     Url = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1475     Volume = {82},
1476     Year = {1999},
1477     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1478     Bdsk-Url-2 = {http://dx.doi.org/10.1103/PhysRevLett.82.4671}}
1479    
1480     @article{10.1063/1.1610442,
1481     Author = {J. R. Schmidt and J. L. Skinner},
1482     Coden = {JCPSA6},
1483     Date-Added = {2011-10-13 16:28:43 -0400},
1484     Date-Modified = {2011-12-15 13:11:53 -0500},
1485     Doi = {DOI:10.1063/1.1610442},
1486     Eissn = {10897690},
1487     Issn = {00219606},
1488     Journal = {J. Chem. Phys.},
1489     Keywords = {hydrodynamics; Brownian motion; molecular dynamics method; diffusion;},
1490     Number = {15},
1491     Pages = {8062-8068},
1492     Publisher = {AIP},
1493     Title = {Hydrodynamic boundary conditions, the Stokes?Einstein law, and long-time tails in the Brownian limit},
1494     Url = {http://dx.doi.org/10.1063/1.1610442},
1495     Volume = {119},
1496     Year = {2003},
1497     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1610442}}
1498    
1499     @article{10.1063/1.3274802,
1500     Author = {Ting Chen and Berend Smit and Alexis T. Bell},
1501     Coden = {JCPSA6},
1502     Doi = {DOI:10.1063/1.3274802},
1503     Eissn = {10897690},
1504     Issn = {00219606},
1505     Keywords = {fluctuations; molecular dynamics method; viscosity;},
1506     Number = {24},
1507     Pages = {246101},
1508     Publisher = {AIP},
1509     Title = {Are pressure fluctuation-based equilibrium methods really worse than nonequilibrium methods for calculating viscosities?},
1510     Url = {http://dx.doi.org/doi/10.1063/1.3274802},
1511     Volume = {131},
1512     Year = {2009},
1513     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3274802},
1514     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3274802}}