ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/chainLength/thiolsRNEMD.bib
Revision: 3850
Committed: Fri Dec 21 19:29:36 2012 UTC (11 years, 8 months ago) by gezelter
File size: 82927 byte(s)
Log Message:
edits

File Contents

# User Rev Content
1 kstocke1 3801 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 gezelter 3850 %% Created for Dan Gezelter at 2012-12-21 14:13:53 -0500
6 kstocke1 3801
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11 gezelter 3819 @string{acp = {Adv. Chem. Phys.}}
12 kstocke1 3801
13 gezelter 3819 @string{bj = {Biophys. J.}}
14    
15     @string{ccp5 = {CCP5 Information Quarterly}}
16    
17     @string{cp = {Chem. Phys.}}
18    
19     @string{cpl = {Chem. Phys. Lett.}}
20    
21     @string{ea = {Electrochim. Acta}}
22    
23     @string{jacs = {J. Am. Chem. Soc.}}
24    
25     @string{jbc = {J. Biol. Chem.}}
26    
27     @string{jcat = {J. Catalysis}}
28    
29     @string{jcc = {J. Comp. Chem.}}
30    
31     @string{jcop = {J. Comp. Phys.}}
32    
33     @string{jcp = {J. Chem. Phys.}}
34    
35     @string{jctc = {J. Chem. Theory Comp.}}
36    
37     @string{jmc = {J. Med. Chem.}}
38    
39     @string{jml = {J. Mol. Liq.}}
40    
41     @string{jmm = {J. Mol. Model.}}
42    
43     @string{jpc = {J. Phys. Chem.}}
44    
45     @string{jpca = {J. Phys. Chem. A}}
46    
47     @string{jpcb = {J. Phys. Chem. B}}
48    
49     @string{jpcc = {J. Phys. Chem. C}}
50    
51     @string{jpcl = {J. Phys. Chem. Lett.}}
52    
53     @string{mp = {Mol. Phys.}}
54    
55     @string{pams = {Proc. Am. Math Soc.}}
56    
57     @string{pccp = {Phys. Chem. Chem. Phys.}}
58    
59     @string{pnas = {Proc. Natl. Acad. Sci. USA}}
60    
61     @string{pr = {Phys. Rev.}}
62    
63     @string{pra = {Phys. Rev. A}}
64    
65     @string{prb = {Phys. Rev. B}}
66    
67     @string{pre = {Phys. Rev. E}}
68    
69     @string{prl = {Phys. Rev. Lett.}}
70    
71     @string{rmp = {Rev. Mod. Phys.}}
72    
73     @string{ss = {Surf. Sci.}}
74    
75    
76     @article{doi:10.1021/jp034405s,
77     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
78     Author = {Leng, Y. and Keffer, David J. and Cummings, Peter T.},
79     Date-Added = {2012-12-17 18:38:38 +0000},
80     Date-Modified = {2012-12-17 18:38:38 +0000},
81     Doi = {10.1021/jp034405s},
82     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
83     Journal = {J. Phys. Chem. B},
84     Number = {43},
85     Pages = {11940-11950},
86     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
87     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
88     Volume = {107},
89     Year = {2003},
90     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
91     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
92    
93     @article{hautman:4994,
94     Author = {Joseph Hautman and Michael L. Klein},
95     Date-Added = {2012-12-17 18:38:26 +0000},
96     Date-Modified = {2012-12-17 18:38:26 +0000},
97     Doi = {10.1063/1.457621},
98     Journal = {J. Chem. Phys.},
99     Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
100     Number = {8},
101     Pages = {4994-5001},
102     Publisher = {AIP},
103     Title = {Simulation of a monolayer of alkyl thiol chains},
104     Url = {http://link.aip.org/link/?JCP/91/4994/1},
105     Volume = {91},
106     Year = {1989},
107     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
108     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
109    
110     @article{vlugt:cpc2007154,
111     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
112     Date-Added = {2012-12-17 18:38:20 +0000},
113     Date-Modified = {2012-12-17 18:38:20 +0000},
114     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
115     Issn = {0010-4655},
116     Journal = {Comput. Phys. Commun.},
117     Keywords = {Gold nanocrystals},
118     Note = {Proceedings of the Conference on Computational Physics 2006 - CCP 2006, Conference on Computational Physics 2006},
119     Number = {1-2},
120     Pages = {154 - 157},
121     Title = {Selective adsorption of alkyl thiols on gold in different geometries},
122     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
123     Volume = {177},
124     Year = {2007},
125     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
126     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
127    
128     @article{landman:1998,
129     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
130     Author = {Luedtke, W. D. and Landman, Uzi},
131     Date-Added = {2012-12-17 18:38:13 +0000},
132     Date-Modified = {2012-12-17 18:38:13 +0000},
133     Doi = {10.1021/jp981745i},
134     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
135     Journal = {J. Phys. Chem. B},
136     Number = {34},
137     Pages = {6566-6572},
138     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
139     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
140     Volume = {102},
141     Year = {1998},
142     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
143     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
144    
145     @article{PhysRevLett.96.186101,
146     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
147     Date-Added = {2012-12-17 17:44:53 +0000},
148     Date-Modified = {2012-12-17 17:44:53 +0000},
149     Doi = {10.1103/PhysRevLett.96.186101},
150     Journal = prl,
151     Month = {May},
152     Number = {18},
153     Numpages = {4},
154     Pages = {186101},
155     Publisher = {American Physical Society},
156     Title = {Thermal Conductance of Hydrophilic and Hydrophobic Interfaces},
157     Volume = {96},
158     Year = {2006},
159     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.96.186101}}
160    
161     @article{Larson:2007hw,
162     Abstract = {Nanoparticles which consist of a plasmonic layer and an iron oxide moiety could provide a promising platform for development of multimodal imaging and therapy approaches in future medicine. However, the feasibility of this platform has yet to be fully explored. In this study we demonstrated the use of gold-coated iron oxide hybrid nanoparticles for combined molecular specific MRI/optical imaging and photothermal therapy of cancer cells. The gold layer exhibits a surface plasmon resonance that provides optical contrast due to light scattering in the visible region and also presents a convenient surface for conjugating targeting moieties, while the iron oxide cores give strong T-2 (spin-spin relaxation time) contrast. The strong optical absorption of the plasmonic gold layer also makes these nanoparticles a promising agent for photothermal therapy. We synthesized hybrid nanoparticles which specifically target epidermal growth factor receptor (EGFR), a common biomarker for many epithelial cancers. We demonstrated molecular specific MRI and optical imaging in MDA-MB-468 breast cancer cells. Furthermore, we showed that receptor-mediated aggregation of anti-EGFR hybrid nanoparticles allows selective destruction of highly proliferative cancer cells using a nanosecond pulsed laser at 700 nm wavelength, a significant shift from the peak absorbance of isolated hybrid nanoparticles at 532 nm.},
163     Address = {DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND},
164     Author = {Larson, Timothy A. and Bankson, James and Aaron, Jesse and Sokolov, Konstantin},
165     Date = {AUG 15 2007},
166     Date-Added = {2012-12-17 17:44:44 +0000},
167     Date-Modified = {2012-12-17 17:44:44 +0000},
168     Doi = {ARTN 325101},
169     Journal = {Nanotechnology},
170     Publisher = {IOP PUBLISHING LTD},
171     Timescited = {5},
172     Title = {Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells},
173     Volume = {18},
174     Year = {2007},
175     Bdsk-Url-1 = {http://dx.doi.org/325101}}
176    
177     @article{Huff:2007ye,
178     Abstract = {Plasmon-resonant gold nanorods, which have large absorption cross sections at near-infrared frequencies, are excellent candidates as multifunctional agents for image-guided therapies based on localized hyperthermia. The controlled modification of the surface chemistry of the nanorods is of critical importance, as issues of cell-specific targeting and nonspecific uptake must be addressed prior to clinical evaluation. Nanorods coated with cetyltrimethylammonium bromide (a cationic surfactant used in nanorod synthesis) are internalized within hours into KB cells by a nonspecific uptake pathway, whereas the careful removal of cetyltrimethylammonium bromide from nanorods functionalized with folate results in their accumulation on the cell surface over the same time interval. In either case, the nanorods render the tumor cells highly susceptible to photothermal damage when irradiated at the nanorods' longitudinal plasmon resonance, generating extensive blebbing of the cell membrane at laser fluences as low as 30 J/cm(2).},
179     Address = {UNITEC HOUSE, 3RD FLOOR, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON, N3 1QB, ENGLAND},
180     Author = {Huff, Terry B. and Tong, Ling and Zhao, Yan and Hansen, Matthew N. and Cheng, Ji-Xin and Wei, Alexander},
181     Date = {FEB 2007},
182     Date-Added = {2012-12-17 17:44:36 +0000},
183     Date-Modified = {2012-12-17 17:44:36 +0000},
184     Doi = {DOI 10.2217/17435889.2.1.125},
185     Journal = {Nanomedicine},
186     Keywords = {folate receptor; hyperthermia; imaging; nanorods; nonlinear optical microscopy; plasmon resonance; targeted therapy},
187     Pages = {125-132},
188     Publisher = {FUTURE MEDICINE LTD},
189     Timescited = {13},
190     Title = {Hyperthermic effects of gold nanorods on tumor cells},
191     Volume = {2},
192     Year = {2007},
193     Bdsk-Url-1 = {http://dx.doi.org/10.2217/17435889.2.1.125}}
194    
195     @article{JiangHao_jp802942v,
196     Abstract = {Abstract: Nonequilibrium molecular dynamics simulations with the nonpolarizable SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121, 9549) force fields have been employed to calculate the thermal conductivity and other associated properties of methane hydrate over a temperature range from 30 to 260 K. The calculated results are compared to experimental data over this same range. The values of the thermal conductivity calculated with the COS/G2 model are closer to the experimental values than are those calculated with the nonpolarizable SPC/E model. The calculations match the temperature trend in the experimental data at temperatures below 50 K; however, they exhibit a slight decrease in thermal conductivity at higher temperatures in comparison to an opposite trend in the experimental data. The calculated thermal conductivity values are found to be relatively insensitive to the occupancy of the cages except at low (T d 50 K) temperatures, which indicates that the differences between the two lattice structures may have a more dominant role than generally thought in explaining the low thermal conductivity of methane hydrate compared to ice Ih. The introduction of defects into the water lattice is found to cause a reduction in the thermal conductivity but to have a negligible impact on its temperature dependence.},
197     Affiliation = {National Energy Technology Laboratory, U.S. Department of Energy, Post Office Box 10940, Pittsburgh, Pennsylvania 15236, Department of Chemistry and Center for Molecular and Materials Simulations, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and Parsons Project Services, Inc., South Park, Pennsylvania 15129},
198     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
199     Date-Added = {2012-12-17 16:57:19 +0000},
200     Date-Modified = {2012-12-17 16:57:19 +0000},
201     Doi = {10.1021/jp802942v},
202     Issn = {1520-6106},
203     Journal = jpcb,
204     Title = {Molecular Dynamics Simulations of the Thermal Conductivity of Methane Hydrate},
205     Year = {2008},
206     Bdsk-Url-1 = {http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp802942v}}
207    
208     @article{Schelling:2002dp,
209     Author = {Schelling, P. K. and Phillpot, S. R. and Keblinski, P.},
210     Date = {APR 1 2002},
211     Date-Added = {2012-12-17 16:57:10 +0000},
212     Date-Modified = {2012-12-17 16:57:10 +0000},
213     Doi = {10.1103/PhysRevB.65.144306},
214     Isi = {WOS:000174980300055},
215     Issn = {1098-0121},
216     Journal = prb,
217     Month = {Apr},
218     Number = {14},
219     Pages = {144306},
220     Publication-Type = {J},
221     Times-Cited = {288},
222     Title = {Comparison of atomic-level simulation methods for computing thermal conductivity},
223     Volume = {65},
224     Year = {2002},
225     Z8 = {12},
226     Z9 = {296},
227     Zb = {0},
228     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.65.144306}}
229    
230     @article{Evans:2002ai,
231     Author = {Evans, D. J. and Searles, D. J.},
232     Date = {NOV 2002},
233     Date-Added = {2012-12-17 16:56:59 +0000},
234     Date-Modified = {2012-12-17 16:56:59 +0000},
235     Doi = {10.1080/00018730210155133},
236     Isi = {WOS:000179448200001},
237     Issn = {0001-8732},
238     Journal = {Adv. Phys.},
239     Month = {Nov},
240     Number = {7},
241     Pages = {1529--1585},
242     Publication-Type = {J},
243     Times-Cited = {309},
244     Title = {The fluctuation theorem},
245     Volume = {51},
246     Year = {2002},
247     Z8 = {3},
248     Z9 = {311},
249     Zb = {9},
250     Bdsk-Url-1 = {http://dx.doi.org/10.1080/00018730210155133}}
251    
252     @article{Berthier:2002ij,
253     Author = {Berthier, L. and Barrat, J. L.},
254     Date = {APR 8 2002},
255     Date-Added = {2012-12-17 16:56:47 +0000},
256     Date-Modified = {2012-12-17 16:56:47 +0000},
257     Doi = {10.1063/1.1460862},
258     Isi = {WOS:000174634200036},
259     Issn = {0021-9606},
260     Journal = jcp,
261     Month = {Apr},
262     Number = {14},
263     Pages = {6228--6242},
264     Publication-Type = {J},
265     Times-Cited = {172},
266     Title = {Nonequilibrium dynamics and fluctuation-dissipation relation in a sheared fluid},
267     Volume = {116},
268     Year = {2002},
269     Z8 = {0},
270     Z9 = {172},
271     Zb = {1},
272     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1460862}}
273    
274     @article{MAGINN:1993hc,
275     Author = {MAGINN, E. J. and BELL, A. T. and THEODOROU, D. N.},
276     Date = {APR 22 1993},
277     Date-Added = {2012-12-17 16:56:40 +0000},
278     Date-Modified = {2012-12-17 16:56:40 +0000},
279     Doi = {10.1021/j100118a038},
280     Isi = {WOS:A1993KY46600039},
281     Issn = {0022-3654},
282     Journal = jpc,
283     Month = {Apr},
284     Number = {16},
285     Pages = {4173--4181},
286     Publication-Type = {J},
287     Times-Cited = {198},
288     Title = {TRANSPORT DIFFUSIVITY OF METHANE IN SILICALITE FROM EQUILIBRIUM AND NONEQUILIBRIUM SIMULATIONS},
289     Volume = {97},
290     Year = {1993},
291     Z8 = {4},
292     Z9 = {201},
293     Zb = {0},
294     Bdsk-Url-1 = {http://dx.doi.org/10.1021/j100118a038}}
295    
296     @article{ERPENBECK:1984sp,
297     Author = {ERPENBECK, J. J.},
298     Date = {1984},
299     Date-Added = {2012-12-17 16:56:32 +0000},
300     Date-Modified = {2012-12-17 16:56:32 +0000},
301     Doi = {10.1103/PhysRevLett.52.1333},
302     Isi = {WOS:A1984SK96700021},
303     Issn = {0031-9007},
304     Journal = prl,
305     Number = {15},
306     Pages = {1333--1335},
307     Publication-Type = {J},
308     Times-Cited = {189},
309     Title = {SHEAR VISCOSITY OF THE HARD-SPHERE FLUID VIA NONEQUILIBRIUM MOLECULAR-DYNAMICS},
310     Volume = {52},
311     Year = {1984},
312     Z8 = {0},
313     Z9 = {189},
314     Zb = {1},
315     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.52.1333}}
316    
317     @article{Evans:1982zk,
318     Author = {Evans, Denis J.},
319     Date-Added = {2012-12-17 16:56:24 +0000},
320     Date-Modified = {2012-12-17 16:56:24 +0000},
321     Journal = {Physics Letters A},
322     Number = {9},
323     Pages = {457--460},
324     Title = {Homogeneous NEMD algorithm for thermal conductivity--Application of non-canonical linear response theory},
325     Ty = {JOUR},
326     Url = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50},
327     Volume = {91},
328     Year = {1982},
329     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50}}
330    
331     @article{ASHURST:1975tg,
332     Author = {ASHURST, W. T. and HOOVER, W. G.},
333     Date = {1975},
334     Date-Added = {2012-12-17 16:56:05 +0000},
335     Date-Modified = {2012-12-17 16:56:05 +0000},
336     Doi = {10.1103/PhysRevA.11.658},
337     Isi = {WOS:A1975V548400036},
338     Issn = {1050-2947},
339     Journal = pra,
340     Number = {2},
341     Pages = {658--678},
342     Publication-Type = {J},
343     Times-Cited = {295},
344     Title = {DENSE-FLUID SHEAR VISCOSITY VIA NONEQUILIBRIUM MOLECULAR-DYNAMICS},
345     Volume = {11},
346     Year = {1975},
347     Z8 = {3},
348     Z9 = {298},
349     Zb = {1},
350     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.11.658}}
351    
352     @article{kinaci:014106,
353     Author = {A. Kinaci and J. B. Haskins and T. \c{C}a\u{g}in},
354     Date-Added = {2012-12-17 16:55:56 +0000},
355     Date-Modified = {2012-12-17 16:55:56 +0000},
356     Doi = {10.1063/1.4731450},
357     Eid = {014106},
358     Journal = jcp,
359     Keywords = {argon; elemental semiconductors; Ge-Si alloys; molecular dynamics method; nanostructured materials; porous semiconductors; silicon; thermal conductivity},
360     Number = {1},
361     Numpages = {8},
362     Pages = {014106},
363     Publisher = {AIP},
364     Title = {On calculation of thermal conductivity from Einstein relation in equilibrium molecular dynamics},
365     Url = {http://link.aip.org/link/?JCP/137/014106/1},
366     Volume = {137},
367     Year = {2012},
368     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/137/014106/1},
369     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.4731450}}
370    
371     @article{che:6888,
372     Author = {Jianwei Che and Tahir Cagin and Weiqiao Deng and William A. Goddard III},
373     Date-Added = {2012-12-17 16:55:48 +0000},
374     Date-Modified = {2012-12-17 16:55:48 +0000},
375     Doi = {10.1063/1.1310223},
376     Journal = jcp,
377     Keywords = {diamond; thermal conductivity; digital simulation; vacancies (crystal); Green's function methods; isotope effects},
378     Number = {16},
379     Pages = {6888-6900},
380     Publisher = {AIP},
381     Title = {Thermal conductivity of diamond and related materials from molecular dynamics simulations},
382     Url = {http://link.aip.org/link/?JCP/113/6888/1},
383     Volume = {113},
384     Year = {2000},
385     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/113/6888/1},
386     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1310223}}
387    
388     @article{Viscardy:2007rp,
389     Abstract = {The thermal conductivity is calculated with the Helfand-moment method in the Lennard-Jones fluid near the triple point. The Helfand moment of thermal conductivity is here derived for molecular dynamics with periodic boundary conditions. Thermal conductivity is given by a generalized Einstein relation with this Helfand moment. The authors compute thermal conductivity by this new method and compare it with their own values obtained by the standard Green-Kubo method. The agreement is excellent. (C) 2007 American Institute of Physics.},
390     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
391     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
392     Date = {MAY 14 2007},
393     Date-Added = {2012-12-17 16:55:32 +0000},
394     Date-Modified = {2012-12-17 16:55:32 +0000},
395     Doi = {ARTN 184513},
396     Journal = jcp,
397     Publisher = {AMER INST PHYSICS},
398     Timescited = {1},
399     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
400     Volume = {126},
401     Year = {2007},
402     Bdsk-Url-1 = {http://dx.doi.org/184513}}
403    
404     @article{PhysRev.119.1,
405     Author = {Helfand, Eugene},
406     Date-Added = {2012-12-17 16:55:19 +0000},
407     Date-Modified = {2012-12-17 16:55:19 +0000},
408     Doi = {10.1103/PhysRev.119.1},
409     Journal = {Phys. Rev.},
410     Month = {Jul},
411     Number = {1},
412     Numpages = {8},
413     Pages = {1--9},
414     Publisher = {American Physical Society},
415     Title = {Transport Coefficients from Dissipation in a Canonical Ensemble},
416     Volume = {119},
417     Year = {1960},
418     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRev.119.1}}
419    
420     @article{PhysRevA.34.1449,
421     Author = {Evans, Denis J.},
422     Date-Added = {2012-12-17 16:55:19 +0000},
423     Date-Modified = {2012-12-17 16:55:19 +0000},
424     Doi = {10.1103/PhysRevA.34.1449},
425     Journal = {Phys. Rev. A},
426     Month = {Aug},
427     Number = {2},
428     Numpages = {4},
429     Pages = {1449--1453},
430     Publisher = {American Physical Society},
431     Title = {Thermal conductivity of the Lennard-Jones fluid},
432     Volume = {34},
433     Year = {1986},
434     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.34.1449}}
435    
436     @article{MASSOBRIO:1984bl,
437     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
438     Author = {MASSOBRIO, C and CICCOTTI, G},
439     Date = {1984},
440     Date-Added = {2012-12-17 16:55:03 +0000},
441     Date-Modified = {2012-12-17 16:55:03 +0000},
442     Journal = pra,
443     Pages = {3191-3197},
444     Publisher = {AMERICAN PHYSICAL SOC},
445     Timescited = {29},
446     Title = {LENNARD-JONES TRIPLE-POINT CONDUCTIVITY VIA WEAK EXTERNAL FIELDS},
447     Volume = {30},
448     Year = {1984}}
449    
450     @article{PhysRevB.37.5677,
451     Author = {Heyes, David M.},
452     Date-Added = {2012-12-17 16:54:55 +0000},
453     Date-Modified = {2012-12-17 16:54:55 +0000},
454     Doi = {10.1103/PhysRevB.37.5677},
455     Journal = prb,
456     Month = {Apr},
457     Number = {10},
458     Numpages = {19},
459     Pages = {5677--5696},
460     Publisher = {American Physical Society},
461     Title = {Transport coefficients of Lennard-Jones fluids: A molecular-dynamics and effective-hard-sphere treatment},
462     Volume = {37},
463     Year = {1988},
464     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.37.5677}}
465    
466     @article{PhysRevB.80.195406,
467     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
468     Date-Added = {2012-12-17 16:54:55 +0000},
469     Date-Modified = {2012-12-17 16:54:55 +0000},
470     Doi = {10.1103/PhysRevB.80.195406},
471     Journal = prb,
472     Month = {Nov},
473     Number = {19},
474     Numpages = {6},
475     Pages = {195406},
476     Publisher = {American Physical Society},
477     Title = {Cooling dynamics and thermal interface resistance of glass-embedded metal nanoparticles},
478     Volume = {80},
479     Year = {2009},
480     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
481    
482     @article{Wang10082007,
483     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
484     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
485     Date-Added = {2012-12-17 16:54:31 +0000},
486     Date-Modified = {2012-12-17 16:54:31 +0000},
487     Doi = {10.1126/science.1145220},
488     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
489     Journal = {Science},
490     Number = {5839},
491     Pages = {787-790},
492     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
493     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
494     Volume = {317},
495     Year = {2007},
496     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
497     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
498    
499     @article{doi:10.1021/la904855s,
500     Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
501     Date-Added = {2012-12-17 16:54:12 +0000},
502     Date-Modified = {2012-12-17 16:54:12 +0000},
503     Doi = {10.1021/la904855s},
504     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
505     Journal = {Langmuir},
506     Note = {PMID: 20166728},
507     Number = {6},
508     Pages = {3786-3789},
509     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
510     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
511     Volume = {26},
512     Year = {2010},
513     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
514     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
515    
516     @article{doi:10.1021/jp048375k,
517     Abstract = { Water- and alcohol-soluble AuPd nanoparticles have been investigated to determine the effect of the organic stabilizing group on the thermal conductance G of the particle/fluid interface. The thermal decays of tiopronin-stabilized 3−5-nm diameter AuPd alloy nanoparticles, thioalkylated ethylene glycol-stabilized 3−5-nm diameter AuPd nanoparticles, and cetyltrimethylammonium bromide-stabilized 22-nm diameter Au-core/AuPd-shell nanoparticles give thermal conductances G ≈ 100−300 MW m-2 K-1 for the particle/water interfaces, approximately an order of magnitude larger than the conductance of the interfaces between alkanethiol-terminated AuPd nanoparticles and toluene. The similar values of G for particles ranging in size from 3 to 24 nm with widely varying surface chemistry indicate that the thermal coupling between AuPd nanoparticles and water is strong regardless of the self-assembled stabilizing group. },
518     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
519     Date-Added = {2012-12-17 16:54:03 +0000},
520     Date-Modified = {2012-12-17 16:54:03 +0000},
521     Doi = {10.1021/jp048375k},
522     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048375k},
523     Journal = jpcb,
524     Number = {49},
525     Pages = {18870-18875},
526     Title = {AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution},
527     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
528     Volume = {108},
529     Year = {2004},
530     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
531     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048375k}}
532    
533     @article{doi:10.1021/jp8051888,
534     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
535     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
536     Date-Added = {2012-12-17 16:54:03 +0000},
537     Date-Modified = {2012-12-17 16:54:03 +0000},
538     Doi = {10.1021/jp8051888},
539     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
540     Journal = jpcc,
541     Number = {35},
542     Pages = {13320-13323},
543     Title = {Probing the Gold Nanorod−Ligand−Solvent Interface by Plasmonic Absorption and Thermal Decay},
544     Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
545     Volume = {112},
546     Year = {2008},
547     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
548     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
549    
550     @article{PhysRevB.67.054302,
551     Author = {Costescu, Ruxandra M. and Wall, Marcel A. and Cahill, David G.},
552     Date-Added = {2012-12-17 16:53:48 +0000},
553     Date-Modified = {2012-12-17 16:53:48 +0000},
554     Doi = {10.1103/PhysRevB.67.054302},
555     Journal = prb,
556     Month = {Feb},
557     Number = {5},
558     Numpages = {5},
559     Pages = {054302},
560     Publisher = {American Physical Society},
561     Title = {Thermal conductance of epitaxial interfaces},
562     Volume = {67},
563     Year = {2003},
564     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.67.054302}}
565    
566     @article{cahill:793,
567     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
568     Date-Added = {2012-12-17 16:53:36 +0000},
569     Date-Modified = {2012-12-17 16:53:36 +0000},
570     Doi = {10.1063/1.1524305},
571     Journal = {J. Appl. Phys.},
572     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
573     Number = {2},
574     Pages = {793-818},
575     Publisher = {AIP},
576     Title = {Nanoscale thermal transport},
577     Url = {http://link.aip.org/link/?JAP/93/793/1},
578     Volume = {93},
579     Year = {2003},
580     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
581     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
582    
583     @article{Eapen:2007mw,
584     Abstract = {In a well-dispersed nanofluid with strong cluster-fluid attraction, thermal conduction paths can arise through percolating amorphouslike interfacial structures. This results in a thermal conductivity enhancement beyond the Maxwell limit of 3 phi, with phi being the nanoparticle volume fraction. Our findings from nonequilibrium molecular dynamics simulations, which are amenable to experimental verification, can provide a theoretical basis for the development of future nanofluids.},
585     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
586     Author = {Eapen, Jacob and Li, Ju and Yip, Sidney},
587     Date = {DEC 2007},
588     Date-Added = {2012-12-17 16:53:30 +0000},
589     Date-Modified = {2012-12-17 16:53:30 +0000},
590     Doi = {ARTN 062501},
591     Journal = pre,
592     Publisher = {AMER PHYSICAL SOC},
593     Timescited = {0},
594     Title = {Beyond the Maxwell limit: Thermal conduction in nanofluids with percolating fluid structures},
595     Volume = {76},
596     Year = {2007},
597     Bdsk-Url-1 = {http://dx.doi.org/062501}}
598    
599     @article{Xue:2003ya,
600     Abstract = {Using nonequilibrium molecular dynamics simulations in which a temperature gradient is imposed, we determine the thermal resistance of a model liquid-solid interface. Our simulations reveal that the strength of the bonding between liquid and solid atoms plays a key role in determining interfacial thermal resistance. Moreover, we find that the functional dependence of the thermal resistance on the strength of the liquid-solid interactions exhibits two distinct regimes: (i) exponential dependence for weak bonding (nonwetting liquid) and (ii) power law dependence for strong bonding (wetting liquid). The identification of the two regimes of the Kapitza resistance has profound implications for understanding and designing the thermal properties of nanocomposite materials. (C) 2003 American Institute of Physics.},
601     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
602     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
603     Date = {JAN 1 2003},
604     Date-Added = {2012-12-17 16:53:22 +0000},
605     Date-Modified = {2012-12-17 16:53:22 +0000},
606     Doi = {DOI 10.1063/1.1525806},
607     Journal = jcp,
608     Pages = {337-339},
609     Publisher = {AMER INST PHYSICS},
610     Timescited = {19},
611     Title = {Two regimes of thermal resistance at a liquid-solid interface},
612     Volume = {118},
613     Year = {2003},
614     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1525806}}
615    
616     @article{Xue:2004oa,
617     Abstract = {Using non-equilibrium molecular dynamics simulations in which a temperature gradient is imposed, we study how the ordering of the liquid at the liquid-solid interface affects the interfacial thermal resistance. Our simulations of a simple monoatomic liquid show no effect on the thermal transport either normal to the surface or parallel to the surface. Even for of a liquid that is highly confined between two solids, we find no effect on thermal conductivity. This contrasts with well-known significant effect of confinement on the viscoelastic response. Our findings suggest that the experimentally observed large enhancement of thermal conductivity in suspensions of solid nanosized particles (nanofluids) can not be explained by altered thermal transport properties of the layered liquid. (C) 2004 Elsevier Ltd. All rights reserved.},
618     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
619     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
620     Date = {SEP 2004},
621     Date-Added = {2012-12-17 16:53:22 +0000},
622     Date-Modified = {2012-12-17 16:53:22 +0000},
623     Doi = {DOI 10.1016/ijheatmasstransfer.2004.05.016},
624     Journal = {International Journal of Heat and Mass Transfer},
625     Keywords = {interfacial thermal resistance; liquid-solid interface; molecular dynamics simulations; nanofluids},
626     Pages = {4277-4284},
627     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
628     Timescited = {29},
629     Title = {Effect of liquid layering at the liquid-solid interface on thermal transport},
630     Volume = {47},
631     Year = {2004},
632     Bdsk-Url-1 = {http://dx.doi.org/10.1016/ijheatmasstransfer.2004.05.016}}
633    
634     @article{Lee:1999ct,
635     Abstract = {Oxide nanofluids were produced and their thermal conductivities were measured by a transient hot-wire method. The experimental results show that these nanofluids, containing a small amount of nanoparticles, have substantially higher thermal conductivities than the same liquids without nanoparticles. Comparisons between experiments and the Hamilton and Crosser model show that the model can predict the thermal conductivity of nanofluids containing large agglomerated Al2O3 particles. However, the model appears to be inadequate for nanofluids containing CuO particles. This suggests that not only particle shape but size is considered to be dominant in enhancing the thermal conductivity of nanofluids.},
636     Address = {345 E 47TH ST, NEW YORK, NY 10017 USA},
637     Author = {Lee, S and Choi, SUS and Li, S and Eastman, JA},
638     Date = {MAY 1999},
639     Date-Added = {2012-12-17 16:53:15 +0000},
640     Date-Modified = {2012-12-17 16:53:15 +0000},
641     Journal = {Journal of Heat Transfer-Transactions of the Asme},
642     Keywords = {conduction; enhancement; heat transfer; nanoscale; two-phase},
643     Pages = {280-289},
644     Publisher = {ASME-AMER SOC MECHANICAL ENG},
645     Timescited = {183},
646     Title = {Measuring thermal conductivity of fluids containing oxide nanoparticles},
647     Volume = {121},
648     Year = {1999}}
649    
650     @article{Keblinski:2002bx,
651     Abstract = {Recent measurements on nanofluids have demonstrated that the thermal conductivity increases with decreasing grain size. However, Such increases cannot be explained by existing theories. We explore four possible explanations for this anomalous increase: Brownian motion of the particles, molecular-level layering of the liquid at the liquid/particle interface, the nature of heat transport in the nanoparticles. and the effects of nanoparticle clustering. We show that the key factors in understanding thermal properties of nanofluids are the ballistic, rather than diffusive, nature of heat transport in the nanoparticles, combined with direct or fluid-mediated clustering effects that provide paths for rapid heat transport. (C) 2001 Elsevier Science Ltd. All rights reserved.},
652     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
653     Author = {Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
654     Date = {FEB 2002},
655     Date-Added = {2012-12-17 16:53:06 +0000},
656     Date-Modified = {2012-12-17 16:53:06 +0000},
657     Journal = {International Journal of Heat and Mass Transfer},
658     Keywords = {thermal conductivity; nanofluids; molecular dynamics simulations; ballistic heat transport},
659     Pages = {855-863},
660     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
661     Timescited = {161},
662     Title = {Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)},
663     Volume = {45},
664     Year = {2002}}
665    
666     @article{Eastman:2001wb,
667     Abstract = {It is shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure ethylene glycol or ethylene glycol containing the same volume fraction of dispersed oxide nanoparticles. The effective thermal conductivity of ethylene glycol is shown to be increased by up to 40\% for a nanofluid consisting of ethylene glycol containing approximately 0.3 vol \% Cu nanoparticles of mean diameter < 10 nm. The results are anomalous based on previous theoretical calculations that had predicted a strong effect of particle shape on effective nanofluid thermal conductivity, but no effect of either particle size or particle thermal conductivity. (C) 2001 American Institute of Physics.},
668     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
669     Author = {Eastman, JA and Choi, SUS and Li, S and Yu, W and Thompson, LJ},
670     Date = {FEB 5 2001},
671     Date-Added = {2012-12-17 16:52:55 +0000},
672     Date-Modified = {2012-12-17 16:52:55 +0000},
673     Journal = {Applied Physics Letters},
674     Pages = {718-720},
675     Publisher = {AMER INST PHYSICS},
676     Timescited = {246},
677     Title = {Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles},
678     Volume = {78},
679     Year = {2001}}
680    
681     @article{Eapen:2007th,
682     Abstract = {Transient hot-wire data on thermal conductivity of suspensions of silica and perfluorinated particles show agreement with the mean-field theory of Maxwell but not with the recently postulated microconvection mechanism. The influence of interfacial thermal resistance, convective effects at microscales, and the possibility of thermal conductivity enhancements beyond the Maxwell limit are discussed.},
683     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
684     Author = {Eapen, Jacob and Williams, Wesley C. and Buongiorno, Jacopo and Hu, Lin-Wen and Yip, Sidney and Rusconi, Roberto and Piazza, Roberto},
685     Date = {AUG 31 2007},
686     Date-Added = {2012-12-17 16:52:46 +0000},
687     Date-Modified = {2012-12-17 16:52:46 +0000},
688     Doi = {ARTN 095901},
689     Journal = prl,
690     Publisher = {AMER PHYSICAL SOC},
691     Timescited = {8},
692     Title = {Mean-field versus microconvection effects in nanofluid thermal conduction},
693     Volume = {99},
694     Year = {2007},
695     Bdsk-Url-1 = {http://dx.doi.org/095901}}
696    
697     @article{Plech:2005kx,
698     Abstract = {The transient structural response of laser excited gold nanoparticle sols has been recorded by pulsed X-ray scattering. Time resolved wide angle and small angle scattering (SAXS) record the changes in structure both of the nanoparticles and the water environment subsequent to femtosecond laser excitation. Within the first nanosecond after the excitation of the nanoparticles, the water phase shows a signature of compression, induced by a heat-induced evaporation of the water shell close to the heated nanoparticles. The particles themselves undergo a melting transition and are fragmented to Form new clusters in the nanometer range. (C) 2004 Elsevier B.V. All rights reserved.},
699     Author = {Plech, A and Kotaidis, V and Lorenc, M and Wulff, M},
700     Date-Added = {2012-12-17 16:52:34 +0000},
701     Date-Modified = {2012-12-17 16:52:34 +0000},
702     Doi = {DOI 10.1016/j.cplett.2004.11.072},
703     Journal = cpl,
704     Local-Url = {file://localhost/Users/charles/Documents/Papers/sdarticle3.pdf},
705     Pages = {565-569},
706     Title = {Thermal dynamics in laser excited metal nanoparticles},
707     Volume = {401},
708     Year = {2005},
709     Bdsk-Url-1 = {http://dx.doi.org/10.1016/j.cplett.2004.11.072}}
710    
711     @article{Wilson:2002uq,
712     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
713     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
714     Date-Added = {2012-12-17 16:52:22 +0000},
715     Date-Modified = {2012-12-17 16:52:22 +0000},
716     Doi = {ARTN 224301},
717     Journal = {Phys. Rev. B},
718     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
719     Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
720     Volume = {66},
721     Year = {2002},
722     Bdsk-Url-1 = {http://dx.doi.org/224301}}
723    
724     @article{Mazzaglia:2008to,
725     Abstract = {Amphiphilic cyclodextrins (CDs) modified in the upper rim with thiohexyl groups and in the lower rim with oligoethylene amino (SC6NH2) or oligoethylene hydroxyl groups (SC6OH) can bind gold colloids, yielding Au/CD particles with an average hydrodynamic radius (RH) of 2 and 25 rim in water solution. The systems were investigated by UV-vis, quasi-elastic light scattering, and FTIR-ATR techniques. The concentration of amphiphiles was kept above the concentration of gold colloids to afford complete covering. In the case of SC6NH2, basic conditions (Et3N, pH 11) yield promptly the decoration of Au, which can be stabilized by linkage of CD amino and/or thioether groups. The critical aggregation concentration of SC6NH2 was measured (similar to 4 mu M) by surface tension measurements, pointing out that about 50\% of CDs are present in nonaggregated form. Whereas Au/SC6NH2 colloids were stable in size and morphology for at least one month, the size of the Au/SC6OH system increases remarkably, forming nanoaggregates of 20 and 80 rim in two hours. Under physiological conditions, the gold/amino amphiphiles system can internalize in HeLa cells, as shown by extinction spectra registered on the immobilized cells. The gold delivered by cyclodextrins can induce photothermal damage upon irradiation, doubling the cell mortality with respect to uncovered gold colloids. These findings can open useful perspectives to the application of these self-assembled systems in cancer photothermal therapy.},
726     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
727     Author = {Mazzaglia, Antonino and Trapani, Mariachiara and Villari, Valentina and Micali, Norberto and Merlo, Francesca Marino and Zaccaria, Daniela and Sciortino, Maria Teresa and Previti, Francesco and Patane, Salvatore and Scolaro, Luigi Monsu},
728     Date = {MAY 1 2008},
729     Date-Added = {2012-12-17 16:52:15 +0000},
730     Date-Modified = {2012-12-17 16:52:15 +0000},
731     Doi = {DOI 10.1021/jp7120033},
732     Journal = jpcc,
733     Pages = {6764-6769},
734     Publisher = {AMER CHEMICAL SOC},
735     Timescited = {0},
736     Title = {Amphiphilic cyclodextrins as capping agents for gold colloids: A spectroscopic investigation with perspectives in photothermal therapy},
737     Volume = {112},
738     Year = {2008},
739     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp7120033}}
740    
741     @article{Gnyawali:2008lp,
742     Abstract = {Tissue surface temperature distribution on the treatment site can serve as an indicator for the effectiveness of a photothermal therapy. In this study, both infrared thermography and theoretical simulation were used to determine the surface temperature distribution during laser irradiation of both gel phantom and animal tumors. Selective photothermal interaction was attempted by using intratumoral indocyanine green enhancement and irradiation via a near-infrared laser. An immunoadjuvant was also used to enhance immunological responses during tumor treatment. Monte Carlo method for tissue absorption of light and finite difference method for heat diffusion in tissue were used to simulate the temperature distribution during the selective laser photothermal interaction. An infrared camera was used to capture the thermal images during the laser treatment and the surface temperature was determined. Our findings show that the theoretical and experimental results are in good agreement and that the surface temperature of irradiated tissue can be controlled with appropriate dye and adjuvant enhancement. These results can be used to control the laser tumor treatment parameters and to optimize the treatment outcome. More importantly, when used with immunotherapy as a precursor of immunological responses, the selective photothermal treatment can be guided by the tissue temperature profiles both in the tumor and on the surface.},
743     Address = {TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY},
744     Author = {Gnyawali, Surya C. and Chen, Yicho and Wu, Feng and Bartels, Kenneth E. and Wicksted, James P. and Liu, Hong and Sen, Chandan K. and Chen, Wei R.},
745     Date = {FEB 2008},
746     Date-Added = {2012-12-17 16:52:08 +0000},
747     Date-Modified = {2012-12-17 16:52:08 +0000},
748     Doi = {DOI 10.1007/s11517-007-0251-5},
749     Journal = {Medical \& Biological Engineering \& Computing},
750     Keywords = {infrared thermography; indocyanine green; glycated chitosan; surface temperature; Monte Carlo simulation},
751     Pages = {159-168},
752     Publisher = {SPRINGER HEIDELBERG},
753     Timescited = {0},
754     Title = {Temperature measurement on tissue surface during laser irradiation},
755     Volume = {46},
756     Year = {2008},
757     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11517-007-0251-5}}
758    
759     @article{Petrova:2007ad,
760     Abstract = {This paper describes our recent time-resolved spectroscopy studies of the properties of gold particles at high laser excitation levels. In these experiments, an intense pump laser pulse rapidly heats the particle, creating very high lattice temperatures - up to the melting point of bulk gold. These high temperatures can have dramatic effects on the particle and the surroundings. The lattice temperature created is determined by observing the coherently excited the vibrational modes of the particles. The periods of these modes depend on temperature, thus, they act as an internal thermometer. We have used these experiments to provide values for the threshold temperatures for explosive boiling of the solvent surrounding the particles, and laser induced structural transformations in non-spherical particles. The results of these experiments are relevant to the use of metal nanoparticles in photothermal therapy, where laser induced heating is used to selectively kill cells.},
761     Address = {LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY},
762     Author = {Petrova, Hristina and Hu, Min and Hartland, Gregory V.},
763     Date = {2007},
764     Date-Added = {2012-12-17 16:52:01 +0000},
765     Date-Modified = {2012-12-17 16:52:01 +0000},
766     Doi = {DOI 10.1524/zpch.2007.221.3.361},
767     Journal = {Zeitschrift Fur Physikalische Chemie-International Journal of Research In Physical Chemistry \& Chemical Physics},
768     Keywords = {metal nanoparticles; phonon modes; photothermal properties; laser-induced heating},
769     Pages = {361-376},
770     Publisher = {OLDENBOURG VERLAG},
771     Timescited = {2},
772     Title = {Photothermal properties of gold nanoparticles},
773     Volume = {221},
774     Year = {2007},
775     Bdsk-Url-1 = {http://dx.doi.org/10.1524/zpch.2007.221.3.361}}
776    
777     @article{Jain:2007ux,
778     Abstract = {Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this review, we discuss the SPR-enhanced optical properties of noble metal nanoparticles, with an emphasis on the recent advances in the utility of these plasmonic properties in molecular-specific imaging and sensing, photo-diagnostics, and selective photothermal therapy. The strongly enhanced SPR scattering from Au nanoparticles makes them useful as bright optical tags for molecular-specific biological imaging and detection using simple dark-field optical microscopy. On the other hand, the SPR absorption of the nanoparticles has allowed their use in the selective laser photothermal therapy of cancer. We also discuss the sensitivity of the nanoparticle SPR frequency to the local medium dielectric constant, which has been successfully exploited for the optical sensing of chemical and biological analytes. Plasmon coupling between metal nanoparticle pairs is also discussed, which forms the basis for nanoparticle assembly-based biodiagnostics and the plasmon ruler for dynamic measurement of nanoscale distances in biological systems.},
779     Address = {233 SPRING STREET, NEW YORK, NY 10013 USA},
780     Author = {Jain, Prashant K. and Huang, Xiaohua and El-Sayed, Ivan H. and El-Sayad, Mostafa A.},
781     Date = {SEP 2007},
782     Date-Added = {2012-12-17 16:51:52 +0000},
783     Date-Modified = {2012-12-17 16:51:52 +0000},
784     Doi = {DOI 10.1007/s11468-007-9031-1},
785     Journal = {Plasmonics},
786     Keywords = {surface plasmon resonance (SPR); SPR sensing; Mie scattering; metal nanocrystals for biodiagnostics; photothermal therapy; plasmon coupling},
787     Number = {3},
788     Pages = {107-118},
789     Publisher = {SPRINGER},
790     Timescited = {2},
791     Title = {Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems},
792     Volume = {2},
793     Year = {2007},
794     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11468-007-9031-1}}
795    
796 kstocke1 3801 @techreport{Goddard1998,
797     Author = {Kimura, Y. and Cagin, T. and Goddard III, W.A.},
798 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
799     Date-Modified = {2012-12-05 22:18:01 +0000},
800 kstocke1 3801 Institution = {California Institute of Technology},
801     Lastchecked = {January 19, 2011},
802     Number = {003},
803     Title = {The Quantum Sutton-Chen Many Body Potential for Properties of fcc Metals},
804     Url = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf},
805     Year = {1998},
806     Bdsk-Url-1 = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf}}
807    
808     @article{Hase2010,
809     Author = {Yue Zhang and George L. Barnes and Tianying Yan and William L. Hase},
810 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
811     Date-Modified = {2012-12-05 22:18:01 +0000},
812 kstocke1 3801 Journal = {Phys. Chem. Chem. Phys.},
813     Keywords = {fcc/hcp, non-equilibrium, thiols},
814     Pages = {4435-4445},
815     Title = {Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer},
816     Volume = {12},
817     Year = {2010}}
818    
819     @article{Kuang2010,
820     Author = {Shenyu Kuang and J. Daniel Gezelter},
821 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
822     Date-Modified = {2012-12-05 22:18:01 +0000},
823 kstocke1 3801 Journal = {J. Chem. Phys.},
824     Keywords = {NIVS, RNEMD, NIVS-RNEMD},
825     Month = {October},
826     Pages = {164101-1 - 164101-9},
827     Title = {A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity},
828     Volume = {133},
829     Year = {2010}}
830    
831     @article{Kuang2012,
832     Author = {Shenyu Kuang and J. Daniel Gezelter},
833 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
834     Date-Modified = {2012-12-05 22:18:01 +0000},
835 kstocke1 3801 Journal = {Mol. Phys.},
836     Keywords = {VSS, RNEMD, VSS-RNEMD},
837     Month = {May},
838     Number = {9-10},
839     Pages = {691-701},
840     Title = {Velocity shearing and scaling RNEMD: a minimally perturbing method for simulating temperature and momentum gradients},
841     Volume = {110},
842     Year = {2012}}
843 kstocke1 3804
844     @article{doi:10.1080/0026897031000068578,
845     Abstract = { Using equilibrium and non-equilibrium molecular dynamics simulations, we determine the Kapitza resistance (or thermal contact resistance) at a model liquid-solid interface. The Kapitza resistance (or the associated Kapitza length) can reach appreciable values when the liquid does not wet the solid. The analogy with the hydrodynamic slip length is discussed. },
846     Author = {Barrat, Jean-Louis and Chiaruttini, Fran{\c c}ois},
847     Date-Added = {2011-12-13 17:17:05 -0500},
848     Date-Modified = {2011-12-13 17:17:05 -0500},
849     Doi = {10.1080/0026897031000068578},
850     Eprint = {http://tandfprod.literatumonline.com/doi/pdf/10.1080/0026897031000068578},
851     Journal = {Mol. Phys.},
852     Number = {11},
853     Pages = {1605-1610},
854     Title = {Kapitza resistance at the liquid---solid interface},
855     Url = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
856     Volume = {101},
857     Year = {2003},
858     Bdsk-Url-1 = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
859     Bdsk-Url-2 = {http://dx.doi.org/10.1080/0026897031000068578}}
860    
861     @article{Medina2011,
862     Abstract = {Molecular dynamics (MD) simulations are carried out on a system of rigid or flexible water molecules at a series of temperatures between 273 and 368&#xa0;K. Collective transport coefficients, such as shear and bulk viscosities are calculated, and their behavior is systematically investigated as a function of flexibility and temperature. It is found that by including the intramolecular terms in the potential the calculated viscosity values are in overall much better agreement, compared to earlier and recent available experimental data, than those obtained with the rigid SPC/E model. The effect of the intramolecular degrees of freedom on transport properties of liquid water is analyzed and the incorporation of polarizability is discussed for further improvements. To our knowledge the present study constitutes the first compendium of results on viscosities for pure liquid water, including flexible models, that has been assembled.},
863     Author = {J.S. Medina and R. Prosmiti and P. Villarreal and G. Delgado-Barrio and G. Winter and B. Gonz{\'a}lez and J.V. Alem{\'a}n and C. Collado},
864     Date-Added = {2011-12-13 17:08:34 -0500},
865     Date-Modified = {2011-12-13 17:08:49 -0500},
866     Doi = {10.1016/j.chemphys.2011.07.001},
867     Issn = {0301-0104},
868     Journal = {Chemical Physics},
869     Keywords = {Viscosity calculations},
870     Number = {1-3},
871     Pages = {9 - 18},
872     Title = {Molecular dynamics simulations of rigid and flexible water models: Temperature dependence of viscosity},
873     Url = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
874     Volume = {388},
875     Year = {2011},
876     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
877     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.chemphys.2011.07.001}}
878    
879     @book{WagnerKruse,
880     Address = {Berlin},
881     Author = {W. Wagner and A. Kruse},
882     Date-Added = {2011-12-13 14:57:08 -0500},
883     Date-Modified = {2011-12-13 14:57:08 -0500},
884     Publisher = {Springer-Verlag},
885     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
886     Year = {1998}}
887    
888     @article{garde:PhysRevLett2009,
889     Author = {Shenogina, Natalia and Godawat, Rahul and Keblinski, Pawel and Garde, Shekhar},
890     Date-Added = {2011-12-13 12:48:51 -0500},
891     Date-Modified = {2011-12-13 12:48:51 -0500},
892     Doi = {10.1103/PhysRevLett.102.156101},
893     Journal = {Phys. Rev. Lett.},
894     Month = {Apr},
895     Number = {15},
896     Numpages = {4},
897     Pages = {156101},
898     Publisher = {American Physical Society},
899     Title = {How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces},
900     Volume = {102},
901     Year = {2009},
902     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.102.156101}}
903    
904     @article{garde:nl2005,
905     Abstract = { Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water−organic liquid, water−surfactant, surfactant−organic liquid, is relatively high (in the range of 65−370 MW/m2 K) compared to that for solid−liquid interfaces (∼10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid−liquid interfaces. },
906     Author = {Patel, Harshit A. and Garde, Shekhar and Keblinski, Pawel},
907     Date-Added = {2011-12-13 12:48:51 -0500},
908     Date-Modified = {2011-12-13 12:48:51 -0500},
909     Doi = {10.1021/nl051526q},
910     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl051526q},
911     Journal = {Nano Lett.},
912     Note = {PMID: 16277458},
913     Number = {11},
914     Pages = {2225-2231},
915     Title = {Thermal Resistance of Nanoscopic Liquid−Liquid Interfaces:  Dependence on Chemistry and Molecular Architecture},
916     Url = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
917     Volume = {5},
918     Year = {2005},
919     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
920     Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl051526q}}
921    
922     @article{melchionna93,
923     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
924     Date-Added = {2011-12-12 17:52:15 -0500},
925     Date-Modified = {2011-12-12 17:52:15 -0500},
926     Journal = {Mol. Phys.},
927     Pages = {533-544},
928     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
929     Volume = 78,
930     Year = 1993}
931    
932     @article{TraPPE-UA.thiols,
933     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
934     Date-Added = {2011-12-07 15:06:12 -0500},
935     Date-Modified = {2011-12-07 15:06:12 -0500},
936     Doi = {10.1021/jp0549125},
937     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
938     Journal = {J. Phys. Chem. B},
939     Number = {50},
940     Pages = {24100-24107},
941     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
942     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
943     Volume = {109},
944     Year = {2005},
945     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
946     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
947    
948     @article{TraPPE-UA.alkylbenzenes,
949     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
950     Date-Added = {2011-12-07 15:06:12 -0500},
951     Date-Modified = {2011-12-07 15:06:12 -0500},
952     Doi = {10.1021/jp001044x},
953     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
954     Journal = {J. Phys. Chem. B},
955     Number = {33},
956     Pages = {8008-8016},
957     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
958     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
959     Volume = {104},
960     Year = {2000},
961     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
962     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
963    
964     @article{TraPPE-UA.alkanes,
965     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
966     Date-Added = {2011-12-07 15:06:12 -0500},
967     Date-Modified = {2011-12-07 15:06:12 -0500},
968     Doi = {10.1021/jp972543+},
969     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
970     Journal = {J. Phys. Chem. B},
971     Number = {14},
972     Pages = {2569-2577},
973     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
974     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
975     Volume = {102},
976     Year = {1998},
977     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
978     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+},
979     Bdsk-Url-3 = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B}}
980    
981     @article{ISI:000167766600035,
982     Abstract = {Molecular dynamics simulations are used to
983     investigate the separation of water films adjacent
984     to a hot metal surface. The simulations clearly show
985     that the water layers nearest the surface overheat
986     and undergo explosive boiling. For thick films, the
987     expansion of the vaporized molecules near the
988     surface forces the outer water layers to move away
989     from the surface. These results are of interest for
990     mass spectrometry of biological molecules, steam
991     cleaning of surfaces, and medical procedures.},
992     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
993     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
994     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
995     Date-Added = {2011-12-07 15:02:32 -0500},
996     Date-Modified = {2011-12-07 15:02:32 -0500},
997     Doc-Delivery-Number = {416ED},
998     Issn = {1089-5639},
999     Journal = {J. Phys. Chem. A},
1000     Journal-Iso = {J. Phys. Chem. A},
1001     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1002     Language = {English},
1003     Month = {MAR 29},
1004     Number = {12},
1005     Number-Of-Cited-References = {65},
1006     Pages = {2748-2755},
1007     Publisher = {AMER CHEMICAL SOC},
1008     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1009     Times-Cited = {66},
1010     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
1011     Type = {Article},
1012     Unique-Id = {ISI:000167766600035},
1013     Volume = {105},
1014     Year = {2001}}
1015    
1016     @article{Chen90,
1017     Author = {A.~P. Sutton and J. Chen},
1018     Date-Added = {2011-12-07 15:01:59 -0500},
1019     Date-Modified = {2011-12-07 15:01:59 -0500},
1020     Journal = {Philos. Mag. Lett.},
1021     Pages = {139-146},
1022     Title = {Long-Range Finnis Sinclair Potentials},
1023     Volume = 61,
1024     Year = {1990}}
1025    
1026     @article{PhysRevB.59.3527,
1027     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
1028     Date-Added = {2011-12-07 15:01:36 -0500},
1029     Date-Modified = {2011-12-07 15:01:36 -0500},
1030     Doi = {10.1103/PhysRevB.59.3527},
1031     Journal = {Phys. Rev. B},
1032     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
1033     Month = {Feb},
1034     Number = {5},
1035     Numpages = {6},
1036     Pages = {3527-3533},
1037     Publisher = {American Physical Society},
1038     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
1039     Volume = {59},
1040     Year = {1999},
1041     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
1042    
1043     @article{Bedrov:2000,
1044     Abstract = {We have applied a new nonequilibrium molecular
1045     dynamics (NEMD) method {[}F. Muller-Plathe,
1046     J. Chem. Phys. 106, 6082 (1997)] previously applied
1047     to monatomic Lennard-Jones fluids in the
1048     determination of the thermal conductivity of
1049     molecular fluids. The method was modified in order
1050     to be applicable to systems with holonomic
1051     constraints. Because the method involves imposing a
1052     known heat flux it is particularly attractive for
1053     systems involving long-range and many-body
1054     interactions where calculation of the microscopic
1055     heat flux is difficult. The predicted thermal
1056     conductivities of liquid n-butane and water using
1057     the imposed-flux NEMD method were found to be in a
1058     good agreement with previous simulations and
1059     experiment. (C) 2000 American Institute of
1060     Physics. {[}S0021-9606(00)50841-1].},
1061     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1062     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1063     Author = {Bedrov, D and Smith, GD},
1064     Date-Added = {2011-12-07 15:00:27 -0500},
1065     Date-Modified = {2011-12-07 15:00:27 -0500},
1066     Doc-Delivery-Number = {369BF},
1067     Issn = {0021-9606},
1068     Journal = {J. Chem. Phys.},
1069     Journal-Iso = {J. Chem. Phys.},
1070     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1071     Language = {English},
1072     Month = {NOV 8},
1073     Number = {18},
1074     Number-Of-Cited-References = {26},
1075     Pages = {8080-8084},
1076     Publisher = {AMER INST PHYSICS},
1077     Read = {1},
1078     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1079     Times-Cited = {23},
1080     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
1081     Type = {Article},
1082     Unique-Id = {ISI:000090151400044},
1083     Volume = {113},
1084     Year = {2000}}
1085    
1086     @article{10.1063/1.3330544,
1087     Author = {Miguel Angel Gonz{\'a}lez and Jos{\'e} L. F. Abascal},
1088     Coden = {JCPSA6},
1089     Date-Added = {2011-12-07 14:59:20 -0500},
1090     Date-Modified = {2011-12-15 13:10:11 -0500},
1091     Doi = {DOI:10.1063/1.3330544},
1092     Eissn = {10897690},
1093     Issn = {00219606},
1094     Journal = {J. Chem. Phys.},
1095     Keywords = {shear strength; viscosity;},
1096     Number = {9},
1097     Pages = {096101},
1098     Publisher = {AIP},
1099     Title = {The shear viscosity of rigid water models},
1100     Url = {http://dx.doi.org/doi/10.1063/1.3330544},
1101     Volume = {132},
1102     Year = {2010},
1103     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3330544},
1104     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3330544}}
1105    
1106     @article{doi:10.1021/jp048434u,
1107     Abstract = { The different possible proton-ordered structures of ice Ih for an orthorombic unit cell with 8 water molecules were derived. The number of unique structures was found to be 16. The crystallographic coordinates of these are reported. The energetics of the different polymorphs were investigated by quantum-mechanical density-functional theory calculations and for comparison by molecular-mechanics analytical potential models. The polymorphs were found to be close in energy, i.e., within approximately 0.25 kcal/mol H2O, on the basis of the quantum-chemical DFT methods. At 277 K, the different energy levels are about evenly populated, but at a lower temperature, a transition to an ordered form is expected. This form was found to agree with the ice phase XI. The difference in lattice energies among the polymorphs was rationalized in terms of structural characteristics. The most important parameters to determine the lattice energies were found to be the distributions of water dimer H-bonded pair conformations, in an intricate manner. },
1108     Author = {Hirsch, Tomas K. and Ojam{\"a}e, Lars},
1109     Date-Added = {2011-12-07 14:38:30 -0500},
1110     Date-Modified = {2011-12-07 14:38:30 -0500},
1111     Doi = {10.1021/jp048434u},
1112     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048434u},
1113     Journal = {J. Phys. Chem. B},
1114     Number = {40},
1115     Pages = {15856-15864},
1116     Title = {Quantum-Chemical and Force-Field Investigations of Ice Ih:  Computation of Proton-Ordered Structures and Prediction of Their Lattice Energies},
1117     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1118     Volume = {108},
1119     Year = {2004},
1120     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1121     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048434u}}
1122    
1123     @article{Meineke:2005gd,
1124     Abstract = {OOPSE is a new molecular dynamics simulation program
1125     that is capable of efficiently integrating equations
1126     of motion for atom types with orientational degrees
1127     of freedom (e.g. #sticky# atoms and point
1128     dipoles). Transition metals can also be simulated
1129     using the embedded atom method (EAM) potential
1130     included in the code. Parallel simulations are
1131     carried out using the force-based decomposition
1132     method. Simulations are specified using a very
1133     simple C-based meta-data language. A number of
1134     advanced integrators are included, and the basic
1135     integrator for orientational dynamics provides
1136     substantial improvements over older quaternion-based
1137     schemes.},
1138     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1139     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1140     Date-Added = {2011-12-07 13:33:04 -0500},
1141     Date-Modified = {2011-12-07 13:33:04 -0500},
1142     Doi = {DOI 10.1002/jcc.20161},
1143     Isi = {000226558200006},
1144     Isi-Recid = {142688207},
1145     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1146     Journal = {J. Comput. Chem.},
1147     Keywords = {OOPSE; molecular dynamics},
1148     Month = feb,
1149     Number = {3},
1150     Pages = {252-271},
1151     Publisher = {JOHN WILEY \& SONS INC},
1152     Times-Cited = {9},
1153     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1154     Volume = {26},
1155     Year = {2005},
1156     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1157     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1158    
1159     @article{hoover85,
1160     Author = {W.~G. Hoover},
1161     Date-Added = {2011-12-06 14:23:41 -0500},
1162     Date-Modified = {2011-12-06 14:23:41 -0500},
1163     Journal = {Phys. Rev. A},
1164     Pages = 1695,
1165     Title = {Canonical dynamics: Equilibrium phase-space distributions},
1166     Volume = 31,
1167     Year = 1985}
1168    
1169     @article{Maginn:2010,
1170     Abstract = {The reverse nonequilibrium molecular dynamics
1171     (RNEMD) method calculates the shear viscosity of a
1172     fluid by imposing a nonphysical exchange of momentum
1173     and measuring the resulting shear velocity
1174     gradient. In this study we investigate the range of
1175     momentum flux values over which RNEMD yields usable
1176     (linear) velocity gradients. We find that nonlinear
1177     velocity profiles result primarily from gradients in
1178     fluid temperature and density. The temperature
1179     gradient results from conversion of heat into bulk
1180     kinetic energy, which is transformed back into heat
1181     elsewhere via viscous heating. An expression is
1182     derived to predict the temperature profile resulting
1183     from a specified momentum flux for a given fluid and
1184     simulation cell. Although primarily bounded above,
1185     we also describe milder low-flux limitations. RNEMD
1186     results for a Lennard-Jones fluid agree with
1187     equilibrium molecular dynamics and conventional
1188     nonequilibrium molecular dynamics calculations at
1189     low shear, but RNEMD underpredicts viscosity
1190     relative to conventional NEMD at high shear.},
1191     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1192     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1193     Article-Number = {014103},
1194     Author = {Tenney, Craig M. and Maginn, Edward J.},
1195     Author-Email = {ed@nd.edu},
1196     Date-Added = {2011-12-05 18:29:08 -0500},
1197     Date-Modified = {2011-12-05 18:29:08 -0500},
1198     Doc-Delivery-Number = {542DQ},
1199     Doi = {10.1063/1.3276454},
1200     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1201     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1202     Issn = {0021-9606},
1203     Journal = {J. Chem. Phys.},
1204     Journal-Iso = {J. Chem. Phys.},
1205     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1206     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1207     Language = {English},
1208     Month = {JAN 7},
1209     Number = {1},
1210     Number-Of-Cited-References = {20},
1211     Pages = {014103},
1212     Publisher = {AMER INST PHYSICS},
1213     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1214     Times-Cited = {0},
1215     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
1216     Type = {Article},
1217     Unique-Id = {ISI:000273472300004},
1218     Volume = {132},
1219     Year = {2010},
1220     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1221    
1222     @article{ISI:000080382700030,
1223     Abstract = {A nonequilibrium method for calculating the shear
1224     viscosity is presented. It reverses the
1225     cause-and-effect picture customarily used in
1226     nonequilibrium molecular dynamics: the effect, the
1227     momentum flux or stress, is imposed, whereas the
1228     cause, the velocity gradient or shear rate, is
1229     obtained from the simulation. It differs from other
1230     Norton-ensemble methods by the way in which the
1231     steady-state momentum flux is maintained. This
1232     method involves a simple exchange of particle
1233     momenta, which is easy to implement. Moreover, it
1234     can be made to conserve the total energy as well as
1235     the total linear momentum, so no coupling to an
1236     external temperature bath is needed. The resulting
1237     raw data, the velocity profile, is a robust and
1238     rapidly converging property. The method is tested on
1239     the Lennard-Jones fluid near its triple point. It
1240     yields a viscosity of 3.2-3.3, in Lennard-Jones
1241     reduced units, in agreement with literature
1242     results. {[}S1063-651X(99)03105-0].},
1243     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1244     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1245     Author = {M\"{u}ller-Plathe, F},
1246     Date-Added = {2011-12-05 18:18:37 -0500},
1247     Date-Modified = {2011-12-05 18:18:37 -0500},
1248     Doc-Delivery-Number = {197TX},
1249     Issn = {1063-651X},
1250     Journal = {Phys. Rev. E},
1251     Journal-Iso = {Phys. Rev. E},
1252     Language = {English},
1253     Month = {MAY},
1254     Number = {5, Part A},
1255     Number-Of-Cited-References = {17},
1256     Pages = {4894-4898},
1257     Publisher = {AMERICAN PHYSICAL SOC},
1258     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1259     Times-Cited = {57},
1260     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1261     Type = {Article},
1262     Unique-Id = {ISI:000080382700030},
1263     Volume = {59},
1264     Year = {1999}}
1265    
1266     @article{MullerPlathe:1997xw,
1267     Abstract = {A nonequilibrium molecular dynamics method for
1268     calculating the thermal conductivity is
1269     presented. It reverses the usual cause and effect
1270     picture. The ''effect,'' the heat flux, is imposed
1271     on the system and the ''cause,'' the temperature
1272     gradient is obtained from the simulation. Besides
1273     being very simple to implement, the scheme offers
1274     several advantages such as compatibility with
1275     periodic boundary conditions, conservation of total
1276     energy and total linear momentum, and the sampling
1277     of a rapidly converging quantity (temperature
1278     gradient) rather than a slowly converging one (heat
1279     flux). The scheme is tested on the Lennard-Jones
1280     fluid. (C) 1997 American Institute of Physics.},
1281     Address = {WOODBURY},
1282     Author = {M\"{u}ller-Plathe, F.},
1283     Cited-Reference-Count = {13},
1284     Date = {APR 8},
1285     Date-Added = {2011-12-05 18:18:37 -0500},
1286     Date-Modified = {2011-12-05 18:18:37 -0500},
1287     Document-Type = {Article},
1288     Isi = {ISI:A1997WR62000032},
1289     Isi-Document-Delivery-Number = {WR620},
1290     Iso-Source-Abbreviation = {J. Chem. Phys.},
1291     Issn = {0021-9606},
1292     Journal = {J. Chem. Phys.},
1293     Language = {English},
1294     Month = {Apr},
1295     Number = {14},
1296     Page-Count = {4},
1297     Pages = {6082--6085},
1298     Publication-Type = {J},
1299     Publisher = {AMER INST PHYSICS},
1300     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1301     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1302     Source = {J CHEM PHYS},
1303     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1304     Times-Cited = {106},
1305     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1306     Volume = {106},
1307     Year = {1997}}
1308    
1309     @article{priezjev:204704,
1310     Author = {Nikolai V. Priezjev},
1311     Date-Added = {2011-11-28 14:39:18 -0500},
1312     Date-Modified = {2011-11-28 14:39:18 -0500},
1313     Doi = {10.1063/1.3663384},
1314     Eid = {204704},
1315     Journal = {J. Chem. Phys.},
1316     Keywords = {channel flow; diffusion; flow simulation; hydrodynamics; molecular dynamics method; pattern formation; random processes; shear flow; slip flow; wetting},
1317     Number = {20},
1318     Numpages = {9},
1319     Pages = {204704},
1320     Publisher = {AIP},
1321     Title = {Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures},
1322     Url = {http://link.aip.org/link/?JCP/135/204704/1},
1323     Volume = {135},
1324     Year = {2011},
1325     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/135/204704/1},
1326     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3663384}}
1327    
1328     @article{bryk:10258,
1329     Author = {Taras Bryk and A. D. J. Haymet},
1330     Date-Added = {2011-11-22 17:06:35 -0500},
1331     Date-Modified = {2011-11-22 17:06:35 -0500},
1332     Doi = {10.1063/1.1519538},
1333     Journal = {J. Chem. Phys.},
1334     Keywords = {liquid structure; molecular dynamics method; water; ice; interface structure},
1335     Number = {22},
1336     Pages = {10258-10268},
1337     Publisher = {AIP},
1338     Title = {Ice 1h/water interface of the SPC/E model: Molecular dynamics simulations of the equilibrium basal and prism interfaces},
1339     Url = {http://link.aip.org/link/?JCP/117/10258/1},
1340     Volume = {117},
1341     Year = {2002},
1342     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/117/10258/1},
1343     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1519538}}
1344    
1345     @misc{openmd,
1346     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
1347     Date-Added = {2011-11-18 15:32:23 -0500},
1348     Date-Modified = {2011-11-18 15:32:23 -0500},
1349     Howpublished = {Available at {\tt http://openmd.net}},
1350     Title = {{OpenMD, an open source engine for molecular dynamics}}}
1351    
1352     @article{kuang:AuThl,
1353     Author = {Kuang, Shenyu and Gezelter, J. Daniel},
1354     Date-Added = {2011-11-18 13:03:06 -0500},
1355     Date-Modified = {2011-12-05 17:58:01 -0500},
1356     Doi = {10.1021/jp2073478},
1357     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp2073478},
1358     Journal = {J. Phys. Chem. C},
1359     Number = {45},
1360     Pages = {22475-22483},
1361     Title = {Simulating Interfacial Thermal Conductance at Metal-Solvent Interfaces: The Role of Chemical Capping Agents},
1362     Url = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1363     Volume = {115},
1364     Year = {2011},
1365     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1366     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp2073478}}
1367    
1368     @article{10.1063/1.2772547,
1369     Author = {Hideo Kaburaki and Ju Li and Sidney Yip and Hajime Kimizuka},
1370     Coden = {JAPIAU},
1371     Date-Added = {2011-11-01 16:46:32 -0400},
1372     Date-Modified = {2011-11-01 16:46:32 -0400},
1373     Doi = {DOI:10.1063/1.2772547},
1374     Eissn = {10897550},
1375     Issn = {00218979},
1376     Keywords = {argon; Lennard-Jones potential; phonons; thermal conductivity;},
1377     Number = {4},
1378     Pages = {043514},
1379     Publisher = {AIP},
1380     Title = {Dynamical thermal conductivity of argon crystal},
1381     Url = {http://dx.doi.org/10.1063/1.2772547},
1382     Volume = {102},
1383     Year = {2007},
1384     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2772547}}
1385    
1386     @article{PhysRevLett.82.4671,
1387     Author = {Barrat, Jean-Louis and Bocquet, Lyd\'eric},
1388     Date-Added = {2011-11-01 16:44:29 -0400},
1389     Date-Modified = {2011-11-01 16:44:29 -0400},
1390     Doi = {10.1103/PhysRevLett.82.4671},
1391     Issue = {23},
1392     Journal = {Phys. Rev. Lett.},
1393     Month = {Jun},
1394     Pages = {4671--4674},
1395     Publisher = {American Physical Society},
1396     Title = {Large Slip Effect at a Nonwetting Fluid-Solid Interface},
1397     Url = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1398     Volume = {82},
1399     Year = {1999},
1400     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1401     Bdsk-Url-2 = {http://dx.doi.org/10.1103/PhysRevLett.82.4671}}
1402    
1403     @article{10.1063/1.1610442,
1404     Author = {J. R. Schmidt and J. L. Skinner},
1405     Coden = {JCPSA6},
1406     Date-Added = {2011-10-13 16:28:43 -0400},
1407     Date-Modified = {2011-12-15 13:11:53 -0500},
1408     Doi = {DOI:10.1063/1.1610442},
1409     Eissn = {10897690},
1410     Issn = {00219606},
1411     Journal = {J. Chem. Phys.},
1412     Keywords = {hydrodynamics; Brownian motion; molecular dynamics method; diffusion;},
1413     Number = {15},
1414     Pages = {8062-8068},
1415     Publisher = {AIP},
1416     Title = {Hydrodynamic boundary conditions, the Stokes?Einstein law, and long-time tails in the Brownian limit},
1417     Url = {http://dx.doi.org/10.1063/1.1610442},
1418     Volume = {119},
1419     Year = {2003},
1420     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1610442}}
1421    
1422     @article{10.1063/1.3274802,
1423     Author = {Ting Chen and Berend Smit and Alexis T. Bell},
1424     Coden = {JCPSA6},
1425     Doi = {DOI:10.1063/1.3274802},
1426     Eissn = {10897690},
1427     Issn = {00219606},
1428     Keywords = {fluctuations; molecular dynamics method; viscosity;},
1429     Number = {24},
1430     Pages = {246101},
1431     Publisher = {AIP},
1432     Title = {Are pressure fluctuation-based equilibrium methods really worse than nonequilibrium methods for calculating viscosities?},
1433     Url = {http://dx.doi.org/doi/10.1063/1.3274802},
1434     Volume = {131},
1435     Year = {2009},
1436     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3274802},
1437     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3274802}}