ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/chainLength/thiolsRNEMD.bib
Revision: 3851
Committed: Fri Dec 21 20:45:48 2012 UTC (11 years, 8 months ago) by kstocke1
File size: 83509 byte(s)
Log Message:
Almost done

File Contents

# User Rev Content
1 kstocke1 3801 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 kstocke1 3851 %% Created for Kelsey Stocker at 2012-12-21 15:45:31 -0500
6 kstocke1 3801
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11 gezelter 3819 @string{acp = {Adv. Chem. Phys.}}
12 kstocke1 3801
13 gezelter 3819 @string{bj = {Biophys. J.}}
14    
15     @string{ccp5 = {CCP5 Information Quarterly}}
16    
17     @string{cp = {Chem. Phys.}}
18    
19     @string{cpl = {Chem. Phys. Lett.}}
20    
21     @string{ea = {Electrochim. Acta}}
22    
23     @string{jacs = {J. Am. Chem. Soc.}}
24    
25     @string{jbc = {J. Biol. Chem.}}
26    
27     @string{jcat = {J. Catalysis}}
28    
29     @string{jcc = {J. Comp. Chem.}}
30    
31     @string{jcop = {J. Comp. Phys.}}
32    
33     @string{jcp = {J. Chem. Phys.}}
34    
35     @string{jctc = {J. Chem. Theory Comp.}}
36    
37     @string{jmc = {J. Med. Chem.}}
38    
39     @string{jml = {J. Mol. Liq.}}
40    
41     @string{jmm = {J. Mol. Model.}}
42    
43     @string{jpc = {J. Phys. Chem.}}
44    
45     @string{jpca = {J. Phys. Chem. A}}
46    
47     @string{jpcb = {J. Phys. Chem. B}}
48    
49     @string{jpcc = {J. Phys. Chem. C}}
50    
51     @string{jpcl = {J. Phys. Chem. Lett.}}
52    
53     @string{mp = {Mol. Phys.}}
54    
55     @string{pams = {Proc. Am. Math Soc.}}
56    
57     @string{pccp = {Phys. Chem. Chem. Phys.}}
58    
59     @string{pnas = {Proc. Natl. Acad. Sci. USA}}
60    
61     @string{pr = {Phys. Rev.}}
62    
63     @string{pra = {Phys. Rev. A}}
64    
65     @string{prb = {Phys. Rev. B}}
66    
67     @string{pre = {Phys. Rev. E}}
68    
69     @string{prl = {Phys. Rev. Lett.}}
70    
71     @string{rmp = {Rev. Mod. Phys.}}
72    
73     @string{ss = {Surf. Sci.}}
74    
75    
76 kstocke1 3851 @article{RevModPhys.61.605,
77     Author = {Swartz, E. T. and Pohl, R. O.},
78     Date-Added = {2012-12-21 20:34:12 +0000},
79     Date-Modified = {2012-12-21 20:34:12 +0000},
80     Doi = {10.1103/RevModPhys.61.605},
81     Issue = {3},
82     Journal = {Rev. Mod. Phys.},
83     Month = {Jul},
84     Pages = {605--668},
85     Publisher = {American Physical Society},
86     Title = {Thermal boundary resistance},
87     Url = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
88     Volume = {61},
89     Year = {1989},
90     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
91     Bdsk-Url-2 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
92    
93 gezelter 3819 @article{doi:10.1021/jp034405s,
94     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
95     Author = {Leng, Y. and Keffer, David J. and Cummings, Peter T.},
96     Date-Added = {2012-12-17 18:38:38 +0000},
97     Date-Modified = {2012-12-17 18:38:38 +0000},
98     Doi = {10.1021/jp034405s},
99     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
100     Journal = {J. Phys. Chem. B},
101     Number = {43},
102     Pages = {11940-11950},
103     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
104     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
105     Volume = {107},
106     Year = {2003},
107     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
108     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
109    
110     @article{hautman:4994,
111     Author = {Joseph Hautman and Michael L. Klein},
112     Date-Added = {2012-12-17 18:38:26 +0000},
113     Date-Modified = {2012-12-17 18:38:26 +0000},
114     Doi = {10.1063/1.457621},
115     Journal = {J. Chem. Phys.},
116     Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
117     Number = {8},
118     Pages = {4994-5001},
119     Publisher = {AIP},
120     Title = {Simulation of a monolayer of alkyl thiol chains},
121     Url = {http://link.aip.org/link/?JCP/91/4994/1},
122     Volume = {91},
123     Year = {1989},
124     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
125     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
126    
127     @article{vlugt:cpc2007154,
128     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
129     Date-Added = {2012-12-17 18:38:20 +0000},
130     Date-Modified = {2012-12-17 18:38:20 +0000},
131     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
132     Issn = {0010-4655},
133     Journal = {Comput. Phys. Commun.},
134     Keywords = {Gold nanocrystals},
135     Note = {Proceedings of the Conference on Computational Physics 2006 - CCP 2006, Conference on Computational Physics 2006},
136     Number = {1-2},
137     Pages = {154 - 157},
138     Title = {Selective adsorption of alkyl thiols on gold in different geometries},
139     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
140     Volume = {177},
141     Year = {2007},
142     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
143     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
144    
145     @article{landman:1998,
146     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
147     Author = {Luedtke, W. D. and Landman, Uzi},
148     Date-Added = {2012-12-17 18:38:13 +0000},
149     Date-Modified = {2012-12-17 18:38:13 +0000},
150     Doi = {10.1021/jp981745i},
151     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
152     Journal = {J. Phys. Chem. B},
153     Number = {34},
154     Pages = {6566-6572},
155     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
156     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
157     Volume = {102},
158     Year = {1998},
159     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
160     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
161    
162     @article{PhysRevLett.96.186101,
163     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
164     Date-Added = {2012-12-17 17:44:53 +0000},
165     Date-Modified = {2012-12-17 17:44:53 +0000},
166     Doi = {10.1103/PhysRevLett.96.186101},
167     Journal = prl,
168     Month = {May},
169     Number = {18},
170     Numpages = {4},
171     Pages = {186101},
172     Publisher = {American Physical Society},
173     Title = {Thermal Conductance of Hydrophilic and Hydrophobic Interfaces},
174     Volume = {96},
175     Year = {2006},
176     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.96.186101}}
177    
178     @article{Larson:2007hw,
179     Abstract = {Nanoparticles which consist of a plasmonic layer and an iron oxide moiety could provide a promising platform for development of multimodal imaging and therapy approaches in future medicine. However, the feasibility of this platform has yet to be fully explored. In this study we demonstrated the use of gold-coated iron oxide hybrid nanoparticles for combined molecular specific MRI/optical imaging and photothermal therapy of cancer cells. The gold layer exhibits a surface plasmon resonance that provides optical contrast due to light scattering in the visible region and also presents a convenient surface for conjugating targeting moieties, while the iron oxide cores give strong T-2 (spin-spin relaxation time) contrast. The strong optical absorption of the plasmonic gold layer also makes these nanoparticles a promising agent for photothermal therapy. We synthesized hybrid nanoparticles which specifically target epidermal growth factor receptor (EGFR), a common biomarker for many epithelial cancers. We demonstrated molecular specific MRI and optical imaging in MDA-MB-468 breast cancer cells. Furthermore, we showed that receptor-mediated aggregation of anti-EGFR hybrid nanoparticles allows selective destruction of highly proliferative cancer cells using a nanosecond pulsed laser at 700 nm wavelength, a significant shift from the peak absorbance of isolated hybrid nanoparticles at 532 nm.},
180     Address = {DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND},
181     Author = {Larson, Timothy A. and Bankson, James and Aaron, Jesse and Sokolov, Konstantin},
182     Date = {AUG 15 2007},
183     Date-Added = {2012-12-17 17:44:44 +0000},
184     Date-Modified = {2012-12-17 17:44:44 +0000},
185     Doi = {ARTN 325101},
186     Journal = {Nanotechnology},
187     Publisher = {IOP PUBLISHING LTD},
188     Timescited = {5},
189     Title = {Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells},
190     Volume = {18},
191     Year = {2007},
192     Bdsk-Url-1 = {http://dx.doi.org/325101}}
193    
194     @article{Huff:2007ye,
195     Abstract = {Plasmon-resonant gold nanorods, which have large absorption cross sections at near-infrared frequencies, are excellent candidates as multifunctional agents for image-guided therapies based on localized hyperthermia. The controlled modification of the surface chemistry of the nanorods is of critical importance, as issues of cell-specific targeting and nonspecific uptake must be addressed prior to clinical evaluation. Nanorods coated with cetyltrimethylammonium bromide (a cationic surfactant used in nanorod synthesis) are internalized within hours into KB cells by a nonspecific uptake pathway, whereas the careful removal of cetyltrimethylammonium bromide from nanorods functionalized with folate results in their accumulation on the cell surface over the same time interval. In either case, the nanorods render the tumor cells highly susceptible to photothermal damage when irradiated at the nanorods' longitudinal plasmon resonance, generating extensive blebbing of the cell membrane at laser fluences as low as 30 J/cm(2).},
196     Address = {UNITEC HOUSE, 3RD FLOOR, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON, N3 1QB, ENGLAND},
197     Author = {Huff, Terry B. and Tong, Ling and Zhao, Yan and Hansen, Matthew N. and Cheng, Ji-Xin and Wei, Alexander},
198     Date = {FEB 2007},
199     Date-Added = {2012-12-17 17:44:36 +0000},
200     Date-Modified = {2012-12-17 17:44:36 +0000},
201     Doi = {DOI 10.2217/17435889.2.1.125},
202     Journal = {Nanomedicine},
203     Keywords = {folate receptor; hyperthermia; imaging; nanorods; nonlinear optical microscopy; plasmon resonance; targeted therapy},
204     Pages = {125-132},
205     Publisher = {FUTURE MEDICINE LTD},
206     Timescited = {13},
207     Title = {Hyperthermic effects of gold nanorods on tumor cells},
208     Volume = {2},
209     Year = {2007},
210     Bdsk-Url-1 = {http://dx.doi.org/10.2217/17435889.2.1.125}}
211    
212     @article{JiangHao_jp802942v,
213     Abstract = {Abstract: Nonequilibrium molecular dynamics simulations with the nonpolarizable SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121, 9549) force fields have been employed to calculate the thermal conductivity and other associated properties of methane hydrate over a temperature range from 30 to 260 K. The calculated results are compared to experimental data over this same range. The values of the thermal conductivity calculated with the COS/G2 model are closer to the experimental values than are those calculated with the nonpolarizable SPC/E model. The calculations match the temperature trend in the experimental data at temperatures below 50 K; however, they exhibit a slight decrease in thermal conductivity at higher temperatures in comparison to an opposite trend in the experimental data. The calculated thermal conductivity values are found to be relatively insensitive to the occupancy of the cages except at low (T d 50 K) temperatures, which indicates that the differences between the two lattice structures may have a more dominant role than generally thought in explaining the low thermal conductivity of methane hydrate compared to ice Ih. The introduction of defects into the water lattice is found to cause a reduction in the thermal conductivity but to have a negligible impact on its temperature dependence.},
214     Affiliation = {National Energy Technology Laboratory, U.S. Department of Energy, Post Office Box 10940, Pittsburgh, Pennsylvania 15236, Department of Chemistry and Center for Molecular and Materials Simulations, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and Parsons Project Services, Inc., South Park, Pennsylvania 15129},
215     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
216     Date-Added = {2012-12-17 16:57:19 +0000},
217     Date-Modified = {2012-12-17 16:57:19 +0000},
218     Doi = {10.1021/jp802942v},
219     Issn = {1520-6106},
220     Journal = jpcb,
221     Title = {Molecular Dynamics Simulations of the Thermal Conductivity of Methane Hydrate},
222     Year = {2008},
223     Bdsk-Url-1 = {http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp802942v}}
224    
225     @article{Schelling:2002dp,
226     Author = {Schelling, P. K. and Phillpot, S. R. and Keblinski, P.},
227     Date = {APR 1 2002},
228     Date-Added = {2012-12-17 16:57:10 +0000},
229     Date-Modified = {2012-12-17 16:57:10 +0000},
230     Doi = {10.1103/PhysRevB.65.144306},
231     Isi = {WOS:000174980300055},
232     Issn = {1098-0121},
233     Journal = prb,
234     Month = {Apr},
235     Number = {14},
236     Pages = {144306},
237     Publication-Type = {J},
238     Times-Cited = {288},
239     Title = {Comparison of atomic-level simulation methods for computing thermal conductivity},
240     Volume = {65},
241     Year = {2002},
242     Z8 = {12},
243     Z9 = {296},
244     Zb = {0},
245     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.65.144306}}
246    
247     @article{Evans:2002ai,
248     Author = {Evans, D. J. and Searles, D. J.},
249     Date = {NOV 2002},
250     Date-Added = {2012-12-17 16:56:59 +0000},
251     Date-Modified = {2012-12-17 16:56:59 +0000},
252     Doi = {10.1080/00018730210155133},
253     Isi = {WOS:000179448200001},
254     Issn = {0001-8732},
255     Journal = {Adv. Phys.},
256     Month = {Nov},
257     Number = {7},
258     Pages = {1529--1585},
259     Publication-Type = {J},
260     Times-Cited = {309},
261     Title = {The fluctuation theorem},
262     Volume = {51},
263     Year = {2002},
264     Z8 = {3},
265     Z9 = {311},
266     Zb = {9},
267     Bdsk-Url-1 = {http://dx.doi.org/10.1080/00018730210155133}}
268    
269     @article{Berthier:2002ij,
270     Author = {Berthier, L. and Barrat, J. L.},
271     Date = {APR 8 2002},
272     Date-Added = {2012-12-17 16:56:47 +0000},
273     Date-Modified = {2012-12-17 16:56:47 +0000},
274     Doi = {10.1063/1.1460862},
275     Isi = {WOS:000174634200036},
276     Issn = {0021-9606},
277     Journal = jcp,
278     Month = {Apr},
279     Number = {14},
280     Pages = {6228--6242},
281     Publication-Type = {J},
282     Times-Cited = {172},
283     Title = {Nonequilibrium dynamics and fluctuation-dissipation relation in a sheared fluid},
284     Volume = {116},
285     Year = {2002},
286     Z8 = {0},
287     Z9 = {172},
288     Zb = {1},
289     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1460862}}
290    
291     @article{MAGINN:1993hc,
292     Author = {MAGINN, E. J. and BELL, A. T. and THEODOROU, D. N.},
293     Date = {APR 22 1993},
294     Date-Added = {2012-12-17 16:56:40 +0000},
295     Date-Modified = {2012-12-17 16:56:40 +0000},
296     Doi = {10.1021/j100118a038},
297     Isi = {WOS:A1993KY46600039},
298     Issn = {0022-3654},
299     Journal = jpc,
300     Month = {Apr},
301     Number = {16},
302     Pages = {4173--4181},
303     Publication-Type = {J},
304     Times-Cited = {198},
305     Title = {TRANSPORT DIFFUSIVITY OF METHANE IN SILICALITE FROM EQUILIBRIUM AND NONEQUILIBRIUM SIMULATIONS},
306     Volume = {97},
307     Year = {1993},
308     Z8 = {4},
309     Z9 = {201},
310     Zb = {0},
311     Bdsk-Url-1 = {http://dx.doi.org/10.1021/j100118a038}}
312    
313     @article{ERPENBECK:1984sp,
314     Author = {ERPENBECK, J. J.},
315     Date = {1984},
316     Date-Added = {2012-12-17 16:56:32 +0000},
317     Date-Modified = {2012-12-17 16:56:32 +0000},
318     Doi = {10.1103/PhysRevLett.52.1333},
319     Isi = {WOS:A1984SK96700021},
320     Issn = {0031-9007},
321     Journal = prl,
322     Number = {15},
323     Pages = {1333--1335},
324     Publication-Type = {J},
325     Times-Cited = {189},
326     Title = {SHEAR VISCOSITY OF THE HARD-SPHERE FLUID VIA NONEQUILIBRIUM MOLECULAR-DYNAMICS},
327     Volume = {52},
328     Year = {1984},
329     Z8 = {0},
330     Z9 = {189},
331     Zb = {1},
332     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.52.1333}}
333    
334     @article{Evans:1982zk,
335     Author = {Evans, Denis J.},
336     Date-Added = {2012-12-17 16:56:24 +0000},
337     Date-Modified = {2012-12-17 16:56:24 +0000},
338     Journal = {Physics Letters A},
339     Number = {9},
340     Pages = {457--460},
341     Title = {Homogeneous NEMD algorithm for thermal conductivity--Application of non-canonical linear response theory},
342     Ty = {JOUR},
343     Url = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50},
344     Volume = {91},
345     Year = {1982},
346     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50}}
347    
348     @article{ASHURST:1975tg,
349     Author = {ASHURST, W. T. and HOOVER, W. G.},
350     Date = {1975},
351     Date-Added = {2012-12-17 16:56:05 +0000},
352     Date-Modified = {2012-12-17 16:56:05 +0000},
353     Doi = {10.1103/PhysRevA.11.658},
354     Isi = {WOS:A1975V548400036},
355     Issn = {1050-2947},
356     Journal = pra,
357     Number = {2},
358     Pages = {658--678},
359     Publication-Type = {J},
360     Times-Cited = {295},
361     Title = {DENSE-FLUID SHEAR VISCOSITY VIA NONEQUILIBRIUM MOLECULAR-DYNAMICS},
362     Volume = {11},
363     Year = {1975},
364     Z8 = {3},
365     Z9 = {298},
366     Zb = {1},
367     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.11.658}}
368    
369     @article{kinaci:014106,
370     Author = {A. Kinaci and J. B. Haskins and T. \c{C}a\u{g}in},
371     Date-Added = {2012-12-17 16:55:56 +0000},
372     Date-Modified = {2012-12-17 16:55:56 +0000},
373     Doi = {10.1063/1.4731450},
374     Eid = {014106},
375     Journal = jcp,
376     Keywords = {argon; elemental semiconductors; Ge-Si alloys; molecular dynamics method; nanostructured materials; porous semiconductors; silicon; thermal conductivity},
377     Number = {1},
378     Numpages = {8},
379     Pages = {014106},
380     Publisher = {AIP},
381     Title = {On calculation of thermal conductivity from Einstein relation in equilibrium molecular dynamics},
382     Url = {http://link.aip.org/link/?JCP/137/014106/1},
383     Volume = {137},
384     Year = {2012},
385     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/137/014106/1},
386     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.4731450}}
387    
388     @article{che:6888,
389     Author = {Jianwei Che and Tahir Cagin and Weiqiao Deng and William A. Goddard III},
390     Date-Added = {2012-12-17 16:55:48 +0000},
391     Date-Modified = {2012-12-17 16:55:48 +0000},
392     Doi = {10.1063/1.1310223},
393     Journal = jcp,
394     Keywords = {diamond; thermal conductivity; digital simulation; vacancies (crystal); Green's function methods; isotope effects},
395     Number = {16},
396     Pages = {6888-6900},
397     Publisher = {AIP},
398     Title = {Thermal conductivity of diamond and related materials from molecular dynamics simulations},
399     Url = {http://link.aip.org/link/?JCP/113/6888/1},
400     Volume = {113},
401     Year = {2000},
402     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/113/6888/1},
403     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1310223}}
404    
405     @article{Viscardy:2007rp,
406     Abstract = {The thermal conductivity is calculated with the Helfand-moment method in the Lennard-Jones fluid near the triple point. The Helfand moment of thermal conductivity is here derived for molecular dynamics with periodic boundary conditions. Thermal conductivity is given by a generalized Einstein relation with this Helfand moment. The authors compute thermal conductivity by this new method and compare it with their own values obtained by the standard Green-Kubo method. The agreement is excellent. (C) 2007 American Institute of Physics.},
407     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
408     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
409     Date = {MAY 14 2007},
410     Date-Added = {2012-12-17 16:55:32 +0000},
411     Date-Modified = {2012-12-17 16:55:32 +0000},
412     Doi = {ARTN 184513},
413     Journal = jcp,
414     Publisher = {AMER INST PHYSICS},
415     Timescited = {1},
416     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
417     Volume = {126},
418     Year = {2007},
419     Bdsk-Url-1 = {http://dx.doi.org/184513}}
420    
421     @article{PhysRev.119.1,
422     Author = {Helfand, Eugene},
423     Date-Added = {2012-12-17 16:55:19 +0000},
424     Date-Modified = {2012-12-17 16:55:19 +0000},
425     Doi = {10.1103/PhysRev.119.1},
426     Journal = {Phys. Rev.},
427     Month = {Jul},
428     Number = {1},
429     Numpages = {8},
430     Pages = {1--9},
431     Publisher = {American Physical Society},
432     Title = {Transport Coefficients from Dissipation in a Canonical Ensemble},
433     Volume = {119},
434     Year = {1960},
435     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRev.119.1}}
436    
437     @article{PhysRevA.34.1449,
438     Author = {Evans, Denis J.},
439     Date-Added = {2012-12-17 16:55:19 +0000},
440     Date-Modified = {2012-12-17 16:55:19 +0000},
441     Doi = {10.1103/PhysRevA.34.1449},
442     Journal = {Phys. Rev. A},
443     Month = {Aug},
444     Number = {2},
445     Numpages = {4},
446     Pages = {1449--1453},
447     Publisher = {American Physical Society},
448     Title = {Thermal conductivity of the Lennard-Jones fluid},
449     Volume = {34},
450     Year = {1986},
451     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.34.1449}}
452    
453     @article{MASSOBRIO:1984bl,
454     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
455     Author = {MASSOBRIO, C and CICCOTTI, G},
456     Date = {1984},
457     Date-Added = {2012-12-17 16:55:03 +0000},
458     Date-Modified = {2012-12-17 16:55:03 +0000},
459     Journal = pra,
460     Pages = {3191-3197},
461     Publisher = {AMERICAN PHYSICAL SOC},
462     Timescited = {29},
463     Title = {LENNARD-JONES TRIPLE-POINT CONDUCTIVITY VIA WEAK EXTERNAL FIELDS},
464     Volume = {30},
465     Year = {1984}}
466    
467     @article{PhysRevB.37.5677,
468     Author = {Heyes, David M.},
469     Date-Added = {2012-12-17 16:54:55 +0000},
470     Date-Modified = {2012-12-17 16:54:55 +0000},
471     Doi = {10.1103/PhysRevB.37.5677},
472     Journal = prb,
473     Month = {Apr},
474     Number = {10},
475     Numpages = {19},
476     Pages = {5677--5696},
477     Publisher = {American Physical Society},
478     Title = {Transport coefficients of Lennard-Jones fluids: A molecular-dynamics and effective-hard-sphere treatment},
479     Volume = {37},
480     Year = {1988},
481     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.37.5677}}
482    
483     @article{PhysRevB.80.195406,
484     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
485     Date-Added = {2012-12-17 16:54:55 +0000},
486     Date-Modified = {2012-12-17 16:54:55 +0000},
487     Doi = {10.1103/PhysRevB.80.195406},
488     Journal = prb,
489     Month = {Nov},
490     Number = {19},
491     Numpages = {6},
492     Pages = {195406},
493     Publisher = {American Physical Society},
494     Title = {Cooling dynamics and thermal interface resistance of glass-embedded metal nanoparticles},
495     Volume = {80},
496     Year = {2009},
497     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
498    
499     @article{Wang10082007,
500     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
501     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
502     Date-Added = {2012-12-17 16:54:31 +0000},
503     Date-Modified = {2012-12-17 16:54:31 +0000},
504     Doi = {10.1126/science.1145220},
505     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
506     Journal = {Science},
507     Number = {5839},
508     Pages = {787-790},
509     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
510     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
511     Volume = {317},
512     Year = {2007},
513     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
514     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
515    
516     @article{doi:10.1021/la904855s,
517     Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
518     Date-Added = {2012-12-17 16:54:12 +0000},
519     Date-Modified = {2012-12-17 16:54:12 +0000},
520     Doi = {10.1021/la904855s},
521     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
522     Journal = {Langmuir},
523     Note = {PMID: 20166728},
524     Number = {6},
525     Pages = {3786-3789},
526     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
527     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
528     Volume = {26},
529     Year = {2010},
530     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
531     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
532    
533     @article{doi:10.1021/jp048375k,
534     Abstract = { Water- and alcohol-soluble AuPd nanoparticles have been investigated to determine the effect of the organic stabilizing group on the thermal conductance G of the particle/fluid interface. The thermal decays of tiopronin-stabilized 3−5-nm diameter AuPd alloy nanoparticles, thioalkylated ethylene glycol-stabilized 3−5-nm diameter AuPd nanoparticles, and cetyltrimethylammonium bromide-stabilized 22-nm diameter Au-core/AuPd-shell nanoparticles give thermal conductances G ≈ 100−300 MW m-2 K-1 for the particle/water interfaces, approximately an order of magnitude larger than the conductance of the interfaces between alkanethiol-terminated AuPd nanoparticles and toluene. The similar values of G for particles ranging in size from 3 to 24 nm with widely varying surface chemistry indicate that the thermal coupling between AuPd nanoparticles and water is strong regardless of the self-assembled stabilizing group. },
535     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
536     Date-Added = {2012-12-17 16:54:03 +0000},
537     Date-Modified = {2012-12-17 16:54:03 +0000},
538     Doi = {10.1021/jp048375k},
539     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048375k},
540     Journal = jpcb,
541     Number = {49},
542     Pages = {18870-18875},
543     Title = {AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution},
544     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
545     Volume = {108},
546     Year = {2004},
547     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
548     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048375k}}
549    
550     @article{doi:10.1021/jp8051888,
551     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
552     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
553     Date-Added = {2012-12-17 16:54:03 +0000},
554     Date-Modified = {2012-12-17 16:54:03 +0000},
555     Doi = {10.1021/jp8051888},
556     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
557     Journal = jpcc,
558     Number = {35},
559     Pages = {13320-13323},
560     Title = {Probing the Gold Nanorod−Ligand−Solvent Interface by Plasmonic Absorption and Thermal Decay},
561     Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
562     Volume = {112},
563     Year = {2008},
564     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
565     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
566    
567     @article{PhysRevB.67.054302,
568     Author = {Costescu, Ruxandra M. and Wall, Marcel A. and Cahill, David G.},
569     Date-Added = {2012-12-17 16:53:48 +0000},
570     Date-Modified = {2012-12-17 16:53:48 +0000},
571     Doi = {10.1103/PhysRevB.67.054302},
572     Journal = prb,
573     Month = {Feb},
574     Number = {5},
575     Numpages = {5},
576     Pages = {054302},
577     Publisher = {American Physical Society},
578     Title = {Thermal conductance of epitaxial interfaces},
579     Volume = {67},
580     Year = {2003},
581     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.67.054302}}
582    
583     @article{cahill:793,
584     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
585     Date-Added = {2012-12-17 16:53:36 +0000},
586     Date-Modified = {2012-12-17 16:53:36 +0000},
587     Doi = {10.1063/1.1524305},
588     Journal = {J. Appl. Phys.},
589     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
590     Number = {2},
591     Pages = {793-818},
592     Publisher = {AIP},
593     Title = {Nanoscale thermal transport},
594     Url = {http://link.aip.org/link/?JAP/93/793/1},
595     Volume = {93},
596     Year = {2003},
597     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
598     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
599    
600     @article{Eapen:2007mw,
601     Abstract = {In a well-dispersed nanofluid with strong cluster-fluid attraction, thermal conduction paths can arise through percolating amorphouslike interfacial structures. This results in a thermal conductivity enhancement beyond the Maxwell limit of 3 phi, with phi being the nanoparticle volume fraction. Our findings from nonequilibrium molecular dynamics simulations, which are amenable to experimental verification, can provide a theoretical basis for the development of future nanofluids.},
602     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
603     Author = {Eapen, Jacob and Li, Ju and Yip, Sidney},
604     Date = {DEC 2007},
605     Date-Added = {2012-12-17 16:53:30 +0000},
606     Date-Modified = {2012-12-17 16:53:30 +0000},
607     Doi = {ARTN 062501},
608     Journal = pre,
609     Publisher = {AMER PHYSICAL SOC},
610     Timescited = {0},
611     Title = {Beyond the Maxwell limit: Thermal conduction in nanofluids with percolating fluid structures},
612     Volume = {76},
613     Year = {2007},
614     Bdsk-Url-1 = {http://dx.doi.org/062501}}
615    
616     @article{Xue:2003ya,
617     Abstract = {Using nonequilibrium molecular dynamics simulations in which a temperature gradient is imposed, we determine the thermal resistance of a model liquid-solid interface. Our simulations reveal that the strength of the bonding between liquid and solid atoms plays a key role in determining interfacial thermal resistance. Moreover, we find that the functional dependence of the thermal resistance on the strength of the liquid-solid interactions exhibits two distinct regimes: (i) exponential dependence for weak bonding (nonwetting liquid) and (ii) power law dependence for strong bonding (wetting liquid). The identification of the two regimes of the Kapitza resistance has profound implications for understanding and designing the thermal properties of nanocomposite materials. (C) 2003 American Institute of Physics.},
618     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
619     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
620     Date = {JAN 1 2003},
621     Date-Added = {2012-12-17 16:53:22 +0000},
622     Date-Modified = {2012-12-17 16:53:22 +0000},
623     Doi = {DOI 10.1063/1.1525806},
624     Journal = jcp,
625     Pages = {337-339},
626     Publisher = {AMER INST PHYSICS},
627     Timescited = {19},
628     Title = {Two regimes of thermal resistance at a liquid-solid interface},
629     Volume = {118},
630     Year = {2003},
631     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1525806}}
632    
633     @article{Xue:2004oa,
634     Abstract = {Using non-equilibrium molecular dynamics simulations in which a temperature gradient is imposed, we study how the ordering of the liquid at the liquid-solid interface affects the interfacial thermal resistance. Our simulations of a simple monoatomic liquid show no effect on the thermal transport either normal to the surface or parallel to the surface. Even for of a liquid that is highly confined between two solids, we find no effect on thermal conductivity. This contrasts with well-known significant effect of confinement on the viscoelastic response. Our findings suggest that the experimentally observed large enhancement of thermal conductivity in suspensions of solid nanosized particles (nanofluids) can not be explained by altered thermal transport properties of the layered liquid. (C) 2004 Elsevier Ltd. All rights reserved.},
635     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
636     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
637     Date = {SEP 2004},
638     Date-Added = {2012-12-17 16:53:22 +0000},
639     Date-Modified = {2012-12-17 16:53:22 +0000},
640     Doi = {DOI 10.1016/ijheatmasstransfer.2004.05.016},
641     Journal = {International Journal of Heat and Mass Transfer},
642     Keywords = {interfacial thermal resistance; liquid-solid interface; molecular dynamics simulations; nanofluids},
643     Pages = {4277-4284},
644     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
645     Timescited = {29},
646     Title = {Effect of liquid layering at the liquid-solid interface on thermal transport},
647     Volume = {47},
648     Year = {2004},
649     Bdsk-Url-1 = {http://dx.doi.org/10.1016/ijheatmasstransfer.2004.05.016}}
650    
651     @article{Lee:1999ct,
652     Abstract = {Oxide nanofluids were produced and their thermal conductivities were measured by a transient hot-wire method. The experimental results show that these nanofluids, containing a small amount of nanoparticles, have substantially higher thermal conductivities than the same liquids without nanoparticles. Comparisons between experiments and the Hamilton and Crosser model show that the model can predict the thermal conductivity of nanofluids containing large agglomerated Al2O3 particles. However, the model appears to be inadequate for nanofluids containing CuO particles. This suggests that not only particle shape but size is considered to be dominant in enhancing the thermal conductivity of nanofluids.},
653     Address = {345 E 47TH ST, NEW YORK, NY 10017 USA},
654     Author = {Lee, S and Choi, SUS and Li, S and Eastman, JA},
655     Date = {MAY 1999},
656     Date-Added = {2012-12-17 16:53:15 +0000},
657     Date-Modified = {2012-12-17 16:53:15 +0000},
658     Journal = {Journal of Heat Transfer-Transactions of the Asme},
659     Keywords = {conduction; enhancement; heat transfer; nanoscale; two-phase},
660     Pages = {280-289},
661     Publisher = {ASME-AMER SOC MECHANICAL ENG},
662     Timescited = {183},
663     Title = {Measuring thermal conductivity of fluids containing oxide nanoparticles},
664     Volume = {121},
665     Year = {1999}}
666    
667     @article{Keblinski:2002bx,
668     Abstract = {Recent measurements on nanofluids have demonstrated that the thermal conductivity increases with decreasing grain size. However, Such increases cannot be explained by existing theories. We explore four possible explanations for this anomalous increase: Brownian motion of the particles, molecular-level layering of the liquid at the liquid/particle interface, the nature of heat transport in the nanoparticles. and the effects of nanoparticle clustering. We show that the key factors in understanding thermal properties of nanofluids are the ballistic, rather than diffusive, nature of heat transport in the nanoparticles, combined with direct or fluid-mediated clustering effects that provide paths for rapid heat transport. (C) 2001 Elsevier Science Ltd. All rights reserved.},
669     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
670     Author = {Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
671     Date = {FEB 2002},
672     Date-Added = {2012-12-17 16:53:06 +0000},
673     Date-Modified = {2012-12-17 16:53:06 +0000},
674     Journal = {International Journal of Heat and Mass Transfer},
675     Keywords = {thermal conductivity; nanofluids; molecular dynamics simulations; ballistic heat transport},
676     Pages = {855-863},
677     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
678     Timescited = {161},
679     Title = {Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)},
680     Volume = {45},
681     Year = {2002}}
682    
683     @article{Eastman:2001wb,
684     Abstract = {It is shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure ethylene glycol or ethylene glycol containing the same volume fraction of dispersed oxide nanoparticles. The effective thermal conductivity of ethylene glycol is shown to be increased by up to 40\% for a nanofluid consisting of ethylene glycol containing approximately 0.3 vol \% Cu nanoparticles of mean diameter < 10 nm. The results are anomalous based on previous theoretical calculations that had predicted a strong effect of particle shape on effective nanofluid thermal conductivity, but no effect of either particle size or particle thermal conductivity. (C) 2001 American Institute of Physics.},
685     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
686     Author = {Eastman, JA and Choi, SUS and Li, S and Yu, W and Thompson, LJ},
687     Date = {FEB 5 2001},
688     Date-Added = {2012-12-17 16:52:55 +0000},
689     Date-Modified = {2012-12-17 16:52:55 +0000},
690     Journal = {Applied Physics Letters},
691     Pages = {718-720},
692     Publisher = {AMER INST PHYSICS},
693     Timescited = {246},
694     Title = {Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles},
695     Volume = {78},
696     Year = {2001}}
697    
698     @article{Eapen:2007th,
699     Abstract = {Transient hot-wire data on thermal conductivity of suspensions of silica and perfluorinated particles show agreement with the mean-field theory of Maxwell but not with the recently postulated microconvection mechanism. The influence of interfacial thermal resistance, convective effects at microscales, and the possibility of thermal conductivity enhancements beyond the Maxwell limit are discussed.},
700     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
701     Author = {Eapen, Jacob and Williams, Wesley C. and Buongiorno, Jacopo and Hu, Lin-Wen and Yip, Sidney and Rusconi, Roberto and Piazza, Roberto},
702     Date = {AUG 31 2007},
703     Date-Added = {2012-12-17 16:52:46 +0000},
704     Date-Modified = {2012-12-17 16:52:46 +0000},
705     Doi = {ARTN 095901},
706     Journal = prl,
707     Publisher = {AMER PHYSICAL SOC},
708     Timescited = {8},
709     Title = {Mean-field versus microconvection effects in nanofluid thermal conduction},
710     Volume = {99},
711     Year = {2007},
712     Bdsk-Url-1 = {http://dx.doi.org/095901}}
713    
714     @article{Plech:2005kx,
715     Abstract = {The transient structural response of laser excited gold nanoparticle sols has been recorded by pulsed X-ray scattering. Time resolved wide angle and small angle scattering (SAXS) record the changes in structure both of the nanoparticles and the water environment subsequent to femtosecond laser excitation. Within the first nanosecond after the excitation of the nanoparticles, the water phase shows a signature of compression, induced by a heat-induced evaporation of the water shell close to the heated nanoparticles. The particles themselves undergo a melting transition and are fragmented to Form new clusters in the nanometer range. (C) 2004 Elsevier B.V. All rights reserved.},
716     Author = {Plech, A and Kotaidis, V and Lorenc, M and Wulff, M},
717     Date-Added = {2012-12-17 16:52:34 +0000},
718     Date-Modified = {2012-12-17 16:52:34 +0000},
719     Doi = {DOI 10.1016/j.cplett.2004.11.072},
720     Journal = cpl,
721     Local-Url = {file://localhost/Users/charles/Documents/Papers/sdarticle3.pdf},
722     Pages = {565-569},
723     Title = {Thermal dynamics in laser excited metal nanoparticles},
724     Volume = {401},
725     Year = {2005},
726     Bdsk-Url-1 = {http://dx.doi.org/10.1016/j.cplett.2004.11.072}}
727    
728     @article{Wilson:2002uq,
729     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
730     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
731     Date-Added = {2012-12-17 16:52:22 +0000},
732     Date-Modified = {2012-12-17 16:52:22 +0000},
733     Doi = {ARTN 224301},
734     Journal = {Phys. Rev. B},
735     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
736     Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
737     Volume = {66},
738     Year = {2002},
739     Bdsk-Url-1 = {http://dx.doi.org/224301}}
740    
741     @article{Mazzaglia:2008to,
742     Abstract = {Amphiphilic cyclodextrins (CDs) modified in the upper rim with thiohexyl groups and in the lower rim with oligoethylene amino (SC6NH2) or oligoethylene hydroxyl groups (SC6OH) can bind gold colloids, yielding Au/CD particles with an average hydrodynamic radius (RH) of 2 and 25 rim in water solution. The systems were investigated by UV-vis, quasi-elastic light scattering, and FTIR-ATR techniques. The concentration of amphiphiles was kept above the concentration of gold colloids to afford complete covering. In the case of SC6NH2, basic conditions (Et3N, pH 11) yield promptly the decoration of Au, which can be stabilized by linkage of CD amino and/or thioether groups. The critical aggregation concentration of SC6NH2 was measured (similar to 4 mu M) by surface tension measurements, pointing out that about 50\% of CDs are present in nonaggregated form. Whereas Au/SC6NH2 colloids were stable in size and morphology for at least one month, the size of the Au/SC6OH system increases remarkably, forming nanoaggregates of 20 and 80 rim in two hours. Under physiological conditions, the gold/amino amphiphiles system can internalize in HeLa cells, as shown by extinction spectra registered on the immobilized cells. The gold delivered by cyclodextrins can induce photothermal damage upon irradiation, doubling the cell mortality with respect to uncovered gold colloids. These findings can open useful perspectives to the application of these self-assembled systems in cancer photothermal therapy.},
743     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
744     Author = {Mazzaglia, Antonino and Trapani, Mariachiara and Villari, Valentina and Micali, Norberto and Merlo, Francesca Marino and Zaccaria, Daniela and Sciortino, Maria Teresa and Previti, Francesco and Patane, Salvatore and Scolaro, Luigi Monsu},
745     Date = {MAY 1 2008},
746     Date-Added = {2012-12-17 16:52:15 +0000},
747     Date-Modified = {2012-12-17 16:52:15 +0000},
748     Doi = {DOI 10.1021/jp7120033},
749     Journal = jpcc,
750     Pages = {6764-6769},
751     Publisher = {AMER CHEMICAL SOC},
752     Timescited = {0},
753     Title = {Amphiphilic cyclodextrins as capping agents for gold colloids: A spectroscopic investigation with perspectives in photothermal therapy},
754     Volume = {112},
755     Year = {2008},
756     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp7120033}}
757    
758     @article{Gnyawali:2008lp,
759     Abstract = {Tissue surface temperature distribution on the treatment site can serve as an indicator for the effectiveness of a photothermal therapy. In this study, both infrared thermography and theoretical simulation were used to determine the surface temperature distribution during laser irradiation of both gel phantom and animal tumors. Selective photothermal interaction was attempted by using intratumoral indocyanine green enhancement and irradiation via a near-infrared laser. An immunoadjuvant was also used to enhance immunological responses during tumor treatment. Monte Carlo method for tissue absorption of light and finite difference method for heat diffusion in tissue were used to simulate the temperature distribution during the selective laser photothermal interaction. An infrared camera was used to capture the thermal images during the laser treatment and the surface temperature was determined. Our findings show that the theoretical and experimental results are in good agreement and that the surface temperature of irradiated tissue can be controlled with appropriate dye and adjuvant enhancement. These results can be used to control the laser tumor treatment parameters and to optimize the treatment outcome. More importantly, when used with immunotherapy as a precursor of immunological responses, the selective photothermal treatment can be guided by the tissue temperature profiles both in the tumor and on the surface.},
760     Address = {TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY},
761     Author = {Gnyawali, Surya C. and Chen, Yicho and Wu, Feng and Bartels, Kenneth E. and Wicksted, James P. and Liu, Hong and Sen, Chandan K. and Chen, Wei R.},
762     Date = {FEB 2008},
763     Date-Added = {2012-12-17 16:52:08 +0000},
764     Date-Modified = {2012-12-17 16:52:08 +0000},
765     Doi = {DOI 10.1007/s11517-007-0251-5},
766     Journal = {Medical \& Biological Engineering \& Computing},
767     Keywords = {infrared thermography; indocyanine green; glycated chitosan; surface temperature; Monte Carlo simulation},
768     Pages = {159-168},
769     Publisher = {SPRINGER HEIDELBERG},
770     Timescited = {0},
771     Title = {Temperature measurement on tissue surface during laser irradiation},
772     Volume = {46},
773     Year = {2008},
774     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11517-007-0251-5}}
775    
776     @article{Petrova:2007ad,
777     Abstract = {This paper describes our recent time-resolved spectroscopy studies of the properties of gold particles at high laser excitation levels. In these experiments, an intense pump laser pulse rapidly heats the particle, creating very high lattice temperatures - up to the melting point of bulk gold. These high temperatures can have dramatic effects on the particle and the surroundings. The lattice temperature created is determined by observing the coherently excited the vibrational modes of the particles. The periods of these modes depend on temperature, thus, they act as an internal thermometer. We have used these experiments to provide values for the threshold temperatures for explosive boiling of the solvent surrounding the particles, and laser induced structural transformations in non-spherical particles. The results of these experiments are relevant to the use of metal nanoparticles in photothermal therapy, where laser induced heating is used to selectively kill cells.},
778     Address = {LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY},
779     Author = {Petrova, Hristina and Hu, Min and Hartland, Gregory V.},
780     Date = {2007},
781     Date-Added = {2012-12-17 16:52:01 +0000},
782     Date-Modified = {2012-12-17 16:52:01 +0000},
783     Doi = {DOI 10.1524/zpch.2007.221.3.361},
784     Journal = {Zeitschrift Fur Physikalische Chemie-International Journal of Research In Physical Chemistry \& Chemical Physics},
785     Keywords = {metal nanoparticles; phonon modes; photothermal properties; laser-induced heating},
786     Pages = {361-376},
787     Publisher = {OLDENBOURG VERLAG},
788     Timescited = {2},
789     Title = {Photothermal properties of gold nanoparticles},
790     Volume = {221},
791     Year = {2007},
792     Bdsk-Url-1 = {http://dx.doi.org/10.1524/zpch.2007.221.3.361}}
793    
794     @article{Jain:2007ux,
795     Abstract = {Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this review, we discuss the SPR-enhanced optical properties of noble metal nanoparticles, with an emphasis on the recent advances in the utility of these plasmonic properties in molecular-specific imaging and sensing, photo-diagnostics, and selective photothermal therapy. The strongly enhanced SPR scattering from Au nanoparticles makes them useful as bright optical tags for molecular-specific biological imaging and detection using simple dark-field optical microscopy. On the other hand, the SPR absorption of the nanoparticles has allowed their use in the selective laser photothermal therapy of cancer. We also discuss the sensitivity of the nanoparticle SPR frequency to the local medium dielectric constant, which has been successfully exploited for the optical sensing of chemical and biological analytes. Plasmon coupling between metal nanoparticle pairs is also discussed, which forms the basis for nanoparticle assembly-based biodiagnostics and the plasmon ruler for dynamic measurement of nanoscale distances in biological systems.},
796     Address = {233 SPRING STREET, NEW YORK, NY 10013 USA},
797     Author = {Jain, Prashant K. and Huang, Xiaohua and El-Sayed, Ivan H. and El-Sayad, Mostafa A.},
798     Date = {SEP 2007},
799     Date-Added = {2012-12-17 16:51:52 +0000},
800     Date-Modified = {2012-12-17 16:51:52 +0000},
801     Doi = {DOI 10.1007/s11468-007-9031-1},
802     Journal = {Plasmonics},
803     Keywords = {surface plasmon resonance (SPR); SPR sensing; Mie scattering; metal nanocrystals for biodiagnostics; photothermal therapy; plasmon coupling},
804     Number = {3},
805     Pages = {107-118},
806     Publisher = {SPRINGER},
807     Timescited = {2},
808     Title = {Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems},
809     Volume = {2},
810     Year = {2007},
811     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11468-007-9031-1}}
812    
813 kstocke1 3801 @techreport{Goddard1998,
814     Author = {Kimura, Y. and Cagin, T. and Goddard III, W.A.},
815 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
816     Date-Modified = {2012-12-05 22:18:01 +0000},
817 kstocke1 3801 Institution = {California Institute of Technology},
818     Lastchecked = {January 19, 2011},
819     Number = {003},
820     Title = {The Quantum Sutton-Chen Many Body Potential for Properties of fcc Metals},
821     Url = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf},
822     Year = {1998},
823     Bdsk-Url-1 = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf}}
824    
825     @article{Hase2010,
826     Author = {Yue Zhang and George L. Barnes and Tianying Yan and William L. Hase},
827 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
828     Date-Modified = {2012-12-05 22:18:01 +0000},
829 kstocke1 3801 Journal = {Phys. Chem. Chem. Phys.},
830     Keywords = {fcc/hcp, non-equilibrium, thiols},
831     Pages = {4435-4445},
832     Title = {Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer},
833     Volume = {12},
834     Year = {2010}}
835    
836     @article{Kuang2010,
837     Author = {Shenyu Kuang and J. Daniel Gezelter},
838 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
839     Date-Modified = {2012-12-05 22:18:01 +0000},
840 kstocke1 3801 Journal = {J. Chem. Phys.},
841     Keywords = {NIVS, RNEMD, NIVS-RNEMD},
842     Month = {October},
843     Pages = {164101-1 - 164101-9},
844     Title = {A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity},
845     Volume = {133},
846     Year = {2010}}
847    
848     @article{Kuang2012,
849     Author = {Shenyu Kuang and J. Daniel Gezelter},
850 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
851     Date-Modified = {2012-12-05 22:18:01 +0000},
852 kstocke1 3801 Journal = {Mol. Phys.},
853     Keywords = {VSS, RNEMD, VSS-RNEMD},
854     Month = {May},
855     Number = {9-10},
856     Pages = {691-701},
857     Title = {Velocity shearing and scaling RNEMD: a minimally perturbing method for simulating temperature and momentum gradients},
858     Volume = {110},
859     Year = {2012}}
860 kstocke1 3804
861     @article{doi:10.1080/0026897031000068578,
862     Abstract = { Using equilibrium and non-equilibrium molecular dynamics simulations, we determine the Kapitza resistance (or thermal contact resistance) at a model liquid-solid interface. The Kapitza resistance (or the associated Kapitza length) can reach appreciable values when the liquid does not wet the solid. The analogy with the hydrodynamic slip length is discussed. },
863     Author = {Barrat, Jean-Louis and Chiaruttini, Fran{\c c}ois},
864     Date-Added = {2011-12-13 17:17:05 -0500},
865     Date-Modified = {2011-12-13 17:17:05 -0500},
866     Doi = {10.1080/0026897031000068578},
867     Eprint = {http://tandfprod.literatumonline.com/doi/pdf/10.1080/0026897031000068578},
868     Journal = {Mol. Phys.},
869     Number = {11},
870     Pages = {1605-1610},
871     Title = {Kapitza resistance at the liquid---solid interface},
872     Url = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
873     Volume = {101},
874     Year = {2003},
875     Bdsk-Url-1 = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
876     Bdsk-Url-2 = {http://dx.doi.org/10.1080/0026897031000068578}}
877    
878     @article{Medina2011,
879     Abstract = {Molecular dynamics (MD) simulations are carried out on a system of rigid or flexible water molecules at a series of temperatures between 273 and 368&#xa0;K. Collective transport coefficients, such as shear and bulk viscosities are calculated, and their behavior is systematically investigated as a function of flexibility and temperature. It is found that by including the intramolecular terms in the potential the calculated viscosity values are in overall much better agreement, compared to earlier and recent available experimental data, than those obtained with the rigid SPC/E model. The effect of the intramolecular degrees of freedom on transport properties of liquid water is analyzed and the incorporation of polarizability is discussed for further improvements. To our knowledge the present study constitutes the first compendium of results on viscosities for pure liquid water, including flexible models, that has been assembled.},
880     Author = {J.S. Medina and R. Prosmiti and P. Villarreal and G. Delgado-Barrio and G. Winter and B. Gonz{\'a}lez and J.V. Alem{\'a}n and C. Collado},
881     Date-Added = {2011-12-13 17:08:34 -0500},
882     Date-Modified = {2011-12-13 17:08:49 -0500},
883     Doi = {10.1016/j.chemphys.2011.07.001},
884     Issn = {0301-0104},
885     Journal = {Chemical Physics},
886     Keywords = {Viscosity calculations},
887     Number = {1-3},
888     Pages = {9 - 18},
889     Title = {Molecular dynamics simulations of rigid and flexible water models: Temperature dependence of viscosity},
890     Url = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
891     Volume = {388},
892     Year = {2011},
893     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
894     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.chemphys.2011.07.001}}
895    
896     @book{WagnerKruse,
897     Address = {Berlin},
898     Author = {W. Wagner and A. Kruse},
899     Date-Added = {2011-12-13 14:57:08 -0500},
900     Date-Modified = {2011-12-13 14:57:08 -0500},
901     Publisher = {Springer-Verlag},
902     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
903     Year = {1998}}
904    
905     @article{garde:PhysRevLett2009,
906     Author = {Shenogina, Natalia and Godawat, Rahul and Keblinski, Pawel and Garde, Shekhar},
907     Date-Added = {2011-12-13 12:48:51 -0500},
908     Date-Modified = {2011-12-13 12:48:51 -0500},
909     Doi = {10.1103/PhysRevLett.102.156101},
910     Journal = {Phys. Rev. Lett.},
911     Month = {Apr},
912     Number = {15},
913     Numpages = {4},
914     Pages = {156101},
915     Publisher = {American Physical Society},
916     Title = {How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces},
917     Volume = {102},
918     Year = {2009},
919     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.102.156101}}
920    
921     @article{garde:nl2005,
922     Abstract = { Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water−organic liquid, water−surfactant, surfactant−organic liquid, is relatively high (in the range of 65−370 MW/m2 K) compared to that for solid−liquid interfaces (∼10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid−liquid interfaces. },
923     Author = {Patel, Harshit A. and Garde, Shekhar and Keblinski, Pawel},
924     Date-Added = {2011-12-13 12:48:51 -0500},
925     Date-Modified = {2011-12-13 12:48:51 -0500},
926     Doi = {10.1021/nl051526q},
927     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl051526q},
928     Journal = {Nano Lett.},
929     Note = {PMID: 16277458},
930     Number = {11},
931     Pages = {2225-2231},
932     Title = {Thermal Resistance of Nanoscopic Liquid−Liquid Interfaces:  Dependence on Chemistry and Molecular Architecture},
933     Url = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
934     Volume = {5},
935     Year = {2005},
936     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
937     Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl051526q}}
938    
939     @article{melchionna93,
940     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
941     Date-Added = {2011-12-12 17:52:15 -0500},
942     Date-Modified = {2011-12-12 17:52:15 -0500},
943     Journal = {Mol. Phys.},
944     Pages = {533-544},
945     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
946     Volume = 78,
947     Year = 1993}
948    
949     @article{TraPPE-UA.thiols,
950     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
951     Date-Added = {2011-12-07 15:06:12 -0500},
952     Date-Modified = {2011-12-07 15:06:12 -0500},
953     Doi = {10.1021/jp0549125},
954     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
955     Journal = {J. Phys. Chem. B},
956     Number = {50},
957     Pages = {24100-24107},
958     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
959     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
960     Volume = {109},
961     Year = {2005},
962     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
963     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
964    
965     @article{TraPPE-UA.alkylbenzenes,
966     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
967     Date-Added = {2011-12-07 15:06:12 -0500},
968     Date-Modified = {2011-12-07 15:06:12 -0500},
969     Doi = {10.1021/jp001044x},
970     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
971     Journal = {J. Phys. Chem. B},
972     Number = {33},
973     Pages = {8008-8016},
974     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
975     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
976     Volume = {104},
977     Year = {2000},
978     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
979     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
980    
981     @article{TraPPE-UA.alkanes,
982     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
983     Date-Added = {2011-12-07 15:06:12 -0500},
984     Date-Modified = {2011-12-07 15:06:12 -0500},
985     Doi = {10.1021/jp972543+},
986     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
987     Journal = {J. Phys. Chem. B},
988     Number = {14},
989     Pages = {2569-2577},
990     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
991     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
992     Volume = {102},
993     Year = {1998},
994     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
995     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+},
996     Bdsk-Url-3 = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B}}
997    
998     @article{ISI:000167766600035,
999     Abstract = {Molecular dynamics simulations are used to
1000     investigate the separation of water films adjacent
1001     to a hot metal surface. The simulations clearly show
1002     that the water layers nearest the surface overheat
1003     and undergo explosive boiling. For thick films, the
1004     expansion of the vaporized molecules near the
1005     surface forces the outer water layers to move away
1006     from the surface. These results are of interest for
1007     mass spectrometry of biological molecules, steam
1008     cleaning of surfaces, and medical procedures.},
1009     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1010     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1011     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1012     Date-Added = {2011-12-07 15:02:32 -0500},
1013     Date-Modified = {2011-12-07 15:02:32 -0500},
1014     Doc-Delivery-Number = {416ED},
1015     Issn = {1089-5639},
1016     Journal = {J. Phys. Chem. A},
1017     Journal-Iso = {J. Phys. Chem. A},
1018     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1019     Language = {English},
1020     Month = {MAR 29},
1021     Number = {12},
1022     Number-Of-Cited-References = {65},
1023     Pages = {2748-2755},
1024     Publisher = {AMER CHEMICAL SOC},
1025     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1026     Times-Cited = {66},
1027     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
1028     Type = {Article},
1029     Unique-Id = {ISI:000167766600035},
1030     Volume = {105},
1031     Year = {2001}}
1032    
1033     @article{Chen90,
1034     Author = {A.~P. Sutton and J. Chen},
1035     Date-Added = {2011-12-07 15:01:59 -0500},
1036     Date-Modified = {2011-12-07 15:01:59 -0500},
1037     Journal = {Philos. Mag. Lett.},
1038     Pages = {139-146},
1039     Title = {Long-Range Finnis Sinclair Potentials},
1040     Volume = 61,
1041     Year = {1990}}
1042    
1043     @article{PhysRevB.59.3527,
1044     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
1045     Date-Added = {2011-12-07 15:01:36 -0500},
1046     Date-Modified = {2011-12-07 15:01:36 -0500},
1047     Doi = {10.1103/PhysRevB.59.3527},
1048     Journal = {Phys. Rev. B},
1049     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
1050     Month = {Feb},
1051     Number = {5},
1052     Numpages = {6},
1053     Pages = {3527-3533},
1054     Publisher = {American Physical Society},
1055     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
1056     Volume = {59},
1057     Year = {1999},
1058     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
1059    
1060     @article{Bedrov:2000,
1061     Abstract = {We have applied a new nonequilibrium molecular
1062     dynamics (NEMD) method {[}F. Muller-Plathe,
1063     J. Chem. Phys. 106, 6082 (1997)] previously applied
1064     to monatomic Lennard-Jones fluids in the
1065     determination of the thermal conductivity of
1066     molecular fluids. The method was modified in order
1067     to be applicable to systems with holonomic
1068     constraints. Because the method involves imposing a
1069     known heat flux it is particularly attractive for
1070     systems involving long-range and many-body
1071     interactions where calculation of the microscopic
1072     heat flux is difficult. The predicted thermal
1073     conductivities of liquid n-butane and water using
1074     the imposed-flux NEMD method were found to be in a
1075     good agreement with previous simulations and
1076     experiment. (C) 2000 American Institute of
1077     Physics. {[}S0021-9606(00)50841-1].},
1078     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1079     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1080     Author = {Bedrov, D and Smith, GD},
1081     Date-Added = {2011-12-07 15:00:27 -0500},
1082     Date-Modified = {2011-12-07 15:00:27 -0500},
1083     Doc-Delivery-Number = {369BF},
1084     Issn = {0021-9606},
1085     Journal = {J. Chem. Phys.},
1086     Journal-Iso = {J. Chem. Phys.},
1087     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1088     Language = {English},
1089     Month = {NOV 8},
1090     Number = {18},
1091     Number-Of-Cited-References = {26},
1092     Pages = {8080-8084},
1093     Publisher = {AMER INST PHYSICS},
1094     Read = {1},
1095     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1096     Times-Cited = {23},
1097     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
1098     Type = {Article},
1099     Unique-Id = {ISI:000090151400044},
1100     Volume = {113},
1101     Year = {2000}}
1102    
1103     @article{10.1063/1.3330544,
1104     Author = {Miguel Angel Gonz{\'a}lez and Jos{\'e} L. F. Abascal},
1105     Coden = {JCPSA6},
1106     Date-Added = {2011-12-07 14:59:20 -0500},
1107     Date-Modified = {2011-12-15 13:10:11 -0500},
1108     Doi = {DOI:10.1063/1.3330544},
1109     Eissn = {10897690},
1110     Issn = {00219606},
1111     Journal = {J. Chem. Phys.},
1112     Keywords = {shear strength; viscosity;},
1113     Number = {9},
1114     Pages = {096101},
1115     Publisher = {AIP},
1116     Title = {The shear viscosity of rigid water models},
1117     Url = {http://dx.doi.org/doi/10.1063/1.3330544},
1118     Volume = {132},
1119     Year = {2010},
1120     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3330544},
1121     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3330544}}
1122    
1123     @article{doi:10.1021/jp048434u,
1124     Abstract = { The different possible proton-ordered structures of ice Ih for an orthorombic unit cell with 8 water molecules were derived. The number of unique structures was found to be 16. The crystallographic coordinates of these are reported. The energetics of the different polymorphs were investigated by quantum-mechanical density-functional theory calculations and for comparison by molecular-mechanics analytical potential models. The polymorphs were found to be close in energy, i.e., within approximately 0.25 kcal/mol H2O, on the basis of the quantum-chemical DFT methods. At 277 K, the different energy levels are about evenly populated, but at a lower temperature, a transition to an ordered form is expected. This form was found to agree with the ice phase XI. The difference in lattice energies among the polymorphs was rationalized in terms of structural characteristics. The most important parameters to determine the lattice energies were found to be the distributions of water dimer H-bonded pair conformations, in an intricate manner. },
1125     Author = {Hirsch, Tomas K. and Ojam{\"a}e, Lars},
1126     Date-Added = {2011-12-07 14:38:30 -0500},
1127     Date-Modified = {2011-12-07 14:38:30 -0500},
1128     Doi = {10.1021/jp048434u},
1129     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048434u},
1130     Journal = {J. Phys. Chem. B},
1131     Number = {40},
1132     Pages = {15856-15864},
1133     Title = {Quantum-Chemical and Force-Field Investigations of Ice Ih:  Computation of Proton-Ordered Structures and Prediction of Their Lattice Energies},
1134     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1135     Volume = {108},
1136     Year = {2004},
1137     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1138     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048434u}}
1139    
1140     @article{Meineke:2005gd,
1141     Abstract = {OOPSE is a new molecular dynamics simulation program
1142     that is capable of efficiently integrating equations
1143     of motion for atom types with orientational degrees
1144     of freedom (e.g. #sticky# atoms and point
1145     dipoles). Transition metals can also be simulated
1146     using the embedded atom method (EAM) potential
1147     included in the code. Parallel simulations are
1148     carried out using the force-based decomposition
1149     method. Simulations are specified using a very
1150     simple C-based meta-data language. A number of
1151     advanced integrators are included, and the basic
1152     integrator for orientational dynamics provides
1153     substantial improvements over older quaternion-based
1154     schemes.},
1155     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1156     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1157     Date-Added = {2011-12-07 13:33:04 -0500},
1158     Date-Modified = {2011-12-07 13:33:04 -0500},
1159     Doi = {DOI 10.1002/jcc.20161},
1160     Isi = {000226558200006},
1161     Isi-Recid = {142688207},
1162     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1163     Journal = {J. Comput. Chem.},
1164     Keywords = {OOPSE; molecular dynamics},
1165     Month = feb,
1166     Number = {3},
1167     Pages = {252-271},
1168     Publisher = {JOHN WILEY \& SONS INC},
1169     Times-Cited = {9},
1170     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1171     Volume = {26},
1172     Year = {2005},
1173     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1174     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1175    
1176     @article{hoover85,
1177     Author = {W.~G. Hoover},
1178     Date-Added = {2011-12-06 14:23:41 -0500},
1179     Date-Modified = {2011-12-06 14:23:41 -0500},
1180     Journal = {Phys. Rev. A},
1181     Pages = 1695,
1182     Title = {Canonical dynamics: Equilibrium phase-space distributions},
1183     Volume = 31,
1184     Year = 1985}
1185    
1186     @article{Maginn:2010,
1187     Abstract = {The reverse nonequilibrium molecular dynamics
1188     (RNEMD) method calculates the shear viscosity of a
1189     fluid by imposing a nonphysical exchange of momentum
1190     and measuring the resulting shear velocity
1191     gradient. In this study we investigate the range of
1192     momentum flux values over which RNEMD yields usable
1193     (linear) velocity gradients. We find that nonlinear
1194     velocity profiles result primarily from gradients in
1195     fluid temperature and density. The temperature
1196     gradient results from conversion of heat into bulk
1197     kinetic energy, which is transformed back into heat
1198     elsewhere via viscous heating. An expression is
1199     derived to predict the temperature profile resulting
1200     from a specified momentum flux for a given fluid and
1201     simulation cell. Although primarily bounded above,
1202     we also describe milder low-flux limitations. RNEMD
1203     results for a Lennard-Jones fluid agree with
1204     equilibrium molecular dynamics and conventional
1205     nonequilibrium molecular dynamics calculations at
1206     low shear, but RNEMD underpredicts viscosity
1207     relative to conventional NEMD at high shear.},
1208     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1209     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1210     Article-Number = {014103},
1211     Author = {Tenney, Craig M. and Maginn, Edward J.},
1212     Author-Email = {ed@nd.edu},
1213     Date-Added = {2011-12-05 18:29:08 -0500},
1214     Date-Modified = {2011-12-05 18:29:08 -0500},
1215     Doc-Delivery-Number = {542DQ},
1216     Doi = {10.1063/1.3276454},
1217     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1218     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1219     Issn = {0021-9606},
1220     Journal = {J. Chem. Phys.},
1221     Journal-Iso = {J. Chem. Phys.},
1222     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1223     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1224     Language = {English},
1225     Month = {JAN 7},
1226     Number = {1},
1227     Number-Of-Cited-References = {20},
1228     Pages = {014103},
1229     Publisher = {AMER INST PHYSICS},
1230     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1231     Times-Cited = {0},
1232     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
1233     Type = {Article},
1234     Unique-Id = {ISI:000273472300004},
1235     Volume = {132},
1236     Year = {2010},
1237     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1238    
1239     @article{ISI:000080382700030,
1240     Abstract = {A nonequilibrium method for calculating the shear
1241     viscosity is presented. It reverses the
1242     cause-and-effect picture customarily used in
1243     nonequilibrium molecular dynamics: the effect, the
1244     momentum flux or stress, is imposed, whereas the
1245     cause, the velocity gradient or shear rate, is
1246     obtained from the simulation. It differs from other
1247     Norton-ensemble methods by the way in which the
1248     steady-state momentum flux is maintained. This
1249     method involves a simple exchange of particle
1250     momenta, which is easy to implement. Moreover, it
1251     can be made to conserve the total energy as well as
1252     the total linear momentum, so no coupling to an
1253     external temperature bath is needed. The resulting
1254     raw data, the velocity profile, is a robust and
1255     rapidly converging property. The method is tested on
1256     the Lennard-Jones fluid near its triple point. It
1257     yields a viscosity of 3.2-3.3, in Lennard-Jones
1258     reduced units, in agreement with literature
1259     results. {[}S1063-651X(99)03105-0].},
1260     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1261     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1262     Author = {M\"{u}ller-Plathe, F},
1263     Date-Added = {2011-12-05 18:18:37 -0500},
1264     Date-Modified = {2011-12-05 18:18:37 -0500},
1265     Doc-Delivery-Number = {197TX},
1266     Issn = {1063-651X},
1267     Journal = {Phys. Rev. E},
1268     Journal-Iso = {Phys. Rev. E},
1269     Language = {English},
1270     Month = {MAY},
1271     Number = {5, Part A},
1272     Number-Of-Cited-References = {17},
1273     Pages = {4894-4898},
1274     Publisher = {AMERICAN PHYSICAL SOC},
1275     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1276     Times-Cited = {57},
1277     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1278     Type = {Article},
1279     Unique-Id = {ISI:000080382700030},
1280     Volume = {59},
1281     Year = {1999}}
1282    
1283     @article{MullerPlathe:1997xw,
1284     Abstract = {A nonequilibrium molecular dynamics method for
1285     calculating the thermal conductivity is
1286     presented. It reverses the usual cause and effect
1287     picture. The ''effect,'' the heat flux, is imposed
1288     on the system and the ''cause,'' the temperature
1289     gradient is obtained from the simulation. Besides
1290     being very simple to implement, the scheme offers
1291     several advantages such as compatibility with
1292     periodic boundary conditions, conservation of total
1293     energy and total linear momentum, and the sampling
1294     of a rapidly converging quantity (temperature
1295     gradient) rather than a slowly converging one (heat
1296     flux). The scheme is tested on the Lennard-Jones
1297     fluid. (C) 1997 American Institute of Physics.},
1298     Address = {WOODBURY},
1299     Author = {M\"{u}ller-Plathe, F.},
1300     Cited-Reference-Count = {13},
1301     Date = {APR 8},
1302     Date-Added = {2011-12-05 18:18:37 -0500},
1303     Date-Modified = {2011-12-05 18:18:37 -0500},
1304     Document-Type = {Article},
1305     Isi = {ISI:A1997WR62000032},
1306     Isi-Document-Delivery-Number = {WR620},
1307     Iso-Source-Abbreviation = {J. Chem. Phys.},
1308     Issn = {0021-9606},
1309     Journal = {J. Chem. Phys.},
1310     Language = {English},
1311     Month = {Apr},
1312     Number = {14},
1313     Page-Count = {4},
1314     Pages = {6082--6085},
1315     Publication-Type = {J},
1316     Publisher = {AMER INST PHYSICS},
1317     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1318     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1319     Source = {J CHEM PHYS},
1320     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1321     Times-Cited = {106},
1322     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1323     Volume = {106},
1324     Year = {1997}}
1325    
1326     @article{priezjev:204704,
1327     Author = {Nikolai V. Priezjev},
1328     Date-Added = {2011-11-28 14:39:18 -0500},
1329     Date-Modified = {2011-11-28 14:39:18 -0500},
1330     Doi = {10.1063/1.3663384},
1331     Eid = {204704},
1332     Journal = {J. Chem. Phys.},
1333     Keywords = {channel flow; diffusion; flow simulation; hydrodynamics; molecular dynamics method; pattern formation; random processes; shear flow; slip flow; wetting},
1334     Number = {20},
1335     Numpages = {9},
1336     Pages = {204704},
1337     Publisher = {AIP},
1338     Title = {Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures},
1339     Url = {http://link.aip.org/link/?JCP/135/204704/1},
1340     Volume = {135},
1341     Year = {2011},
1342     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/135/204704/1},
1343     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3663384}}
1344    
1345     @article{bryk:10258,
1346     Author = {Taras Bryk and A. D. J. Haymet},
1347     Date-Added = {2011-11-22 17:06:35 -0500},
1348     Date-Modified = {2011-11-22 17:06:35 -0500},
1349     Doi = {10.1063/1.1519538},
1350     Journal = {J. Chem. Phys.},
1351     Keywords = {liquid structure; molecular dynamics method; water; ice; interface structure},
1352     Number = {22},
1353     Pages = {10258-10268},
1354     Publisher = {AIP},
1355     Title = {Ice 1h/water interface of the SPC/E model: Molecular dynamics simulations of the equilibrium basal and prism interfaces},
1356     Url = {http://link.aip.org/link/?JCP/117/10258/1},
1357     Volume = {117},
1358     Year = {2002},
1359     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/117/10258/1},
1360     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1519538}}
1361    
1362     @misc{openmd,
1363     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
1364     Date-Added = {2011-11-18 15:32:23 -0500},
1365     Date-Modified = {2011-11-18 15:32:23 -0500},
1366     Howpublished = {Available at {\tt http://openmd.net}},
1367     Title = {{OpenMD, an open source engine for molecular dynamics}}}
1368    
1369     @article{kuang:AuThl,
1370     Author = {Kuang, Shenyu and Gezelter, J. Daniel},
1371     Date-Added = {2011-11-18 13:03:06 -0500},
1372     Date-Modified = {2011-12-05 17:58:01 -0500},
1373     Doi = {10.1021/jp2073478},
1374     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp2073478},
1375     Journal = {J. Phys. Chem. C},
1376     Number = {45},
1377     Pages = {22475-22483},
1378     Title = {Simulating Interfacial Thermal Conductance at Metal-Solvent Interfaces: The Role of Chemical Capping Agents},
1379     Url = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1380     Volume = {115},
1381     Year = {2011},
1382     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1383     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp2073478}}
1384    
1385     @article{10.1063/1.2772547,
1386     Author = {Hideo Kaburaki and Ju Li and Sidney Yip and Hajime Kimizuka},
1387     Coden = {JAPIAU},
1388     Date-Added = {2011-11-01 16:46:32 -0400},
1389     Date-Modified = {2011-11-01 16:46:32 -0400},
1390     Doi = {DOI:10.1063/1.2772547},
1391     Eissn = {10897550},
1392     Issn = {00218979},
1393     Keywords = {argon; Lennard-Jones potential; phonons; thermal conductivity;},
1394     Number = {4},
1395     Pages = {043514},
1396     Publisher = {AIP},
1397     Title = {Dynamical thermal conductivity of argon crystal},
1398     Url = {http://dx.doi.org/10.1063/1.2772547},
1399     Volume = {102},
1400     Year = {2007},
1401     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2772547}}
1402    
1403     @article{PhysRevLett.82.4671,
1404     Author = {Barrat, Jean-Louis and Bocquet, Lyd\'eric},
1405     Date-Added = {2011-11-01 16:44:29 -0400},
1406     Date-Modified = {2011-11-01 16:44:29 -0400},
1407     Doi = {10.1103/PhysRevLett.82.4671},
1408     Issue = {23},
1409     Journal = {Phys. Rev. Lett.},
1410     Month = {Jun},
1411     Pages = {4671--4674},
1412     Publisher = {American Physical Society},
1413     Title = {Large Slip Effect at a Nonwetting Fluid-Solid Interface},
1414     Url = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1415     Volume = {82},
1416     Year = {1999},
1417     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1418     Bdsk-Url-2 = {http://dx.doi.org/10.1103/PhysRevLett.82.4671}}
1419    
1420     @article{10.1063/1.1610442,
1421     Author = {J. R. Schmidt and J. L. Skinner},
1422     Coden = {JCPSA6},
1423     Date-Added = {2011-10-13 16:28:43 -0400},
1424     Date-Modified = {2011-12-15 13:11:53 -0500},
1425     Doi = {DOI:10.1063/1.1610442},
1426     Eissn = {10897690},
1427     Issn = {00219606},
1428     Journal = {J. Chem. Phys.},
1429     Keywords = {hydrodynamics; Brownian motion; molecular dynamics method; diffusion;},
1430     Number = {15},
1431     Pages = {8062-8068},
1432     Publisher = {AIP},
1433     Title = {Hydrodynamic boundary conditions, the Stokes?Einstein law, and long-time tails in the Brownian limit},
1434     Url = {http://dx.doi.org/10.1063/1.1610442},
1435     Volume = {119},
1436     Year = {2003},
1437     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1610442}}
1438    
1439     @article{10.1063/1.3274802,
1440     Author = {Ting Chen and Berend Smit and Alexis T. Bell},
1441     Coden = {JCPSA6},
1442     Doi = {DOI:10.1063/1.3274802},
1443     Eissn = {10897690},
1444     Issn = {00219606},
1445     Keywords = {fluctuations; molecular dynamics method; viscosity;},
1446     Number = {24},
1447     Pages = {246101},
1448     Publisher = {AIP},
1449     Title = {Are pressure fluctuation-based equilibrium methods really worse than nonequilibrium methods for calculating viscosities?},
1450     Url = {http://dx.doi.org/doi/10.1063/1.3274802},
1451     Volume = {131},
1452     Year = {2009},
1453     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3274802},
1454     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3274802}}