ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/chainLength/thiolsRNEMD.bib
Revision: 3855
Committed: Tue Dec 25 17:58:26 2012 UTC (11 years, 8 months ago) by gezelter
File size: 87557 byte(s)
Log Message:
Added Hase papers, fixed a few grammatical issues

File Contents

# User Rev Content
1 kstocke1 3801 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 gezelter 3855 %% Created for Dan Gezelter at 2012-12-25 12:48:41 -0500
6 kstocke1 3801
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11 gezelter 3819 @string{acp = {Adv. Chem. Phys.}}
12 kstocke1 3801
13 gezelter 3819 @string{bj = {Biophys. J.}}
14    
15     @string{ccp5 = {CCP5 Information Quarterly}}
16    
17     @string{cp = {Chem. Phys.}}
18    
19     @string{cpl = {Chem. Phys. Lett.}}
20    
21     @string{ea = {Electrochim. Acta}}
22    
23     @string{jacs = {J. Am. Chem. Soc.}}
24    
25     @string{jbc = {J. Biol. Chem.}}
26    
27     @string{jcat = {J. Catalysis}}
28    
29     @string{jcc = {J. Comp. Chem.}}
30    
31     @string{jcop = {J. Comp. Phys.}}
32    
33     @string{jcp = {J. Chem. Phys.}}
34    
35     @string{jctc = {J. Chem. Theory Comp.}}
36    
37     @string{jmc = {J. Med. Chem.}}
38    
39     @string{jml = {J. Mol. Liq.}}
40    
41     @string{jmm = {J. Mol. Model.}}
42    
43     @string{jpc = {J. Phys. Chem.}}
44    
45     @string{jpca = {J. Phys. Chem. A}}
46    
47     @string{jpcb = {J. Phys. Chem. B}}
48    
49     @string{jpcc = {J. Phys. Chem. C}}
50    
51     @string{jpcl = {J. Phys. Chem. Lett.}}
52    
53     @string{mp = {Mol. Phys.}}
54    
55     @string{pams = {Proc. Am. Math Soc.}}
56    
57     @string{pccp = {Phys. Chem. Chem. Phys.}}
58    
59     @string{pnas = {Proc. Natl. Acad. Sci. USA}}
60    
61     @string{pr = {Phys. Rev.}}
62    
63     @string{pra = {Phys. Rev. A}}
64    
65     @string{prb = {Phys. Rev. B}}
66    
67     @string{pre = {Phys. Rev. E}}
68    
69     @string{prl = {Phys. Rev. Lett.}}
70    
71     @string{rmp = {Rev. Mod. Phys.}}
72    
73     @string{ss = {Surf. Sci.}}
74    
75    
76 gezelter 3855 @article{hase:2010,
77     Abstract = {Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang{,} J. A. Carter{,} A. Lagutchev{,} Y. K. Koh{,} N.-H. Seong{,} D. G. Cahill{,} and D. D. Dlott{,} Science{,} 2007{,} 317{,} 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface{,} and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly{,} much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM{,} perpendicular to the interface{,} results in nearly identical temperatures for the CH2 and CH3 groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate{,} the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM{,} there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.},
78     Author = {Zhang, Yue and Barnes, George L. and Yan, Tianying and Hase, William L.},
79     Date-Added = {2012-12-25 17:47:40 +0000},
80     Date-Modified = {2012-12-25 17:47:40 +0000},
81     Doi = {10.1039/B923858C},
82     Issue = {17},
83     Journal = {Phys. Chem. Chem. Phys.},
84     Pages = {4435-4445},
85     Publisher = {The Royal Society of Chemistry},
86     Title = {Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer},
87     Url = {http://dx.doi.org/10.1039/B923858C},
88     Volume = {12},
89     Year = {2010},
90     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B923858C}}
91    
92     @article{hase:2011,
93     Abstract = { In a previous article (Phys. Chem. Chem. Phys.2010, 12, 4435), nonequilibrium molecular dynamics (MD) simulations of heat transfer from a hot Au{111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) were presented. The simulations were performed for an H-SAM chain length of eight carbon atoms, and a qualitative agreement with the experiments of Wang et al. (Science2007, 317, 787) was found. Here, simulation results are presented for heat transfer to H-SAM surfaces with carbon chain lengths of 10--20 carbon atoms. Relaxation times for heat transfer are extracted, compared with experiment, and a qualitative agreement is obtained. The same relaxation time is found from either the temperature of the H-SAM or the orientational disorder of the H-SAM versus time. For a simulation model with the Au substrate thermally equilibrated, the relaxation times determined from the simulations are approximately a factor of 4 larger than the experimental values. },
94     Author = {Manikandan, Paranjothy and Carter, Jeffrey A. and Dlott, Dana D. and Hase, William L.},
95     Date-Added = {2012-12-25 17:47:40 +0000},
96     Date-Modified = {2012-12-25 17:47:40 +0000},
97     Doi = {10.1021/jp200672e},
98     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp200672e},
99     Journal = {The Journal of Physical Chemistry C},
100     Number = {19},
101     Pages = {9622-9628},
102     Title = {Effect of Carbon Chain Length on the Dynamics of Heat Transfer at a Gold/Hydrocarbon Interface: Comparison of Simulation with Experiment},
103     Url = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
104     Volume = {115},
105     Year = {2011},
106     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
107     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp200672e}}
108    
109 kstocke1 3851 @article{RevModPhys.61.605,
110     Author = {Swartz, E. T. and Pohl, R. O.},
111     Date-Added = {2012-12-21 20:34:12 +0000},
112     Date-Modified = {2012-12-21 20:34:12 +0000},
113     Doi = {10.1103/RevModPhys.61.605},
114     Issue = {3},
115     Journal = {Rev. Mod. Phys.},
116     Month = {Jul},
117     Pages = {605--668},
118     Publisher = {American Physical Society},
119     Title = {Thermal boundary resistance},
120     Url = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
121     Volume = {61},
122     Year = {1989},
123     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
124     Bdsk-Url-2 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
125    
126 gezelter 3855 @article{packmol,
127     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
128     Bibsource = {DBLP, http://dblp.uni-trier.de},
129     Date-Added = {2011-02-01 15:13:02 -0500},
130     Date-Modified = {2011-02-01 15:14:25 -0500},
131     Ee = {http://dx.doi.org/10.1002/jcc.21224},
132     Journal = {Journal of Computational Chemistry},
133     Number = {13},
134     Pages = {2157-2164},
135     Title = {PACKMOL: A package for building initial configurations for molecular dynamics simulations},
136     Volume = {30},
137     Year = {2009}}
138    
139 gezelter 3819 @article{doi:10.1021/jp034405s,
140     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
141     Author = {Leng, Y. and Keffer, David J. and Cummings, Peter T.},
142     Date-Added = {2012-12-17 18:38:38 +0000},
143     Date-Modified = {2012-12-17 18:38:38 +0000},
144     Doi = {10.1021/jp034405s},
145     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
146     Journal = {J. Phys. Chem. B},
147     Number = {43},
148     Pages = {11940-11950},
149     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
150     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
151     Volume = {107},
152     Year = {2003},
153     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
154     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
155    
156     @article{hautman:4994,
157     Author = {Joseph Hautman and Michael L. Klein},
158     Date-Added = {2012-12-17 18:38:26 +0000},
159     Date-Modified = {2012-12-17 18:38:26 +0000},
160     Doi = {10.1063/1.457621},
161     Journal = {J. Chem. Phys.},
162     Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
163     Number = {8},
164     Pages = {4994-5001},
165     Publisher = {AIP},
166     Title = {Simulation of a monolayer of alkyl thiol chains},
167     Url = {http://link.aip.org/link/?JCP/91/4994/1},
168     Volume = {91},
169     Year = {1989},
170     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
171     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
172    
173     @article{vlugt:cpc2007154,
174     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
175     Date-Added = {2012-12-17 18:38:20 +0000},
176     Date-Modified = {2012-12-17 18:38:20 +0000},
177     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
178     Issn = {0010-4655},
179     Journal = {Comput. Phys. Commun.},
180     Keywords = {Gold nanocrystals},
181     Note = {Proceedings of the Conference on Computational Physics 2006 - CCP 2006, Conference on Computational Physics 2006},
182     Number = {1-2},
183     Pages = {154 - 157},
184     Title = {Selective adsorption of alkyl thiols on gold in different geometries},
185     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
186     Volume = {177},
187     Year = {2007},
188     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
189     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
190    
191     @article{landman:1998,
192     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
193     Author = {Luedtke, W. D. and Landman, Uzi},
194     Date-Added = {2012-12-17 18:38:13 +0000},
195     Date-Modified = {2012-12-17 18:38:13 +0000},
196     Doi = {10.1021/jp981745i},
197     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
198     Journal = {J. Phys. Chem. B},
199     Number = {34},
200     Pages = {6566-6572},
201     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
202     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
203     Volume = {102},
204     Year = {1998},
205     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
206     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
207    
208     @article{PhysRevLett.96.186101,
209     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
210     Date-Added = {2012-12-17 17:44:53 +0000},
211     Date-Modified = {2012-12-17 17:44:53 +0000},
212     Doi = {10.1103/PhysRevLett.96.186101},
213     Journal = prl,
214     Month = {May},
215     Number = {18},
216     Numpages = {4},
217     Pages = {186101},
218     Publisher = {American Physical Society},
219     Title = {Thermal Conductance of Hydrophilic and Hydrophobic Interfaces},
220     Volume = {96},
221     Year = {2006},
222     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.96.186101}}
223    
224     @article{Larson:2007hw,
225     Abstract = {Nanoparticles which consist of a plasmonic layer and an iron oxide moiety could provide a promising platform for development of multimodal imaging and therapy approaches in future medicine. However, the feasibility of this platform has yet to be fully explored. In this study we demonstrated the use of gold-coated iron oxide hybrid nanoparticles for combined molecular specific MRI/optical imaging and photothermal therapy of cancer cells. The gold layer exhibits a surface plasmon resonance that provides optical contrast due to light scattering in the visible region and also presents a convenient surface for conjugating targeting moieties, while the iron oxide cores give strong T-2 (spin-spin relaxation time) contrast. The strong optical absorption of the plasmonic gold layer also makes these nanoparticles a promising agent for photothermal therapy. We synthesized hybrid nanoparticles which specifically target epidermal growth factor receptor (EGFR), a common biomarker for many epithelial cancers. We demonstrated molecular specific MRI and optical imaging in MDA-MB-468 breast cancer cells. Furthermore, we showed that receptor-mediated aggregation of anti-EGFR hybrid nanoparticles allows selective destruction of highly proliferative cancer cells using a nanosecond pulsed laser at 700 nm wavelength, a significant shift from the peak absorbance of isolated hybrid nanoparticles at 532 nm.},
226     Address = {DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND},
227     Author = {Larson, Timothy A. and Bankson, James and Aaron, Jesse and Sokolov, Konstantin},
228     Date = {AUG 15 2007},
229     Date-Added = {2012-12-17 17:44:44 +0000},
230     Date-Modified = {2012-12-17 17:44:44 +0000},
231     Doi = {ARTN 325101},
232     Journal = {Nanotechnology},
233     Publisher = {IOP PUBLISHING LTD},
234     Timescited = {5},
235     Title = {Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells},
236     Volume = {18},
237     Year = {2007},
238     Bdsk-Url-1 = {http://dx.doi.org/325101}}
239    
240     @article{Huff:2007ye,
241     Abstract = {Plasmon-resonant gold nanorods, which have large absorption cross sections at near-infrared frequencies, are excellent candidates as multifunctional agents for image-guided therapies based on localized hyperthermia. The controlled modification of the surface chemistry of the nanorods is of critical importance, as issues of cell-specific targeting and nonspecific uptake must be addressed prior to clinical evaluation. Nanorods coated with cetyltrimethylammonium bromide (a cationic surfactant used in nanorod synthesis) are internalized within hours into KB cells by a nonspecific uptake pathway, whereas the careful removal of cetyltrimethylammonium bromide from nanorods functionalized with folate results in their accumulation on the cell surface over the same time interval. In either case, the nanorods render the tumor cells highly susceptible to photothermal damage when irradiated at the nanorods' longitudinal plasmon resonance, generating extensive blebbing of the cell membrane at laser fluences as low as 30 J/cm(2).},
242     Address = {UNITEC HOUSE, 3RD FLOOR, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON, N3 1QB, ENGLAND},
243     Author = {Huff, Terry B. and Tong, Ling and Zhao, Yan and Hansen, Matthew N. and Cheng, Ji-Xin and Wei, Alexander},
244     Date = {FEB 2007},
245     Date-Added = {2012-12-17 17:44:36 +0000},
246     Date-Modified = {2012-12-17 17:44:36 +0000},
247     Doi = {DOI 10.2217/17435889.2.1.125},
248     Journal = {Nanomedicine},
249     Keywords = {folate receptor; hyperthermia; imaging; nanorods; nonlinear optical microscopy; plasmon resonance; targeted therapy},
250     Pages = {125-132},
251     Publisher = {FUTURE MEDICINE LTD},
252     Timescited = {13},
253     Title = {Hyperthermic effects of gold nanorods on tumor cells},
254     Volume = {2},
255     Year = {2007},
256     Bdsk-Url-1 = {http://dx.doi.org/10.2217/17435889.2.1.125}}
257    
258     @article{JiangHao_jp802942v,
259     Abstract = {Abstract: Nonequilibrium molecular dynamics simulations with the nonpolarizable SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121, 9549) force fields have been employed to calculate the thermal conductivity and other associated properties of methane hydrate over a temperature range from 30 to 260 K. The calculated results are compared to experimental data over this same range. The values of the thermal conductivity calculated with the COS/G2 model are closer to the experimental values than are those calculated with the nonpolarizable SPC/E model. The calculations match the temperature trend in the experimental data at temperatures below 50 K; however, they exhibit a slight decrease in thermal conductivity at higher temperatures in comparison to an opposite trend in the experimental data. The calculated thermal conductivity values are found to be relatively insensitive to the occupancy of the cages except at low (T d 50 K) temperatures, which indicates that the differences between the two lattice structures may have a more dominant role than generally thought in explaining the low thermal conductivity of methane hydrate compared to ice Ih. The introduction of defects into the water lattice is found to cause a reduction in the thermal conductivity but to have a negligible impact on its temperature dependence.},
260     Affiliation = {National Energy Technology Laboratory, U.S. Department of Energy, Post Office Box 10940, Pittsburgh, Pennsylvania 15236, Department of Chemistry and Center for Molecular and Materials Simulations, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and Parsons Project Services, Inc., South Park, Pennsylvania 15129},
261     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
262     Date-Added = {2012-12-17 16:57:19 +0000},
263     Date-Modified = {2012-12-17 16:57:19 +0000},
264     Doi = {10.1021/jp802942v},
265     Issn = {1520-6106},
266     Journal = jpcb,
267     Title = {Molecular Dynamics Simulations of the Thermal Conductivity of Methane Hydrate},
268     Year = {2008},
269     Bdsk-Url-1 = {http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp802942v}}
270    
271     @article{Schelling:2002dp,
272     Author = {Schelling, P. K. and Phillpot, S. R. and Keblinski, P.},
273     Date = {APR 1 2002},
274     Date-Added = {2012-12-17 16:57:10 +0000},
275     Date-Modified = {2012-12-17 16:57:10 +0000},
276     Doi = {10.1103/PhysRevB.65.144306},
277     Isi = {WOS:000174980300055},
278     Issn = {1098-0121},
279     Journal = prb,
280     Month = {Apr},
281     Number = {14},
282     Pages = {144306},
283     Publication-Type = {J},
284     Times-Cited = {288},
285     Title = {Comparison of atomic-level simulation methods for computing thermal conductivity},
286     Volume = {65},
287     Year = {2002},
288     Z8 = {12},
289     Z9 = {296},
290     Zb = {0},
291     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.65.144306}}
292    
293     @article{Evans:2002ai,
294     Author = {Evans, D. J. and Searles, D. J.},
295     Date = {NOV 2002},
296     Date-Added = {2012-12-17 16:56:59 +0000},
297     Date-Modified = {2012-12-17 16:56:59 +0000},
298     Doi = {10.1080/00018730210155133},
299     Isi = {WOS:000179448200001},
300     Issn = {0001-8732},
301     Journal = {Adv. Phys.},
302     Month = {Nov},
303     Number = {7},
304     Pages = {1529--1585},
305     Publication-Type = {J},
306     Times-Cited = {309},
307     Title = {The fluctuation theorem},
308     Volume = {51},
309     Year = {2002},
310     Z8 = {3},
311     Z9 = {311},
312     Zb = {9},
313     Bdsk-Url-1 = {http://dx.doi.org/10.1080/00018730210155133}}
314    
315     @article{Berthier:2002ij,
316     Author = {Berthier, L. and Barrat, J. L.},
317     Date = {APR 8 2002},
318     Date-Added = {2012-12-17 16:56:47 +0000},
319     Date-Modified = {2012-12-17 16:56:47 +0000},
320     Doi = {10.1063/1.1460862},
321     Isi = {WOS:000174634200036},
322     Issn = {0021-9606},
323     Journal = jcp,
324     Month = {Apr},
325     Number = {14},
326     Pages = {6228--6242},
327     Publication-Type = {J},
328     Times-Cited = {172},
329     Title = {Nonequilibrium dynamics and fluctuation-dissipation relation in a sheared fluid},
330     Volume = {116},
331     Year = {2002},
332     Z8 = {0},
333     Z9 = {172},
334     Zb = {1},
335     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1460862}}
336    
337     @article{MAGINN:1993hc,
338 kstocke1 3854 Author = {Maginn, E. J. and Bell, A. T. and Theodorou, D. N.},
339 gezelter 3819 Date = {APR 22 1993},
340     Date-Added = {2012-12-17 16:56:40 +0000},
341 kstocke1 3854 Date-Modified = {2012-12-21 22:43:10 +0000},
342 gezelter 3819 Doi = {10.1021/j100118a038},
343     Isi = {WOS:A1993KY46600039},
344     Issn = {0022-3654},
345     Journal = jpc,
346     Month = {Apr},
347     Number = {16},
348     Pages = {4173--4181},
349     Publication-Type = {J},
350     Times-Cited = {198},
351     Title = {TRANSPORT DIFFUSIVITY OF METHANE IN SILICALITE FROM EQUILIBRIUM AND NONEQUILIBRIUM SIMULATIONS},
352     Volume = {97},
353     Year = {1993},
354     Z8 = {4},
355     Z9 = {201},
356     Zb = {0},
357     Bdsk-Url-1 = {http://dx.doi.org/10.1021/j100118a038}}
358    
359     @article{ERPENBECK:1984sp,
360 kstocke1 3854 Author = {Erpenbeck, J. J.},
361 gezelter 3819 Date = {1984},
362     Date-Added = {2012-12-17 16:56:32 +0000},
363 kstocke1 3854 Date-Modified = {2012-12-21 22:42:45 +0000},
364 gezelter 3819 Doi = {10.1103/PhysRevLett.52.1333},
365     Isi = {WOS:A1984SK96700021},
366     Issn = {0031-9007},
367     Journal = prl,
368     Number = {15},
369     Pages = {1333--1335},
370     Publication-Type = {J},
371     Times-Cited = {189},
372     Title = {SHEAR VISCOSITY OF THE HARD-SPHERE FLUID VIA NONEQUILIBRIUM MOLECULAR-DYNAMICS},
373     Volume = {52},
374     Year = {1984},
375     Z8 = {0},
376     Z9 = {189},
377     Zb = {1},
378     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.52.1333}}
379    
380     @article{Evans:1982zk,
381     Author = {Evans, Denis J.},
382     Date-Added = {2012-12-17 16:56:24 +0000},
383     Date-Modified = {2012-12-17 16:56:24 +0000},
384     Journal = {Physics Letters A},
385     Number = {9},
386     Pages = {457--460},
387     Title = {Homogeneous NEMD algorithm for thermal conductivity--Application of non-canonical linear response theory},
388     Ty = {JOUR},
389     Url = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50},
390     Volume = {91},
391     Year = {1982},
392     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50}}
393    
394     @article{ASHURST:1975tg,
395 kstocke1 3854 Author = {Ashurst, W. T. and Hoover, W. G.},
396 gezelter 3819 Date = {1975},
397     Date-Added = {2012-12-17 16:56:05 +0000},
398 kstocke1 3854 Date-Modified = {2012-12-21 22:42:31 +0000},
399 gezelter 3819 Doi = {10.1103/PhysRevA.11.658},
400     Isi = {WOS:A1975V548400036},
401     Issn = {1050-2947},
402     Journal = pra,
403     Number = {2},
404     Pages = {658--678},
405     Publication-Type = {J},
406     Times-Cited = {295},
407     Title = {DENSE-FLUID SHEAR VISCOSITY VIA NONEQUILIBRIUM MOLECULAR-DYNAMICS},
408     Volume = {11},
409     Year = {1975},
410     Z8 = {3},
411     Z9 = {298},
412     Zb = {1},
413     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.11.658}}
414    
415     @article{kinaci:014106,
416     Author = {A. Kinaci and J. B. Haskins and T. \c{C}a\u{g}in},
417     Date-Added = {2012-12-17 16:55:56 +0000},
418     Date-Modified = {2012-12-17 16:55:56 +0000},
419     Doi = {10.1063/1.4731450},
420     Eid = {014106},
421     Journal = jcp,
422     Keywords = {argon; elemental semiconductors; Ge-Si alloys; molecular dynamics method; nanostructured materials; porous semiconductors; silicon; thermal conductivity},
423     Number = {1},
424     Numpages = {8},
425     Pages = {014106},
426     Publisher = {AIP},
427     Title = {On calculation of thermal conductivity from Einstein relation in equilibrium molecular dynamics},
428     Url = {http://link.aip.org/link/?JCP/137/014106/1},
429     Volume = {137},
430     Year = {2012},
431     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/137/014106/1},
432     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.4731450}}
433    
434     @article{che:6888,
435     Author = {Jianwei Che and Tahir Cagin and Weiqiao Deng and William A. Goddard III},
436     Date-Added = {2012-12-17 16:55:48 +0000},
437     Date-Modified = {2012-12-17 16:55:48 +0000},
438     Doi = {10.1063/1.1310223},
439     Journal = jcp,
440     Keywords = {diamond; thermal conductivity; digital simulation; vacancies (crystal); Green's function methods; isotope effects},
441     Number = {16},
442     Pages = {6888-6900},
443     Publisher = {AIP},
444     Title = {Thermal conductivity of diamond and related materials from molecular dynamics simulations},
445     Url = {http://link.aip.org/link/?JCP/113/6888/1},
446     Volume = {113},
447     Year = {2000},
448     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/113/6888/1},
449     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1310223}}
450    
451     @article{Viscardy:2007rp,
452     Abstract = {The thermal conductivity is calculated with the Helfand-moment method in the Lennard-Jones fluid near the triple point. The Helfand moment of thermal conductivity is here derived for molecular dynamics with periodic boundary conditions. Thermal conductivity is given by a generalized Einstein relation with this Helfand moment. The authors compute thermal conductivity by this new method and compare it with their own values obtained by the standard Green-Kubo method. The agreement is excellent. (C) 2007 American Institute of Physics.},
453     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
454     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
455     Date = {MAY 14 2007},
456     Date-Added = {2012-12-17 16:55:32 +0000},
457     Date-Modified = {2012-12-17 16:55:32 +0000},
458     Doi = {ARTN 184513},
459     Journal = jcp,
460     Publisher = {AMER INST PHYSICS},
461     Timescited = {1},
462     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
463     Volume = {126},
464     Year = {2007},
465     Bdsk-Url-1 = {http://dx.doi.org/184513}}
466    
467     @article{PhysRev.119.1,
468     Author = {Helfand, Eugene},
469     Date-Added = {2012-12-17 16:55:19 +0000},
470     Date-Modified = {2012-12-17 16:55:19 +0000},
471     Doi = {10.1103/PhysRev.119.1},
472     Journal = {Phys. Rev.},
473     Month = {Jul},
474     Number = {1},
475     Numpages = {8},
476     Pages = {1--9},
477     Publisher = {American Physical Society},
478     Title = {Transport Coefficients from Dissipation in a Canonical Ensemble},
479     Volume = {119},
480     Year = {1960},
481     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRev.119.1}}
482    
483     @article{PhysRevA.34.1449,
484     Author = {Evans, Denis J.},
485     Date-Added = {2012-12-17 16:55:19 +0000},
486     Date-Modified = {2012-12-17 16:55:19 +0000},
487     Doi = {10.1103/PhysRevA.34.1449},
488     Journal = {Phys. Rev. A},
489     Month = {Aug},
490     Number = {2},
491     Numpages = {4},
492     Pages = {1449--1453},
493     Publisher = {American Physical Society},
494     Title = {Thermal conductivity of the Lennard-Jones fluid},
495     Volume = {34},
496     Year = {1986},
497     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.34.1449}}
498    
499     @article{MASSOBRIO:1984bl,
500     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
501 kstocke1 3854 Author = {Massobrio, C and Ciccotti, G},
502 gezelter 3819 Date = {1984},
503     Date-Added = {2012-12-17 16:55:03 +0000},
504 kstocke1 3854 Date-Modified = {2012-12-21 22:42:02 +0000},
505 gezelter 3819 Journal = pra,
506     Pages = {3191-3197},
507     Publisher = {AMERICAN PHYSICAL SOC},
508     Timescited = {29},
509     Title = {LENNARD-JONES TRIPLE-POINT CONDUCTIVITY VIA WEAK EXTERNAL FIELDS},
510     Volume = {30},
511     Year = {1984}}
512    
513     @article{PhysRevB.37.5677,
514     Author = {Heyes, David M.},
515     Date-Added = {2012-12-17 16:54:55 +0000},
516     Date-Modified = {2012-12-17 16:54:55 +0000},
517     Doi = {10.1103/PhysRevB.37.5677},
518     Journal = prb,
519     Month = {Apr},
520     Number = {10},
521     Numpages = {19},
522     Pages = {5677--5696},
523     Publisher = {American Physical Society},
524     Title = {Transport coefficients of Lennard-Jones fluids: A molecular-dynamics and effective-hard-sphere treatment},
525     Volume = {37},
526     Year = {1988},
527     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.37.5677}}
528    
529     @article{PhysRevB.80.195406,
530     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
531     Date-Added = {2012-12-17 16:54:55 +0000},
532     Date-Modified = {2012-12-17 16:54:55 +0000},
533     Doi = {10.1103/PhysRevB.80.195406},
534     Journal = prb,
535     Month = {Nov},
536     Number = {19},
537     Numpages = {6},
538     Pages = {195406},
539     Publisher = {American Physical Society},
540     Title = {Cooling dynamics and thermal interface resistance of glass-embedded metal nanoparticles},
541     Volume = {80},
542     Year = {2009},
543     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
544    
545     @article{Wang10082007,
546     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
547     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
548     Date-Added = {2012-12-17 16:54:31 +0000},
549     Date-Modified = {2012-12-17 16:54:31 +0000},
550     Doi = {10.1126/science.1145220},
551     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
552     Journal = {Science},
553     Number = {5839},
554     Pages = {787-790},
555     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
556     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
557     Volume = {317},
558     Year = {2007},
559     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
560     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
561    
562     @article{doi:10.1021/la904855s,
563     Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
564     Date-Added = {2012-12-17 16:54:12 +0000},
565     Date-Modified = {2012-12-17 16:54:12 +0000},
566     Doi = {10.1021/la904855s},
567     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
568     Journal = {Langmuir},
569     Note = {PMID: 20166728},
570     Number = {6},
571     Pages = {3786-3789},
572     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
573     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
574     Volume = {26},
575     Year = {2010},
576     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
577     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
578    
579     @article{doi:10.1021/jp048375k,
580     Abstract = { Water- and alcohol-soluble AuPd nanoparticles have been investigated to determine the effect of the organic stabilizing group on the thermal conductance G of the particle/fluid interface. The thermal decays of tiopronin-stabilized 3−5-nm diameter AuPd alloy nanoparticles, thioalkylated ethylene glycol-stabilized 3−5-nm diameter AuPd nanoparticles, and cetyltrimethylammonium bromide-stabilized 22-nm diameter Au-core/AuPd-shell nanoparticles give thermal conductances G ≈ 100−300 MW m-2 K-1 for the particle/water interfaces, approximately an order of magnitude larger than the conductance of the interfaces between alkanethiol-terminated AuPd nanoparticles and toluene. The similar values of G for particles ranging in size from 3 to 24 nm with widely varying surface chemistry indicate that the thermal coupling between AuPd nanoparticles and water is strong regardless of the self-assembled stabilizing group. },
581     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
582     Date-Added = {2012-12-17 16:54:03 +0000},
583     Date-Modified = {2012-12-17 16:54:03 +0000},
584     Doi = {10.1021/jp048375k},
585     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048375k},
586     Journal = jpcb,
587     Number = {49},
588     Pages = {18870-18875},
589     Title = {AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution},
590     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
591     Volume = {108},
592     Year = {2004},
593     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
594     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048375k}}
595    
596     @article{doi:10.1021/jp8051888,
597     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
598     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
599     Date-Added = {2012-12-17 16:54:03 +0000},
600     Date-Modified = {2012-12-17 16:54:03 +0000},
601     Doi = {10.1021/jp8051888},
602     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
603     Journal = jpcc,
604     Number = {35},
605     Pages = {13320-13323},
606     Title = {Probing the Gold Nanorod−Ligand−Solvent Interface by Plasmonic Absorption and Thermal Decay},
607     Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
608     Volume = {112},
609     Year = {2008},
610     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
611     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
612    
613     @article{PhysRevB.67.054302,
614     Author = {Costescu, Ruxandra M. and Wall, Marcel A. and Cahill, David G.},
615     Date-Added = {2012-12-17 16:53:48 +0000},
616     Date-Modified = {2012-12-17 16:53:48 +0000},
617     Doi = {10.1103/PhysRevB.67.054302},
618     Journal = prb,
619     Month = {Feb},
620     Number = {5},
621     Numpages = {5},
622     Pages = {054302},
623     Publisher = {American Physical Society},
624     Title = {Thermal conductance of epitaxial interfaces},
625     Volume = {67},
626     Year = {2003},
627     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.67.054302}}
628    
629     @article{cahill:793,
630     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
631     Date-Added = {2012-12-17 16:53:36 +0000},
632     Date-Modified = {2012-12-17 16:53:36 +0000},
633     Doi = {10.1063/1.1524305},
634     Journal = {J. Appl. Phys.},
635     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
636     Number = {2},
637     Pages = {793-818},
638     Publisher = {AIP},
639     Title = {Nanoscale thermal transport},
640     Url = {http://link.aip.org/link/?JAP/93/793/1},
641     Volume = {93},
642     Year = {2003},
643     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
644     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
645    
646     @article{Eapen:2007mw,
647     Abstract = {In a well-dispersed nanofluid with strong cluster-fluid attraction, thermal conduction paths can arise through percolating amorphouslike interfacial structures. This results in a thermal conductivity enhancement beyond the Maxwell limit of 3 phi, with phi being the nanoparticle volume fraction. Our findings from nonequilibrium molecular dynamics simulations, which are amenable to experimental verification, can provide a theoretical basis for the development of future nanofluids.},
648     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
649     Author = {Eapen, Jacob and Li, Ju and Yip, Sidney},
650     Date = {DEC 2007},
651     Date-Added = {2012-12-17 16:53:30 +0000},
652     Date-Modified = {2012-12-17 16:53:30 +0000},
653     Doi = {ARTN 062501},
654     Journal = pre,
655     Publisher = {AMER PHYSICAL SOC},
656     Timescited = {0},
657     Title = {Beyond the Maxwell limit: Thermal conduction in nanofluids with percolating fluid structures},
658     Volume = {76},
659     Year = {2007},
660     Bdsk-Url-1 = {http://dx.doi.org/062501}}
661    
662     @article{Xue:2003ya,
663     Abstract = {Using nonequilibrium molecular dynamics simulations in which a temperature gradient is imposed, we determine the thermal resistance of a model liquid-solid interface. Our simulations reveal that the strength of the bonding between liquid and solid atoms plays a key role in determining interfacial thermal resistance. Moreover, we find that the functional dependence of the thermal resistance on the strength of the liquid-solid interactions exhibits two distinct regimes: (i) exponential dependence for weak bonding (nonwetting liquid) and (ii) power law dependence for strong bonding (wetting liquid). The identification of the two regimes of the Kapitza resistance has profound implications for understanding and designing the thermal properties of nanocomposite materials. (C) 2003 American Institute of Physics.},
664     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
665     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
666     Date = {JAN 1 2003},
667     Date-Added = {2012-12-17 16:53:22 +0000},
668     Date-Modified = {2012-12-17 16:53:22 +0000},
669     Doi = {DOI 10.1063/1.1525806},
670     Journal = jcp,
671     Pages = {337-339},
672     Publisher = {AMER INST PHYSICS},
673     Timescited = {19},
674     Title = {Two regimes of thermal resistance at a liquid-solid interface},
675     Volume = {118},
676     Year = {2003},
677     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1525806}}
678    
679     @article{Xue:2004oa,
680     Abstract = {Using non-equilibrium molecular dynamics simulations in which a temperature gradient is imposed, we study how the ordering of the liquid at the liquid-solid interface affects the interfacial thermal resistance. Our simulations of a simple monoatomic liquid show no effect on the thermal transport either normal to the surface or parallel to the surface. Even for of a liquid that is highly confined between two solids, we find no effect on thermal conductivity. This contrasts with well-known significant effect of confinement on the viscoelastic response. Our findings suggest that the experimentally observed large enhancement of thermal conductivity in suspensions of solid nanosized particles (nanofluids) can not be explained by altered thermal transport properties of the layered liquid. (C) 2004 Elsevier Ltd. All rights reserved.},
681     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
682     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
683     Date = {SEP 2004},
684     Date-Added = {2012-12-17 16:53:22 +0000},
685     Date-Modified = {2012-12-17 16:53:22 +0000},
686     Doi = {DOI 10.1016/ijheatmasstransfer.2004.05.016},
687     Journal = {International Journal of Heat and Mass Transfer},
688     Keywords = {interfacial thermal resistance; liquid-solid interface; molecular dynamics simulations; nanofluids},
689     Pages = {4277-4284},
690     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
691     Timescited = {29},
692     Title = {Effect of liquid layering at the liquid-solid interface on thermal transport},
693     Volume = {47},
694     Year = {2004},
695     Bdsk-Url-1 = {http://dx.doi.org/10.1016/ijheatmasstransfer.2004.05.016}}
696    
697     @article{Lee:1999ct,
698     Abstract = {Oxide nanofluids were produced and their thermal conductivities were measured by a transient hot-wire method. The experimental results show that these nanofluids, containing a small amount of nanoparticles, have substantially higher thermal conductivities than the same liquids without nanoparticles. Comparisons between experiments and the Hamilton and Crosser model show that the model can predict the thermal conductivity of nanofluids containing large agglomerated Al2O3 particles. However, the model appears to be inadequate for nanofluids containing CuO particles. This suggests that not only particle shape but size is considered to be dominant in enhancing the thermal conductivity of nanofluids.},
699     Address = {345 E 47TH ST, NEW YORK, NY 10017 USA},
700     Author = {Lee, S and Choi, SUS and Li, S and Eastman, JA},
701     Date = {MAY 1999},
702     Date-Added = {2012-12-17 16:53:15 +0000},
703     Date-Modified = {2012-12-17 16:53:15 +0000},
704     Journal = {Journal of Heat Transfer-Transactions of the Asme},
705     Keywords = {conduction; enhancement; heat transfer; nanoscale; two-phase},
706     Pages = {280-289},
707     Publisher = {ASME-AMER SOC MECHANICAL ENG},
708     Timescited = {183},
709     Title = {Measuring thermal conductivity of fluids containing oxide nanoparticles},
710     Volume = {121},
711     Year = {1999}}
712    
713     @article{Keblinski:2002bx,
714     Abstract = {Recent measurements on nanofluids have demonstrated that the thermal conductivity increases with decreasing grain size. However, Such increases cannot be explained by existing theories. We explore four possible explanations for this anomalous increase: Brownian motion of the particles, molecular-level layering of the liquid at the liquid/particle interface, the nature of heat transport in the nanoparticles. and the effects of nanoparticle clustering. We show that the key factors in understanding thermal properties of nanofluids are the ballistic, rather than diffusive, nature of heat transport in the nanoparticles, combined with direct or fluid-mediated clustering effects that provide paths for rapid heat transport. (C) 2001 Elsevier Science Ltd. All rights reserved.},
715     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
716     Author = {Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
717     Date = {FEB 2002},
718     Date-Added = {2012-12-17 16:53:06 +0000},
719     Date-Modified = {2012-12-17 16:53:06 +0000},
720     Journal = {International Journal of Heat and Mass Transfer},
721     Keywords = {thermal conductivity; nanofluids; molecular dynamics simulations; ballistic heat transport},
722     Pages = {855-863},
723     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
724     Timescited = {161},
725     Title = {Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)},
726     Volume = {45},
727     Year = {2002}}
728    
729     @article{Eastman:2001wb,
730     Abstract = {It is shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure ethylene glycol or ethylene glycol containing the same volume fraction of dispersed oxide nanoparticles. The effective thermal conductivity of ethylene glycol is shown to be increased by up to 40\% for a nanofluid consisting of ethylene glycol containing approximately 0.3 vol \% Cu nanoparticles of mean diameter < 10 nm. The results are anomalous based on previous theoretical calculations that had predicted a strong effect of particle shape on effective nanofluid thermal conductivity, but no effect of either particle size or particle thermal conductivity. (C) 2001 American Institute of Physics.},
731     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
732     Author = {Eastman, JA and Choi, SUS and Li, S and Yu, W and Thompson, LJ},
733     Date = {FEB 5 2001},
734     Date-Added = {2012-12-17 16:52:55 +0000},
735     Date-Modified = {2012-12-17 16:52:55 +0000},
736     Journal = {Applied Physics Letters},
737     Pages = {718-720},
738     Publisher = {AMER INST PHYSICS},
739     Timescited = {246},
740     Title = {Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles},
741     Volume = {78},
742     Year = {2001}}
743    
744     @article{Eapen:2007th,
745     Abstract = {Transient hot-wire data on thermal conductivity of suspensions of silica and perfluorinated particles show agreement with the mean-field theory of Maxwell but not with the recently postulated microconvection mechanism. The influence of interfacial thermal resistance, convective effects at microscales, and the possibility of thermal conductivity enhancements beyond the Maxwell limit are discussed.},
746     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
747     Author = {Eapen, Jacob and Williams, Wesley C. and Buongiorno, Jacopo and Hu, Lin-Wen and Yip, Sidney and Rusconi, Roberto and Piazza, Roberto},
748     Date = {AUG 31 2007},
749     Date-Added = {2012-12-17 16:52:46 +0000},
750     Date-Modified = {2012-12-17 16:52:46 +0000},
751     Doi = {ARTN 095901},
752     Journal = prl,
753     Publisher = {AMER PHYSICAL SOC},
754     Timescited = {8},
755     Title = {Mean-field versus microconvection effects in nanofluid thermal conduction},
756     Volume = {99},
757     Year = {2007},
758     Bdsk-Url-1 = {http://dx.doi.org/095901}}
759    
760     @article{Plech:2005kx,
761     Abstract = {The transient structural response of laser excited gold nanoparticle sols has been recorded by pulsed X-ray scattering. Time resolved wide angle and small angle scattering (SAXS) record the changes in structure both of the nanoparticles and the water environment subsequent to femtosecond laser excitation. Within the first nanosecond after the excitation of the nanoparticles, the water phase shows a signature of compression, induced by a heat-induced evaporation of the water shell close to the heated nanoparticles. The particles themselves undergo a melting transition and are fragmented to Form new clusters in the nanometer range. (C) 2004 Elsevier B.V. All rights reserved.},
762     Author = {Plech, A and Kotaidis, V and Lorenc, M and Wulff, M},
763     Date-Added = {2012-12-17 16:52:34 +0000},
764     Date-Modified = {2012-12-17 16:52:34 +0000},
765     Doi = {DOI 10.1016/j.cplett.2004.11.072},
766     Journal = cpl,
767     Local-Url = {file://localhost/Users/charles/Documents/Papers/sdarticle3.pdf},
768     Pages = {565-569},
769     Title = {Thermal dynamics in laser excited metal nanoparticles},
770     Volume = {401},
771     Year = {2005},
772     Bdsk-Url-1 = {http://dx.doi.org/10.1016/j.cplett.2004.11.072}}
773    
774     @article{Wilson:2002uq,
775     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
776     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
777     Date-Added = {2012-12-17 16:52:22 +0000},
778     Date-Modified = {2012-12-17 16:52:22 +0000},
779     Doi = {ARTN 224301},
780     Journal = {Phys. Rev. B},
781     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
782     Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
783     Volume = {66},
784     Year = {2002},
785     Bdsk-Url-1 = {http://dx.doi.org/224301}}
786    
787     @article{Mazzaglia:2008to,
788     Abstract = {Amphiphilic cyclodextrins (CDs) modified in the upper rim with thiohexyl groups and in the lower rim with oligoethylene amino (SC6NH2) or oligoethylene hydroxyl groups (SC6OH) can bind gold colloids, yielding Au/CD particles with an average hydrodynamic radius (RH) of 2 and 25 rim in water solution. The systems were investigated by UV-vis, quasi-elastic light scattering, and FTIR-ATR techniques. The concentration of amphiphiles was kept above the concentration of gold colloids to afford complete covering. In the case of SC6NH2, basic conditions (Et3N, pH 11) yield promptly the decoration of Au, which can be stabilized by linkage of CD amino and/or thioether groups. The critical aggregation concentration of SC6NH2 was measured (similar to 4 mu M) by surface tension measurements, pointing out that about 50\% of CDs are present in nonaggregated form. Whereas Au/SC6NH2 colloids were stable in size and morphology for at least one month, the size of the Au/SC6OH system increases remarkably, forming nanoaggregates of 20 and 80 rim in two hours. Under physiological conditions, the gold/amino amphiphiles system can internalize in HeLa cells, as shown by extinction spectra registered on the immobilized cells. The gold delivered by cyclodextrins can induce photothermal damage upon irradiation, doubling the cell mortality with respect to uncovered gold colloids. These findings can open useful perspectives to the application of these self-assembled systems in cancer photothermal therapy.},
789     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
790     Author = {Mazzaglia, Antonino and Trapani, Mariachiara and Villari, Valentina and Micali, Norberto and Merlo, Francesca Marino and Zaccaria, Daniela and Sciortino, Maria Teresa and Previti, Francesco and Patane, Salvatore and Scolaro, Luigi Monsu},
791     Date = {MAY 1 2008},
792     Date-Added = {2012-12-17 16:52:15 +0000},
793     Date-Modified = {2012-12-17 16:52:15 +0000},
794     Doi = {DOI 10.1021/jp7120033},
795     Journal = jpcc,
796     Pages = {6764-6769},
797     Publisher = {AMER CHEMICAL SOC},
798     Timescited = {0},
799     Title = {Amphiphilic cyclodextrins as capping agents for gold colloids: A spectroscopic investigation with perspectives in photothermal therapy},
800     Volume = {112},
801     Year = {2008},
802     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp7120033}}
803    
804     @article{Gnyawali:2008lp,
805     Abstract = {Tissue surface temperature distribution on the treatment site can serve as an indicator for the effectiveness of a photothermal therapy. In this study, both infrared thermography and theoretical simulation were used to determine the surface temperature distribution during laser irradiation of both gel phantom and animal tumors. Selective photothermal interaction was attempted by using intratumoral indocyanine green enhancement and irradiation via a near-infrared laser. An immunoadjuvant was also used to enhance immunological responses during tumor treatment. Monte Carlo method for tissue absorption of light and finite difference method for heat diffusion in tissue were used to simulate the temperature distribution during the selective laser photothermal interaction. An infrared camera was used to capture the thermal images during the laser treatment and the surface temperature was determined. Our findings show that the theoretical and experimental results are in good agreement and that the surface temperature of irradiated tissue can be controlled with appropriate dye and adjuvant enhancement. These results can be used to control the laser tumor treatment parameters and to optimize the treatment outcome. More importantly, when used with immunotherapy as a precursor of immunological responses, the selective photothermal treatment can be guided by the tissue temperature profiles both in the tumor and on the surface.},
806     Address = {TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY},
807     Author = {Gnyawali, Surya C. and Chen, Yicho and Wu, Feng and Bartels, Kenneth E. and Wicksted, James P. and Liu, Hong and Sen, Chandan K. and Chen, Wei R.},
808     Date = {FEB 2008},
809     Date-Added = {2012-12-17 16:52:08 +0000},
810     Date-Modified = {2012-12-17 16:52:08 +0000},
811     Doi = {DOI 10.1007/s11517-007-0251-5},
812     Journal = {Medical \& Biological Engineering \& Computing},
813     Keywords = {infrared thermography; indocyanine green; glycated chitosan; surface temperature; Monte Carlo simulation},
814     Pages = {159-168},
815     Publisher = {SPRINGER HEIDELBERG},
816     Timescited = {0},
817     Title = {Temperature measurement on tissue surface during laser irradiation},
818     Volume = {46},
819     Year = {2008},
820     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11517-007-0251-5}}
821    
822     @article{Petrova:2007ad,
823     Abstract = {This paper describes our recent time-resolved spectroscopy studies of the properties of gold particles at high laser excitation levels. In these experiments, an intense pump laser pulse rapidly heats the particle, creating very high lattice temperatures - up to the melting point of bulk gold. These high temperatures can have dramatic effects on the particle and the surroundings. The lattice temperature created is determined by observing the coherently excited the vibrational modes of the particles. The periods of these modes depend on temperature, thus, they act as an internal thermometer. We have used these experiments to provide values for the threshold temperatures for explosive boiling of the solvent surrounding the particles, and laser induced structural transformations in non-spherical particles. The results of these experiments are relevant to the use of metal nanoparticles in photothermal therapy, where laser induced heating is used to selectively kill cells.},
824     Address = {LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY},
825     Author = {Petrova, Hristina and Hu, Min and Hartland, Gregory V.},
826     Date = {2007},
827     Date-Added = {2012-12-17 16:52:01 +0000},
828     Date-Modified = {2012-12-17 16:52:01 +0000},
829     Doi = {DOI 10.1524/zpch.2007.221.3.361},
830     Journal = {Zeitschrift Fur Physikalische Chemie-International Journal of Research In Physical Chemistry \& Chemical Physics},
831     Keywords = {metal nanoparticles; phonon modes; photothermal properties; laser-induced heating},
832     Pages = {361-376},
833     Publisher = {OLDENBOURG VERLAG},
834     Timescited = {2},
835     Title = {Photothermal properties of gold nanoparticles},
836     Volume = {221},
837     Year = {2007},
838     Bdsk-Url-1 = {http://dx.doi.org/10.1524/zpch.2007.221.3.361}}
839    
840     @article{Jain:2007ux,
841     Abstract = {Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this review, we discuss the SPR-enhanced optical properties of noble metal nanoparticles, with an emphasis on the recent advances in the utility of these plasmonic properties in molecular-specific imaging and sensing, photo-diagnostics, and selective photothermal therapy. The strongly enhanced SPR scattering from Au nanoparticles makes them useful as bright optical tags for molecular-specific biological imaging and detection using simple dark-field optical microscopy. On the other hand, the SPR absorption of the nanoparticles has allowed their use in the selective laser photothermal therapy of cancer. We also discuss the sensitivity of the nanoparticle SPR frequency to the local medium dielectric constant, which has been successfully exploited for the optical sensing of chemical and biological analytes. Plasmon coupling between metal nanoparticle pairs is also discussed, which forms the basis for nanoparticle assembly-based biodiagnostics and the plasmon ruler for dynamic measurement of nanoscale distances in biological systems.},
842     Address = {233 SPRING STREET, NEW YORK, NY 10013 USA},
843     Author = {Jain, Prashant K. and Huang, Xiaohua and El-Sayed, Ivan H. and El-Sayad, Mostafa A.},
844     Date = {SEP 2007},
845     Date-Added = {2012-12-17 16:51:52 +0000},
846     Date-Modified = {2012-12-17 16:51:52 +0000},
847     Doi = {DOI 10.1007/s11468-007-9031-1},
848     Journal = {Plasmonics},
849     Keywords = {surface plasmon resonance (SPR); SPR sensing; Mie scattering; metal nanocrystals for biodiagnostics; photothermal therapy; plasmon coupling},
850     Number = {3},
851     Pages = {107-118},
852     Publisher = {SPRINGER},
853     Timescited = {2},
854     Title = {Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems},
855     Volume = {2},
856     Year = {2007},
857     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11468-007-9031-1}}
858    
859 kstocke1 3801 @techreport{Goddard1998,
860     Author = {Kimura, Y. and Cagin, T. and Goddard III, W.A.},
861 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
862     Date-Modified = {2012-12-05 22:18:01 +0000},
863 kstocke1 3801 Institution = {California Institute of Technology},
864     Lastchecked = {January 19, 2011},
865     Number = {003},
866     Title = {The Quantum Sutton-Chen Many Body Potential for Properties of fcc Metals},
867     Url = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf},
868     Year = {1998},
869     Bdsk-Url-1 = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf}}
870    
871     @article{Kuang2010,
872     Author = {Shenyu Kuang and J. Daniel Gezelter},
873 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
874     Date-Modified = {2012-12-05 22:18:01 +0000},
875 kstocke1 3801 Journal = {J. Chem. Phys.},
876     Keywords = {NIVS, RNEMD, NIVS-RNEMD},
877     Month = {October},
878     Pages = {164101-1 - 164101-9},
879     Title = {A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity},
880     Volume = {133},
881     Year = {2010}}
882    
883     @article{Kuang2012,
884     Author = {Shenyu Kuang and J. Daniel Gezelter},
885 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
886     Date-Modified = {2012-12-05 22:18:01 +0000},
887 kstocke1 3801 Journal = {Mol. Phys.},
888     Keywords = {VSS, RNEMD, VSS-RNEMD},
889     Month = {May},
890     Number = {9-10},
891     Pages = {691-701},
892     Title = {Velocity shearing and scaling RNEMD: a minimally perturbing method for simulating temperature and momentum gradients},
893     Volume = {110},
894     Year = {2012}}
895 kstocke1 3804
896     @article{doi:10.1080/0026897031000068578,
897     Abstract = { Using equilibrium and non-equilibrium molecular dynamics simulations, we determine the Kapitza resistance (or thermal contact resistance) at a model liquid-solid interface. The Kapitza resistance (or the associated Kapitza length) can reach appreciable values when the liquid does not wet the solid. The analogy with the hydrodynamic slip length is discussed. },
898     Author = {Barrat, Jean-Louis and Chiaruttini, Fran{\c c}ois},
899     Date-Added = {2011-12-13 17:17:05 -0500},
900     Date-Modified = {2011-12-13 17:17:05 -0500},
901     Doi = {10.1080/0026897031000068578},
902     Eprint = {http://tandfprod.literatumonline.com/doi/pdf/10.1080/0026897031000068578},
903     Journal = {Mol. Phys.},
904     Number = {11},
905     Pages = {1605-1610},
906     Title = {Kapitza resistance at the liquid---solid interface},
907     Url = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
908     Volume = {101},
909     Year = {2003},
910     Bdsk-Url-1 = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
911     Bdsk-Url-2 = {http://dx.doi.org/10.1080/0026897031000068578}}
912    
913     @article{Medina2011,
914     Abstract = {Molecular dynamics (MD) simulations are carried out on a system of rigid or flexible water molecules at a series of temperatures between 273 and 368&#xa0;K. Collective transport coefficients, such as shear and bulk viscosities are calculated, and their behavior is systematically investigated as a function of flexibility and temperature. It is found that by including the intramolecular terms in the potential the calculated viscosity values are in overall much better agreement, compared to earlier and recent available experimental data, than those obtained with the rigid SPC/E model. The effect of the intramolecular degrees of freedom on transport properties of liquid water is analyzed and the incorporation of polarizability is discussed for further improvements. To our knowledge the present study constitutes the first compendium of results on viscosities for pure liquid water, including flexible models, that has been assembled.},
915     Author = {J.S. Medina and R. Prosmiti and P. Villarreal and G. Delgado-Barrio and G. Winter and B. Gonz{\'a}lez and J.V. Alem{\'a}n and C. Collado},
916     Date-Added = {2011-12-13 17:08:34 -0500},
917     Date-Modified = {2011-12-13 17:08:49 -0500},
918     Doi = {10.1016/j.chemphys.2011.07.001},
919     Issn = {0301-0104},
920     Journal = {Chemical Physics},
921     Keywords = {Viscosity calculations},
922     Number = {1-3},
923     Pages = {9 - 18},
924     Title = {Molecular dynamics simulations of rigid and flexible water models: Temperature dependence of viscosity},
925     Url = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
926     Volume = {388},
927     Year = {2011},
928     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
929     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.chemphys.2011.07.001}}
930    
931     @book{WagnerKruse,
932     Address = {Berlin},
933     Author = {W. Wagner and A. Kruse},
934     Date-Added = {2011-12-13 14:57:08 -0500},
935     Date-Modified = {2011-12-13 14:57:08 -0500},
936     Publisher = {Springer-Verlag},
937     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
938     Year = {1998}}
939    
940     @article{garde:PhysRevLett2009,
941     Author = {Shenogina, Natalia and Godawat, Rahul and Keblinski, Pawel and Garde, Shekhar},
942     Date-Added = {2011-12-13 12:48:51 -0500},
943     Date-Modified = {2011-12-13 12:48:51 -0500},
944     Doi = {10.1103/PhysRevLett.102.156101},
945     Journal = {Phys. Rev. Lett.},
946     Month = {Apr},
947     Number = {15},
948     Numpages = {4},
949     Pages = {156101},
950     Publisher = {American Physical Society},
951     Title = {How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces},
952     Volume = {102},
953     Year = {2009},
954     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.102.156101}}
955    
956     @article{garde:nl2005,
957     Abstract = { Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water−organic liquid, water−surfactant, surfactant−organic liquid, is relatively high (in the range of 65−370 MW/m2 K) compared to that for solid−liquid interfaces (∼10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid−liquid interfaces. },
958     Author = {Patel, Harshit A. and Garde, Shekhar and Keblinski, Pawel},
959     Date-Added = {2011-12-13 12:48:51 -0500},
960     Date-Modified = {2011-12-13 12:48:51 -0500},
961     Doi = {10.1021/nl051526q},
962     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl051526q},
963     Journal = {Nano Lett.},
964     Note = {PMID: 16277458},
965     Number = {11},
966     Pages = {2225-2231},
967     Title = {Thermal Resistance of Nanoscopic Liquid−Liquid Interfaces:  Dependence on Chemistry and Molecular Architecture},
968     Url = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
969     Volume = {5},
970     Year = {2005},
971     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
972     Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl051526q}}
973    
974     @article{melchionna93,
975     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
976     Date-Added = {2011-12-12 17:52:15 -0500},
977     Date-Modified = {2011-12-12 17:52:15 -0500},
978     Journal = {Mol. Phys.},
979     Pages = {533-544},
980     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
981     Volume = 78,
982     Year = 1993}
983    
984     @article{TraPPE-UA.thiols,
985     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
986     Date-Added = {2011-12-07 15:06:12 -0500},
987     Date-Modified = {2011-12-07 15:06:12 -0500},
988     Doi = {10.1021/jp0549125},
989     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
990     Journal = {J. Phys. Chem. B},
991     Number = {50},
992     Pages = {24100-24107},
993     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
994     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
995     Volume = {109},
996     Year = {2005},
997     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
998     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
999    
1000     @article{TraPPE-UA.alkylbenzenes,
1001     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
1002     Date-Added = {2011-12-07 15:06:12 -0500},
1003     Date-Modified = {2011-12-07 15:06:12 -0500},
1004     Doi = {10.1021/jp001044x},
1005     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
1006     Journal = {J. Phys. Chem. B},
1007     Number = {33},
1008     Pages = {8008-8016},
1009     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
1010     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1011     Volume = {104},
1012     Year = {2000},
1013     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1014     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
1015    
1016     @article{TraPPE-UA.alkanes,
1017     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
1018     Date-Added = {2011-12-07 15:06:12 -0500},
1019     Date-Modified = {2011-12-07 15:06:12 -0500},
1020     Doi = {10.1021/jp972543+},
1021     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
1022     Journal = {J. Phys. Chem. B},
1023     Number = {14},
1024     Pages = {2569-2577},
1025     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
1026     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
1027     Volume = {102},
1028     Year = {1998},
1029     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
1030     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+},
1031     Bdsk-Url-3 = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B}}
1032    
1033     @article{ISI:000167766600035,
1034     Abstract = {Molecular dynamics simulations are used to
1035     investigate the separation of water films adjacent
1036     to a hot metal surface. The simulations clearly show
1037     that the water layers nearest the surface overheat
1038     and undergo explosive boiling. For thick films, the
1039     expansion of the vaporized molecules near the
1040     surface forces the outer water layers to move away
1041     from the surface. These results are of interest for
1042     mass spectrometry of biological molecules, steam
1043     cleaning of surfaces, and medical procedures.},
1044     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1045     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1046     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1047     Date-Added = {2011-12-07 15:02:32 -0500},
1048     Date-Modified = {2011-12-07 15:02:32 -0500},
1049     Doc-Delivery-Number = {416ED},
1050     Issn = {1089-5639},
1051     Journal = {J. Phys. Chem. A},
1052     Journal-Iso = {J. Phys. Chem. A},
1053     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1054     Language = {English},
1055     Month = {MAR 29},
1056     Number = {12},
1057     Number-Of-Cited-References = {65},
1058     Pages = {2748-2755},
1059     Publisher = {AMER CHEMICAL SOC},
1060     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1061     Times-Cited = {66},
1062     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
1063     Type = {Article},
1064     Unique-Id = {ISI:000167766600035},
1065     Volume = {105},
1066     Year = {2001}}
1067    
1068     @article{Chen90,
1069     Author = {A.~P. Sutton and J. Chen},
1070     Date-Added = {2011-12-07 15:01:59 -0500},
1071     Date-Modified = {2011-12-07 15:01:59 -0500},
1072     Journal = {Philos. Mag. Lett.},
1073     Pages = {139-146},
1074     Title = {Long-Range Finnis Sinclair Potentials},
1075     Volume = 61,
1076     Year = {1990}}
1077    
1078     @article{PhysRevB.59.3527,
1079     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
1080     Date-Added = {2011-12-07 15:01:36 -0500},
1081     Date-Modified = {2011-12-07 15:01:36 -0500},
1082     Doi = {10.1103/PhysRevB.59.3527},
1083     Journal = {Phys. Rev. B},
1084     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
1085     Month = {Feb},
1086     Number = {5},
1087     Numpages = {6},
1088     Pages = {3527-3533},
1089     Publisher = {American Physical Society},
1090     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
1091     Volume = {59},
1092     Year = {1999},
1093     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
1094    
1095     @article{Bedrov:2000,
1096     Abstract = {We have applied a new nonequilibrium molecular
1097     dynamics (NEMD) method {[}F. Muller-Plathe,
1098     J. Chem. Phys. 106, 6082 (1997)] previously applied
1099     to monatomic Lennard-Jones fluids in the
1100     determination of the thermal conductivity of
1101     molecular fluids. The method was modified in order
1102     to be applicable to systems with holonomic
1103     constraints. Because the method involves imposing a
1104     known heat flux it is particularly attractive for
1105     systems involving long-range and many-body
1106     interactions where calculation of the microscopic
1107     heat flux is difficult. The predicted thermal
1108     conductivities of liquid n-butane and water using
1109     the imposed-flux NEMD method were found to be in a
1110     good agreement with previous simulations and
1111     experiment. (C) 2000 American Institute of
1112     Physics. {[}S0021-9606(00)50841-1].},
1113     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1114     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1115     Author = {Bedrov, D and Smith, GD},
1116     Date-Added = {2011-12-07 15:00:27 -0500},
1117     Date-Modified = {2011-12-07 15:00:27 -0500},
1118     Doc-Delivery-Number = {369BF},
1119     Issn = {0021-9606},
1120     Journal = {J. Chem. Phys.},
1121     Journal-Iso = {J. Chem. Phys.},
1122     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1123     Language = {English},
1124     Month = {NOV 8},
1125     Number = {18},
1126     Number-Of-Cited-References = {26},
1127     Pages = {8080-8084},
1128     Publisher = {AMER INST PHYSICS},
1129     Read = {1},
1130     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1131     Times-Cited = {23},
1132     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
1133     Type = {Article},
1134     Unique-Id = {ISI:000090151400044},
1135     Volume = {113},
1136     Year = {2000}}
1137    
1138     @article{10.1063/1.3330544,
1139     Author = {Miguel Angel Gonz{\'a}lez and Jos{\'e} L. F. Abascal},
1140     Coden = {JCPSA6},
1141     Date-Added = {2011-12-07 14:59:20 -0500},
1142     Date-Modified = {2011-12-15 13:10:11 -0500},
1143     Doi = {DOI:10.1063/1.3330544},
1144     Eissn = {10897690},
1145     Issn = {00219606},
1146     Journal = {J. Chem. Phys.},
1147     Keywords = {shear strength; viscosity;},
1148     Number = {9},
1149     Pages = {096101},
1150     Publisher = {AIP},
1151     Title = {The shear viscosity of rigid water models},
1152     Url = {http://dx.doi.org/doi/10.1063/1.3330544},
1153     Volume = {132},
1154     Year = {2010},
1155     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3330544},
1156     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3330544}}
1157    
1158     @article{doi:10.1021/jp048434u,
1159     Abstract = { The different possible proton-ordered structures of ice Ih for an orthorombic unit cell with 8 water molecules were derived. The number of unique structures was found to be 16. The crystallographic coordinates of these are reported. The energetics of the different polymorphs were investigated by quantum-mechanical density-functional theory calculations and for comparison by molecular-mechanics analytical potential models. The polymorphs were found to be close in energy, i.e., within approximately 0.25 kcal/mol H2O, on the basis of the quantum-chemical DFT methods. At 277 K, the different energy levels are about evenly populated, but at a lower temperature, a transition to an ordered form is expected. This form was found to agree with the ice phase XI. The difference in lattice energies among the polymorphs was rationalized in terms of structural characteristics. The most important parameters to determine the lattice energies were found to be the distributions of water dimer H-bonded pair conformations, in an intricate manner. },
1160     Author = {Hirsch, Tomas K. and Ojam{\"a}e, Lars},
1161     Date-Added = {2011-12-07 14:38:30 -0500},
1162     Date-Modified = {2011-12-07 14:38:30 -0500},
1163     Doi = {10.1021/jp048434u},
1164     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048434u},
1165     Journal = {J. Phys. Chem. B},
1166     Number = {40},
1167     Pages = {15856-15864},
1168     Title = {Quantum-Chemical and Force-Field Investigations of Ice Ih:  Computation of Proton-Ordered Structures and Prediction of Their Lattice Energies},
1169     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1170     Volume = {108},
1171     Year = {2004},
1172     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1173     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048434u}}
1174    
1175     @article{Meineke:2005gd,
1176     Abstract = {OOPSE is a new molecular dynamics simulation program
1177     that is capable of efficiently integrating equations
1178     of motion for atom types with orientational degrees
1179     of freedom (e.g. #sticky# atoms and point
1180     dipoles). Transition metals can also be simulated
1181     using the embedded atom method (EAM) potential
1182     included in the code. Parallel simulations are
1183     carried out using the force-based decomposition
1184     method. Simulations are specified using a very
1185     simple C-based meta-data language. A number of
1186     advanced integrators are included, and the basic
1187     integrator for orientational dynamics provides
1188     substantial improvements over older quaternion-based
1189     schemes.},
1190     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1191     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1192     Date-Added = {2011-12-07 13:33:04 -0500},
1193     Date-Modified = {2011-12-07 13:33:04 -0500},
1194     Doi = {DOI 10.1002/jcc.20161},
1195     Isi = {000226558200006},
1196     Isi-Recid = {142688207},
1197     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1198     Journal = {J. Comput. Chem.},
1199     Keywords = {OOPSE; molecular dynamics},
1200     Month = feb,
1201     Number = {3},
1202     Pages = {252-271},
1203     Publisher = {JOHN WILEY \& SONS INC},
1204     Times-Cited = {9},
1205     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1206     Volume = {26},
1207     Year = {2005},
1208     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1209     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1210    
1211     @article{hoover85,
1212     Author = {W.~G. Hoover},
1213     Date-Added = {2011-12-06 14:23:41 -0500},
1214     Date-Modified = {2011-12-06 14:23:41 -0500},
1215     Journal = {Phys. Rev. A},
1216     Pages = 1695,
1217     Title = {Canonical dynamics: Equilibrium phase-space distributions},
1218     Volume = 31,
1219     Year = 1985}
1220    
1221     @article{Maginn:2010,
1222     Abstract = {The reverse nonequilibrium molecular dynamics
1223     (RNEMD) method calculates the shear viscosity of a
1224     fluid by imposing a nonphysical exchange of momentum
1225     and measuring the resulting shear velocity
1226     gradient. In this study we investigate the range of
1227     momentum flux values over which RNEMD yields usable
1228     (linear) velocity gradients. We find that nonlinear
1229     velocity profiles result primarily from gradients in
1230     fluid temperature and density. The temperature
1231     gradient results from conversion of heat into bulk
1232     kinetic energy, which is transformed back into heat
1233     elsewhere via viscous heating. An expression is
1234     derived to predict the temperature profile resulting
1235     from a specified momentum flux for a given fluid and
1236     simulation cell. Although primarily bounded above,
1237     we also describe milder low-flux limitations. RNEMD
1238     results for a Lennard-Jones fluid agree with
1239     equilibrium molecular dynamics and conventional
1240     nonequilibrium molecular dynamics calculations at
1241     low shear, but RNEMD underpredicts viscosity
1242     relative to conventional NEMD at high shear.},
1243     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1244     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1245     Article-Number = {014103},
1246     Author = {Tenney, Craig M. and Maginn, Edward J.},
1247     Author-Email = {ed@nd.edu},
1248     Date-Added = {2011-12-05 18:29:08 -0500},
1249     Date-Modified = {2011-12-05 18:29:08 -0500},
1250     Doc-Delivery-Number = {542DQ},
1251     Doi = {10.1063/1.3276454},
1252     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1253     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1254     Issn = {0021-9606},
1255     Journal = {J. Chem. Phys.},
1256     Journal-Iso = {J. Chem. Phys.},
1257     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1258     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1259     Language = {English},
1260     Month = {JAN 7},
1261     Number = {1},
1262     Number-Of-Cited-References = {20},
1263     Pages = {014103},
1264     Publisher = {AMER INST PHYSICS},
1265     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1266     Times-Cited = {0},
1267     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
1268     Type = {Article},
1269     Unique-Id = {ISI:000273472300004},
1270     Volume = {132},
1271     Year = {2010},
1272     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1273    
1274     @article{ISI:000080382700030,
1275     Abstract = {A nonequilibrium method for calculating the shear
1276     viscosity is presented. It reverses the
1277     cause-and-effect picture customarily used in
1278     nonequilibrium molecular dynamics: the effect, the
1279     momentum flux or stress, is imposed, whereas the
1280     cause, the velocity gradient or shear rate, is
1281     obtained from the simulation. It differs from other
1282     Norton-ensemble methods by the way in which the
1283     steady-state momentum flux is maintained. This
1284     method involves a simple exchange of particle
1285     momenta, which is easy to implement. Moreover, it
1286     can be made to conserve the total energy as well as
1287     the total linear momentum, so no coupling to an
1288     external temperature bath is needed. The resulting
1289     raw data, the velocity profile, is a robust and
1290     rapidly converging property. The method is tested on
1291     the Lennard-Jones fluid near its triple point. It
1292     yields a viscosity of 3.2-3.3, in Lennard-Jones
1293     reduced units, in agreement with literature
1294     results. {[}S1063-651X(99)03105-0].},
1295     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1296     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1297     Author = {M\"{u}ller-Plathe, F},
1298     Date-Added = {2011-12-05 18:18:37 -0500},
1299     Date-Modified = {2011-12-05 18:18:37 -0500},
1300     Doc-Delivery-Number = {197TX},
1301     Issn = {1063-651X},
1302     Journal = {Phys. Rev. E},
1303     Journal-Iso = {Phys. Rev. E},
1304     Language = {English},
1305     Month = {MAY},
1306     Number = {5, Part A},
1307     Number-Of-Cited-References = {17},
1308     Pages = {4894-4898},
1309     Publisher = {AMERICAN PHYSICAL SOC},
1310     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1311     Times-Cited = {57},
1312     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1313     Type = {Article},
1314     Unique-Id = {ISI:000080382700030},
1315     Volume = {59},
1316     Year = {1999}}
1317    
1318     @article{MullerPlathe:1997xw,
1319     Abstract = {A nonequilibrium molecular dynamics method for
1320     calculating the thermal conductivity is
1321     presented. It reverses the usual cause and effect
1322     picture. The ''effect,'' the heat flux, is imposed
1323     on the system and the ''cause,'' the temperature
1324     gradient is obtained from the simulation. Besides
1325     being very simple to implement, the scheme offers
1326     several advantages such as compatibility with
1327     periodic boundary conditions, conservation of total
1328     energy and total linear momentum, and the sampling
1329     of a rapidly converging quantity (temperature
1330     gradient) rather than a slowly converging one (heat
1331     flux). The scheme is tested on the Lennard-Jones
1332     fluid. (C) 1997 American Institute of Physics.},
1333     Address = {WOODBURY},
1334     Author = {M\"{u}ller-Plathe, F.},
1335     Cited-Reference-Count = {13},
1336     Date = {APR 8},
1337     Date-Added = {2011-12-05 18:18:37 -0500},
1338     Date-Modified = {2011-12-05 18:18:37 -0500},
1339     Document-Type = {Article},
1340     Isi = {ISI:A1997WR62000032},
1341     Isi-Document-Delivery-Number = {WR620},
1342     Iso-Source-Abbreviation = {J. Chem. Phys.},
1343     Issn = {0021-9606},
1344     Journal = {J. Chem. Phys.},
1345     Language = {English},
1346     Month = {Apr},
1347     Number = {14},
1348     Page-Count = {4},
1349     Pages = {6082--6085},
1350     Publication-Type = {J},
1351     Publisher = {AMER INST PHYSICS},
1352     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1353     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1354     Source = {J CHEM PHYS},
1355     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1356     Times-Cited = {106},
1357     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1358     Volume = {106},
1359     Year = {1997}}
1360    
1361     @article{priezjev:204704,
1362     Author = {Nikolai V. Priezjev},
1363     Date-Added = {2011-11-28 14:39:18 -0500},
1364     Date-Modified = {2011-11-28 14:39:18 -0500},
1365     Doi = {10.1063/1.3663384},
1366     Eid = {204704},
1367     Journal = {J. Chem. Phys.},
1368     Keywords = {channel flow; diffusion; flow simulation; hydrodynamics; molecular dynamics method; pattern formation; random processes; shear flow; slip flow; wetting},
1369     Number = {20},
1370     Numpages = {9},
1371     Pages = {204704},
1372     Publisher = {AIP},
1373     Title = {Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures},
1374     Url = {http://link.aip.org/link/?JCP/135/204704/1},
1375     Volume = {135},
1376     Year = {2011},
1377     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/135/204704/1},
1378     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3663384}}
1379    
1380     @article{bryk:10258,
1381     Author = {Taras Bryk and A. D. J. Haymet},
1382     Date-Added = {2011-11-22 17:06:35 -0500},
1383     Date-Modified = {2011-11-22 17:06:35 -0500},
1384     Doi = {10.1063/1.1519538},
1385     Journal = {J. Chem. Phys.},
1386     Keywords = {liquid structure; molecular dynamics method; water; ice; interface structure},
1387     Number = {22},
1388     Pages = {10258-10268},
1389     Publisher = {AIP},
1390     Title = {Ice 1h/water interface of the SPC/E model: Molecular dynamics simulations of the equilibrium basal and prism interfaces},
1391     Url = {http://link.aip.org/link/?JCP/117/10258/1},
1392     Volume = {117},
1393     Year = {2002},
1394     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/117/10258/1},
1395     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1519538}}
1396    
1397     @misc{openmd,
1398     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
1399     Date-Added = {2011-11-18 15:32:23 -0500},
1400     Date-Modified = {2011-11-18 15:32:23 -0500},
1401     Howpublished = {Available at {\tt http://openmd.net}},
1402     Title = {{OpenMD, an open source engine for molecular dynamics}}}
1403    
1404     @article{kuang:AuThl,
1405     Author = {Kuang, Shenyu and Gezelter, J. Daniel},
1406     Date-Added = {2011-11-18 13:03:06 -0500},
1407     Date-Modified = {2011-12-05 17:58:01 -0500},
1408     Doi = {10.1021/jp2073478},
1409     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp2073478},
1410     Journal = {J. Phys. Chem. C},
1411     Number = {45},
1412     Pages = {22475-22483},
1413     Title = {Simulating Interfacial Thermal Conductance at Metal-Solvent Interfaces: The Role of Chemical Capping Agents},
1414     Url = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1415     Volume = {115},
1416     Year = {2011},
1417     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1418     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp2073478}}
1419    
1420     @article{10.1063/1.2772547,
1421     Author = {Hideo Kaburaki and Ju Li and Sidney Yip and Hajime Kimizuka},
1422     Coden = {JAPIAU},
1423     Date-Added = {2011-11-01 16:46:32 -0400},
1424     Date-Modified = {2011-11-01 16:46:32 -0400},
1425     Doi = {DOI:10.1063/1.2772547},
1426     Eissn = {10897550},
1427     Issn = {00218979},
1428     Keywords = {argon; Lennard-Jones potential; phonons; thermal conductivity;},
1429     Number = {4},
1430     Pages = {043514},
1431     Publisher = {AIP},
1432     Title = {Dynamical thermal conductivity of argon crystal},
1433     Url = {http://dx.doi.org/10.1063/1.2772547},
1434     Volume = {102},
1435     Year = {2007},
1436     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2772547}}
1437    
1438     @article{PhysRevLett.82.4671,
1439     Author = {Barrat, Jean-Louis and Bocquet, Lyd\'eric},
1440     Date-Added = {2011-11-01 16:44:29 -0400},
1441     Date-Modified = {2011-11-01 16:44:29 -0400},
1442     Doi = {10.1103/PhysRevLett.82.4671},
1443     Issue = {23},
1444     Journal = {Phys. Rev. Lett.},
1445     Month = {Jun},
1446     Pages = {4671--4674},
1447     Publisher = {American Physical Society},
1448     Title = {Large Slip Effect at a Nonwetting Fluid-Solid Interface},
1449     Url = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1450     Volume = {82},
1451     Year = {1999},
1452     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1453     Bdsk-Url-2 = {http://dx.doi.org/10.1103/PhysRevLett.82.4671}}
1454    
1455     @article{10.1063/1.1610442,
1456     Author = {J. R. Schmidt and J. L. Skinner},
1457     Coden = {JCPSA6},
1458     Date-Added = {2011-10-13 16:28:43 -0400},
1459     Date-Modified = {2011-12-15 13:11:53 -0500},
1460     Doi = {DOI:10.1063/1.1610442},
1461     Eissn = {10897690},
1462     Issn = {00219606},
1463     Journal = {J. Chem. Phys.},
1464     Keywords = {hydrodynamics; Brownian motion; molecular dynamics method; diffusion;},
1465     Number = {15},
1466     Pages = {8062-8068},
1467     Publisher = {AIP},
1468     Title = {Hydrodynamic boundary conditions, the Stokes?Einstein law, and long-time tails in the Brownian limit},
1469     Url = {http://dx.doi.org/10.1063/1.1610442},
1470     Volume = {119},
1471     Year = {2003},
1472     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1610442}}
1473    
1474     @article{10.1063/1.3274802,
1475     Author = {Ting Chen and Berend Smit and Alexis T. Bell},
1476     Coden = {JCPSA6},
1477     Doi = {DOI:10.1063/1.3274802},
1478     Eissn = {10897690},
1479     Issn = {00219606},
1480     Keywords = {fluctuations; molecular dynamics method; viscosity;},
1481     Number = {24},
1482     Pages = {246101},
1483     Publisher = {AIP},
1484     Title = {Are pressure fluctuation-based equilibrium methods really worse than nonequilibrium methods for calculating viscosities?},
1485     Url = {http://dx.doi.org/doi/10.1063/1.3274802},
1486     Volume = {131},
1487     Year = {2009},
1488     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3274802},
1489     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3274802}}