ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/chainLength/thiolsRNEMD.bib
Revision: 3857
Committed: Mon Feb 11 23:12:08 2013 UTC (11 years, 7 months ago) by kstocke1
File size: 87861 byte(s)
Log Message:

File Contents

# User Rev Content
1 kstocke1 3801 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 kstocke1 3857 %% Created for Kelsey Stocker at 2013-02-11 17:55:37 -0500
6 kstocke1 3801
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11 gezelter 3819 @string{acp = {Adv. Chem. Phys.}}
12 kstocke1 3801
13 gezelter 3819 @string{bj = {Biophys. J.}}
14    
15     @string{ccp5 = {CCP5 Information Quarterly}}
16    
17     @string{cp = {Chem. Phys.}}
18    
19     @string{cpl = {Chem. Phys. Lett.}}
20    
21     @string{ea = {Electrochim. Acta}}
22    
23     @string{jacs = {J. Am. Chem. Soc.}}
24    
25     @string{jbc = {J. Biol. Chem.}}
26    
27     @string{jcat = {J. Catalysis}}
28    
29     @string{jcc = {J. Comp. Chem.}}
30    
31     @string{jcop = {J. Comp. Phys.}}
32    
33     @string{jcp = {J. Chem. Phys.}}
34    
35     @string{jctc = {J. Chem. Theory Comp.}}
36    
37     @string{jmc = {J. Med. Chem.}}
38    
39     @string{jml = {J. Mol. Liq.}}
40    
41     @string{jmm = {J. Mol. Model.}}
42    
43     @string{jpc = {J. Phys. Chem.}}
44    
45     @string{jpca = {J. Phys. Chem. A}}
46    
47     @string{jpcb = {J. Phys. Chem. B}}
48    
49     @string{jpcc = {J. Phys. Chem. C}}
50    
51     @string{jpcl = {J. Phys. Chem. Lett.}}
52    
53     @string{mp = {Mol. Phys.}}
54    
55     @string{pams = {Proc. Am. Math Soc.}}
56    
57     @string{pccp = {Phys. Chem. Chem. Phys.}}
58    
59     @string{pnas = {Proc. Natl. Acad. Sci. USA}}
60    
61     @string{pr = {Phys. Rev.}}
62    
63     @string{pra = {Phys. Rev. A}}
64    
65     @string{prb = {Phys. Rev. B}}
66    
67     @string{pre = {Phys. Rev. E}}
68    
69     @string{prl = {Phys. Rev. Lett.}}
70    
71     @string{rmp = {Rev. Mod. Phys.}}
72    
73     @string{ss = {Surf. Sci.}}
74    
75    
76 kstocke1 3857 @article{hartland2011,
77     Author = {Hartland, Gregory V.},
78     Date-Added = {2013-02-11 22:54:29 +0000},
79     Date-Modified = {2013-02-11 22:55:34 +0000},
80     Journal = {Chemical Reviews},
81     Pages = {3858-3887},
82     Title = {Optical Studies of Dynamics in Noble Metal Nanostructures},
83     Volume = {11},
84     Year = {2011}}
85    
86 gezelter 3855 @article{hase:2010,
87     Abstract = {Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang{,} J. A. Carter{,} A. Lagutchev{,} Y. K. Koh{,} N.-H. Seong{,} D. G. Cahill{,} and D. D. Dlott{,} Science{,} 2007{,} 317{,} 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface{,} and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly{,} much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM{,} perpendicular to the interface{,} results in nearly identical temperatures for the CH2 and CH3 groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate{,} the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM{,} there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.},
88     Author = {Zhang, Yue and Barnes, George L. and Yan, Tianying and Hase, William L.},
89     Date-Added = {2012-12-25 17:47:40 +0000},
90     Date-Modified = {2012-12-25 17:47:40 +0000},
91     Doi = {10.1039/B923858C},
92     Issue = {17},
93     Journal = {Phys. Chem. Chem. Phys.},
94     Pages = {4435-4445},
95     Publisher = {The Royal Society of Chemistry},
96     Title = {Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer},
97     Url = {http://dx.doi.org/10.1039/B923858C},
98     Volume = {12},
99     Year = {2010},
100     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B923858C}}
101    
102     @article{hase:2011,
103     Abstract = { In a previous article (Phys. Chem. Chem. Phys.2010, 12, 4435), nonequilibrium molecular dynamics (MD) simulations of heat transfer from a hot Au{111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) were presented. The simulations were performed for an H-SAM chain length of eight carbon atoms, and a qualitative agreement with the experiments of Wang et al. (Science2007, 317, 787) was found. Here, simulation results are presented for heat transfer to H-SAM surfaces with carbon chain lengths of 10--20 carbon atoms. Relaxation times for heat transfer are extracted, compared with experiment, and a qualitative agreement is obtained. The same relaxation time is found from either the temperature of the H-SAM or the orientational disorder of the H-SAM versus time. For a simulation model with the Au substrate thermally equilibrated, the relaxation times determined from the simulations are approximately a factor of 4 larger than the experimental values. },
104     Author = {Manikandan, Paranjothy and Carter, Jeffrey A. and Dlott, Dana D. and Hase, William L.},
105     Date-Added = {2012-12-25 17:47:40 +0000},
106     Date-Modified = {2012-12-25 17:47:40 +0000},
107     Doi = {10.1021/jp200672e},
108     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp200672e},
109     Journal = {The Journal of Physical Chemistry C},
110     Number = {19},
111     Pages = {9622-9628},
112     Title = {Effect of Carbon Chain Length on the Dynamics of Heat Transfer at a Gold/Hydrocarbon Interface: Comparison of Simulation with Experiment},
113     Url = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
114     Volume = {115},
115     Year = {2011},
116     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
117     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp200672e}}
118    
119 kstocke1 3851 @article{RevModPhys.61.605,
120     Author = {Swartz, E. T. and Pohl, R. O.},
121     Date-Added = {2012-12-21 20:34:12 +0000},
122     Date-Modified = {2012-12-21 20:34:12 +0000},
123     Doi = {10.1103/RevModPhys.61.605},
124     Issue = {3},
125     Journal = {Rev. Mod. Phys.},
126     Month = {Jul},
127     Pages = {605--668},
128     Publisher = {American Physical Society},
129     Title = {Thermal boundary resistance},
130     Url = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
131     Volume = {61},
132     Year = {1989},
133     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/RevModPhys.61.605},
134     Bdsk-Url-2 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
135    
136 gezelter 3855 @article{packmol,
137     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
138     Bibsource = {DBLP, http://dblp.uni-trier.de},
139     Date-Added = {2011-02-01 15:13:02 -0500},
140     Date-Modified = {2011-02-01 15:14:25 -0500},
141     Ee = {http://dx.doi.org/10.1002/jcc.21224},
142     Journal = {Journal of Computational Chemistry},
143     Number = {13},
144     Pages = {2157-2164},
145     Title = {PACKMOL: A package for building initial configurations for molecular dynamics simulations},
146     Volume = {30},
147     Year = {2009}}
148    
149 gezelter 3819 @article{doi:10.1021/jp034405s,
150     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
151     Author = {Leng, Y. and Keffer, David J. and Cummings, Peter T.},
152     Date-Added = {2012-12-17 18:38:38 +0000},
153     Date-Modified = {2012-12-17 18:38:38 +0000},
154     Doi = {10.1021/jp034405s},
155     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
156     Journal = {J. Phys. Chem. B},
157     Number = {43},
158     Pages = {11940-11950},
159     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
160     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
161     Volume = {107},
162     Year = {2003},
163     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
164     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
165    
166     @article{hautman:4994,
167     Author = {Joseph Hautman and Michael L. Klein},
168     Date-Added = {2012-12-17 18:38:26 +0000},
169     Date-Modified = {2012-12-17 18:38:26 +0000},
170     Doi = {10.1063/1.457621},
171     Journal = {J. Chem. Phys.},
172     Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
173     Number = {8},
174     Pages = {4994-5001},
175     Publisher = {AIP},
176     Title = {Simulation of a monolayer of alkyl thiol chains},
177     Url = {http://link.aip.org/link/?JCP/91/4994/1},
178     Volume = {91},
179     Year = {1989},
180     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
181     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
182    
183     @article{vlugt:cpc2007154,
184     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
185     Date-Added = {2012-12-17 18:38:20 +0000},
186     Date-Modified = {2012-12-17 18:38:20 +0000},
187     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
188     Issn = {0010-4655},
189     Journal = {Comput. Phys. Commun.},
190     Keywords = {Gold nanocrystals},
191     Note = {Proceedings of the Conference on Computational Physics 2006 - CCP 2006, Conference on Computational Physics 2006},
192     Number = {1-2},
193     Pages = {154 - 157},
194     Title = {Selective adsorption of alkyl thiols on gold in different geometries},
195     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
196     Volume = {177},
197     Year = {2007},
198     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
199     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
200    
201     @article{landman:1998,
202     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
203     Author = {Luedtke, W. D. and Landman, Uzi},
204     Date-Added = {2012-12-17 18:38:13 +0000},
205     Date-Modified = {2012-12-17 18:38:13 +0000},
206     Doi = {10.1021/jp981745i},
207     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
208     Journal = {J. Phys. Chem. B},
209     Number = {34},
210     Pages = {6566-6572},
211     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
212     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
213     Volume = {102},
214     Year = {1998},
215     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
216     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
217    
218     @article{PhysRevLett.96.186101,
219     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
220     Date-Added = {2012-12-17 17:44:53 +0000},
221     Date-Modified = {2012-12-17 17:44:53 +0000},
222     Doi = {10.1103/PhysRevLett.96.186101},
223     Journal = prl,
224     Month = {May},
225     Number = {18},
226     Numpages = {4},
227     Pages = {186101},
228     Publisher = {American Physical Society},
229     Title = {Thermal Conductance of Hydrophilic and Hydrophobic Interfaces},
230     Volume = {96},
231     Year = {2006},
232     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.96.186101}}
233    
234     @article{Larson:2007hw,
235     Abstract = {Nanoparticles which consist of a plasmonic layer and an iron oxide moiety could provide a promising platform for development of multimodal imaging and therapy approaches in future medicine. However, the feasibility of this platform has yet to be fully explored. In this study we demonstrated the use of gold-coated iron oxide hybrid nanoparticles for combined molecular specific MRI/optical imaging and photothermal therapy of cancer cells. The gold layer exhibits a surface plasmon resonance that provides optical contrast due to light scattering in the visible region and also presents a convenient surface for conjugating targeting moieties, while the iron oxide cores give strong T-2 (spin-spin relaxation time) contrast. The strong optical absorption of the plasmonic gold layer also makes these nanoparticles a promising agent for photothermal therapy. We synthesized hybrid nanoparticles which specifically target epidermal growth factor receptor (EGFR), a common biomarker for many epithelial cancers. We demonstrated molecular specific MRI and optical imaging in MDA-MB-468 breast cancer cells. Furthermore, we showed that receptor-mediated aggregation of anti-EGFR hybrid nanoparticles allows selective destruction of highly proliferative cancer cells using a nanosecond pulsed laser at 700 nm wavelength, a significant shift from the peak absorbance of isolated hybrid nanoparticles at 532 nm.},
236     Address = {DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND},
237     Author = {Larson, Timothy A. and Bankson, James and Aaron, Jesse and Sokolov, Konstantin},
238     Date = {AUG 15 2007},
239     Date-Added = {2012-12-17 17:44:44 +0000},
240     Date-Modified = {2012-12-17 17:44:44 +0000},
241     Doi = {ARTN 325101},
242     Journal = {Nanotechnology},
243     Publisher = {IOP PUBLISHING LTD},
244     Timescited = {5},
245     Title = {Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells},
246     Volume = {18},
247     Year = {2007},
248     Bdsk-Url-1 = {http://dx.doi.org/325101}}
249    
250     @article{Huff:2007ye,
251     Abstract = {Plasmon-resonant gold nanorods, which have large absorption cross sections at near-infrared frequencies, are excellent candidates as multifunctional agents for image-guided therapies based on localized hyperthermia. The controlled modification of the surface chemistry of the nanorods is of critical importance, as issues of cell-specific targeting and nonspecific uptake must be addressed prior to clinical evaluation. Nanorods coated with cetyltrimethylammonium bromide (a cationic surfactant used in nanorod synthesis) are internalized within hours into KB cells by a nonspecific uptake pathway, whereas the careful removal of cetyltrimethylammonium bromide from nanorods functionalized with folate results in their accumulation on the cell surface over the same time interval. In either case, the nanorods render the tumor cells highly susceptible to photothermal damage when irradiated at the nanorods' longitudinal plasmon resonance, generating extensive blebbing of the cell membrane at laser fluences as low as 30 J/cm(2).},
252     Address = {UNITEC HOUSE, 3RD FLOOR, 2 ALBERT PLACE, FINCHLEY CENTRAL, LONDON, N3 1QB, ENGLAND},
253     Author = {Huff, Terry B. and Tong, Ling and Zhao, Yan and Hansen, Matthew N. and Cheng, Ji-Xin and Wei, Alexander},
254     Date = {FEB 2007},
255     Date-Added = {2012-12-17 17:44:36 +0000},
256     Date-Modified = {2012-12-17 17:44:36 +0000},
257     Doi = {DOI 10.2217/17435889.2.1.125},
258     Journal = {Nanomedicine},
259     Keywords = {folate receptor; hyperthermia; imaging; nanorods; nonlinear optical microscopy; plasmon resonance; targeted therapy},
260     Pages = {125-132},
261     Publisher = {FUTURE MEDICINE LTD},
262     Timescited = {13},
263     Title = {Hyperthermic effects of gold nanorods on tumor cells},
264     Volume = {2},
265     Year = {2007},
266     Bdsk-Url-1 = {http://dx.doi.org/10.2217/17435889.2.1.125}}
267    
268     @article{JiangHao_jp802942v,
269     Abstract = {Abstract: Nonequilibrium molecular dynamics simulations with the nonpolarizable SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121, 9549) force fields have been employed to calculate the thermal conductivity and other associated properties of methane hydrate over a temperature range from 30 to 260 K. The calculated results are compared to experimental data over this same range. The values of the thermal conductivity calculated with the COS/G2 model are closer to the experimental values than are those calculated with the nonpolarizable SPC/E model. The calculations match the temperature trend in the experimental data at temperatures below 50 K; however, they exhibit a slight decrease in thermal conductivity at higher temperatures in comparison to an opposite trend in the experimental data. The calculated thermal conductivity values are found to be relatively insensitive to the occupancy of the cages except at low (T d 50 K) temperatures, which indicates that the differences between the two lattice structures may have a more dominant role than generally thought in explaining the low thermal conductivity of methane hydrate compared to ice Ih. The introduction of defects into the water lattice is found to cause a reduction in the thermal conductivity but to have a negligible impact on its temperature dependence.},
270     Affiliation = {National Energy Technology Laboratory, U.S. Department of Energy, Post Office Box 10940, Pittsburgh, Pennsylvania 15236, Department of Chemistry and Center for Molecular and Materials Simulations, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, and Parsons Project Services, Inc., South Park, Pennsylvania 15129},
271     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
272     Date-Added = {2012-12-17 16:57:19 +0000},
273     Date-Modified = {2012-12-17 16:57:19 +0000},
274     Doi = {10.1021/jp802942v},
275     Issn = {1520-6106},
276     Journal = jpcb,
277     Title = {Molecular Dynamics Simulations of the Thermal Conductivity of Methane Hydrate},
278     Year = {2008},
279     Bdsk-Url-1 = {http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp802942v}}
280    
281     @article{Schelling:2002dp,
282     Author = {Schelling, P. K. and Phillpot, S. R. and Keblinski, P.},
283     Date = {APR 1 2002},
284     Date-Added = {2012-12-17 16:57:10 +0000},
285     Date-Modified = {2012-12-17 16:57:10 +0000},
286     Doi = {10.1103/PhysRevB.65.144306},
287     Isi = {WOS:000174980300055},
288     Issn = {1098-0121},
289     Journal = prb,
290     Month = {Apr},
291     Number = {14},
292     Pages = {144306},
293     Publication-Type = {J},
294     Times-Cited = {288},
295     Title = {Comparison of atomic-level simulation methods for computing thermal conductivity},
296     Volume = {65},
297     Year = {2002},
298     Z8 = {12},
299     Z9 = {296},
300     Zb = {0},
301     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.65.144306}}
302    
303     @article{Evans:2002ai,
304     Author = {Evans, D. J. and Searles, D. J.},
305     Date = {NOV 2002},
306     Date-Added = {2012-12-17 16:56:59 +0000},
307     Date-Modified = {2012-12-17 16:56:59 +0000},
308     Doi = {10.1080/00018730210155133},
309     Isi = {WOS:000179448200001},
310     Issn = {0001-8732},
311     Journal = {Adv. Phys.},
312     Month = {Nov},
313     Number = {7},
314     Pages = {1529--1585},
315     Publication-Type = {J},
316     Times-Cited = {309},
317     Title = {The fluctuation theorem},
318     Volume = {51},
319     Year = {2002},
320     Z8 = {3},
321     Z9 = {311},
322     Zb = {9},
323     Bdsk-Url-1 = {http://dx.doi.org/10.1080/00018730210155133}}
324    
325     @article{Berthier:2002ij,
326     Author = {Berthier, L. and Barrat, J. L.},
327     Date = {APR 8 2002},
328     Date-Added = {2012-12-17 16:56:47 +0000},
329     Date-Modified = {2012-12-17 16:56:47 +0000},
330     Doi = {10.1063/1.1460862},
331     Isi = {WOS:000174634200036},
332     Issn = {0021-9606},
333     Journal = jcp,
334     Month = {Apr},
335     Number = {14},
336     Pages = {6228--6242},
337     Publication-Type = {J},
338     Times-Cited = {172},
339     Title = {Nonequilibrium dynamics and fluctuation-dissipation relation in a sheared fluid},
340     Volume = {116},
341     Year = {2002},
342     Z8 = {0},
343     Z9 = {172},
344     Zb = {1},
345     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1460862}}
346    
347     @article{MAGINN:1993hc,
348 kstocke1 3854 Author = {Maginn, E. J. and Bell, A. T. and Theodorou, D. N.},
349 gezelter 3819 Date = {APR 22 1993},
350     Date-Added = {2012-12-17 16:56:40 +0000},
351 kstocke1 3854 Date-Modified = {2012-12-21 22:43:10 +0000},
352 gezelter 3819 Doi = {10.1021/j100118a038},
353     Isi = {WOS:A1993KY46600039},
354     Issn = {0022-3654},
355     Journal = jpc,
356     Month = {Apr},
357     Number = {16},
358     Pages = {4173--4181},
359     Publication-Type = {J},
360     Times-Cited = {198},
361     Title = {TRANSPORT DIFFUSIVITY OF METHANE IN SILICALITE FROM EQUILIBRIUM AND NONEQUILIBRIUM SIMULATIONS},
362     Volume = {97},
363     Year = {1993},
364     Z8 = {4},
365     Z9 = {201},
366     Zb = {0},
367     Bdsk-Url-1 = {http://dx.doi.org/10.1021/j100118a038}}
368    
369     @article{ERPENBECK:1984sp,
370 kstocke1 3854 Author = {Erpenbeck, J. J.},
371 gezelter 3819 Date = {1984},
372     Date-Added = {2012-12-17 16:56:32 +0000},
373 kstocke1 3854 Date-Modified = {2012-12-21 22:42:45 +0000},
374 gezelter 3819 Doi = {10.1103/PhysRevLett.52.1333},
375     Isi = {WOS:A1984SK96700021},
376     Issn = {0031-9007},
377     Journal = prl,
378     Number = {15},
379     Pages = {1333--1335},
380     Publication-Type = {J},
381     Times-Cited = {189},
382     Title = {SHEAR VISCOSITY OF THE HARD-SPHERE FLUID VIA NONEQUILIBRIUM MOLECULAR-DYNAMICS},
383     Volume = {52},
384     Year = {1984},
385     Z8 = {0},
386     Z9 = {189},
387     Zb = {1},
388     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.52.1333}}
389    
390     @article{Evans:1982zk,
391     Author = {Evans, Denis J.},
392     Date-Added = {2012-12-17 16:56:24 +0000},
393     Date-Modified = {2012-12-17 16:56:24 +0000},
394     Journal = {Physics Letters A},
395     Number = {9},
396     Pages = {457--460},
397     Title = {Homogeneous NEMD algorithm for thermal conductivity--Application of non-canonical linear response theory},
398     Ty = {JOUR},
399     Url = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50},
400     Volume = {91},
401     Year = {1982},
402     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TVM-46SXM58-S0/1/b270d693318250f3ed0dbce1a535ea50}}
403    
404     @article{ASHURST:1975tg,
405 kstocke1 3854 Author = {Ashurst, W. T. and Hoover, W. G.},
406 gezelter 3819 Date = {1975},
407     Date-Added = {2012-12-17 16:56:05 +0000},
408 kstocke1 3854 Date-Modified = {2012-12-21 22:42:31 +0000},
409 gezelter 3819 Doi = {10.1103/PhysRevA.11.658},
410     Isi = {WOS:A1975V548400036},
411     Issn = {1050-2947},
412     Journal = pra,
413     Number = {2},
414     Pages = {658--678},
415     Publication-Type = {J},
416     Times-Cited = {295},
417     Title = {DENSE-FLUID SHEAR VISCOSITY VIA NONEQUILIBRIUM MOLECULAR-DYNAMICS},
418     Volume = {11},
419     Year = {1975},
420     Z8 = {3},
421     Z9 = {298},
422     Zb = {1},
423     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.11.658}}
424    
425     @article{kinaci:014106,
426     Author = {A. Kinaci and J. B. Haskins and T. \c{C}a\u{g}in},
427     Date-Added = {2012-12-17 16:55:56 +0000},
428     Date-Modified = {2012-12-17 16:55:56 +0000},
429     Doi = {10.1063/1.4731450},
430     Eid = {014106},
431     Journal = jcp,
432     Keywords = {argon; elemental semiconductors; Ge-Si alloys; molecular dynamics method; nanostructured materials; porous semiconductors; silicon; thermal conductivity},
433     Number = {1},
434     Numpages = {8},
435     Pages = {014106},
436     Publisher = {AIP},
437     Title = {On calculation of thermal conductivity from Einstein relation in equilibrium molecular dynamics},
438     Url = {http://link.aip.org/link/?JCP/137/014106/1},
439     Volume = {137},
440     Year = {2012},
441     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/137/014106/1},
442     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.4731450}}
443    
444     @article{che:6888,
445     Author = {Jianwei Che and Tahir Cagin and Weiqiao Deng and William A. Goddard III},
446     Date-Added = {2012-12-17 16:55:48 +0000},
447     Date-Modified = {2012-12-17 16:55:48 +0000},
448     Doi = {10.1063/1.1310223},
449     Journal = jcp,
450     Keywords = {diamond; thermal conductivity; digital simulation; vacancies (crystal); Green's function methods; isotope effects},
451     Number = {16},
452     Pages = {6888-6900},
453     Publisher = {AIP},
454     Title = {Thermal conductivity of diamond and related materials from molecular dynamics simulations},
455     Url = {http://link.aip.org/link/?JCP/113/6888/1},
456     Volume = {113},
457     Year = {2000},
458     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/113/6888/1},
459     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1310223}}
460    
461     @article{Viscardy:2007rp,
462     Abstract = {The thermal conductivity is calculated with the Helfand-moment method in the Lennard-Jones fluid near the triple point. The Helfand moment of thermal conductivity is here derived for molecular dynamics with periodic boundary conditions. Thermal conductivity is given by a generalized Einstein relation with this Helfand moment. The authors compute thermal conductivity by this new method and compare it with their own values obtained by the standard Green-Kubo method. The agreement is excellent. (C) 2007 American Institute of Physics.},
463     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
464     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
465     Date = {MAY 14 2007},
466     Date-Added = {2012-12-17 16:55:32 +0000},
467     Date-Modified = {2012-12-17 16:55:32 +0000},
468     Doi = {ARTN 184513},
469     Journal = jcp,
470     Publisher = {AMER INST PHYSICS},
471     Timescited = {1},
472     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
473     Volume = {126},
474     Year = {2007},
475     Bdsk-Url-1 = {http://dx.doi.org/184513}}
476    
477     @article{PhysRev.119.1,
478     Author = {Helfand, Eugene},
479     Date-Added = {2012-12-17 16:55:19 +0000},
480     Date-Modified = {2012-12-17 16:55:19 +0000},
481     Doi = {10.1103/PhysRev.119.1},
482     Journal = {Phys. Rev.},
483     Month = {Jul},
484     Number = {1},
485     Numpages = {8},
486     Pages = {1--9},
487     Publisher = {American Physical Society},
488     Title = {Transport Coefficients from Dissipation in a Canonical Ensemble},
489     Volume = {119},
490     Year = {1960},
491     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRev.119.1}}
492    
493     @article{PhysRevA.34.1449,
494     Author = {Evans, Denis J.},
495     Date-Added = {2012-12-17 16:55:19 +0000},
496     Date-Modified = {2012-12-17 16:55:19 +0000},
497     Doi = {10.1103/PhysRevA.34.1449},
498     Journal = {Phys. Rev. A},
499     Month = {Aug},
500     Number = {2},
501     Numpages = {4},
502     Pages = {1449--1453},
503     Publisher = {American Physical Society},
504     Title = {Thermal conductivity of the Lennard-Jones fluid},
505     Volume = {34},
506     Year = {1986},
507     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevA.34.1449}}
508    
509     @article{MASSOBRIO:1984bl,
510     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
511 kstocke1 3854 Author = {Massobrio, C and Ciccotti, G},
512 gezelter 3819 Date = {1984},
513     Date-Added = {2012-12-17 16:55:03 +0000},
514 kstocke1 3854 Date-Modified = {2012-12-21 22:42:02 +0000},
515 gezelter 3819 Journal = pra,
516     Pages = {3191-3197},
517     Publisher = {AMERICAN PHYSICAL SOC},
518     Timescited = {29},
519     Title = {LENNARD-JONES TRIPLE-POINT CONDUCTIVITY VIA WEAK EXTERNAL FIELDS},
520     Volume = {30},
521     Year = {1984}}
522    
523     @article{PhysRevB.37.5677,
524     Author = {Heyes, David M.},
525     Date-Added = {2012-12-17 16:54:55 +0000},
526     Date-Modified = {2012-12-17 16:54:55 +0000},
527     Doi = {10.1103/PhysRevB.37.5677},
528     Journal = prb,
529     Month = {Apr},
530     Number = {10},
531     Numpages = {19},
532     Pages = {5677--5696},
533     Publisher = {American Physical Society},
534     Title = {Transport coefficients of Lennard-Jones fluids: A molecular-dynamics and effective-hard-sphere treatment},
535     Volume = {37},
536     Year = {1988},
537     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.37.5677}}
538    
539     @article{PhysRevB.80.195406,
540     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
541     Date-Added = {2012-12-17 16:54:55 +0000},
542     Date-Modified = {2012-12-17 16:54:55 +0000},
543     Doi = {10.1103/PhysRevB.80.195406},
544     Journal = prb,
545     Month = {Nov},
546     Number = {19},
547     Numpages = {6},
548     Pages = {195406},
549     Publisher = {American Physical Society},
550     Title = {Cooling dynamics and thermal interface resistance of glass-embedded metal nanoparticles},
551     Volume = {80},
552     Year = {2009},
553     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
554    
555     @article{Wang10082007,
556     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
557     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
558     Date-Added = {2012-12-17 16:54:31 +0000},
559     Date-Modified = {2012-12-17 16:54:31 +0000},
560     Doi = {10.1126/science.1145220},
561     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
562     Journal = {Science},
563     Number = {5839},
564     Pages = {787-790},
565     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
566     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
567     Volume = {317},
568     Year = {2007},
569     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
570     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
571    
572     @article{doi:10.1021/la904855s,
573     Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
574     Date-Added = {2012-12-17 16:54:12 +0000},
575     Date-Modified = {2012-12-17 16:54:12 +0000},
576     Doi = {10.1021/la904855s},
577     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
578     Journal = {Langmuir},
579     Note = {PMID: 20166728},
580     Number = {6},
581     Pages = {3786-3789},
582     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
583     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
584     Volume = {26},
585     Year = {2010},
586     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
587     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
588    
589     @article{doi:10.1021/jp048375k,
590     Abstract = { Water- and alcohol-soluble AuPd nanoparticles have been investigated to determine the effect of the organic stabilizing group on the thermal conductance G of the particle/fluid interface. The thermal decays of tiopronin-stabilized 3−5-nm diameter AuPd alloy nanoparticles, thioalkylated ethylene glycol-stabilized 3−5-nm diameter AuPd nanoparticles, and cetyltrimethylammonium bromide-stabilized 22-nm diameter Au-core/AuPd-shell nanoparticles give thermal conductances G ≈ 100−300 MW m-2 K-1 for the particle/water interfaces, approximately an order of magnitude larger than the conductance of the interfaces between alkanethiol-terminated AuPd nanoparticles and toluene. The similar values of G for particles ranging in size from 3 to 24 nm with widely varying surface chemistry indicate that the thermal coupling between AuPd nanoparticles and water is strong regardless of the self-assembled stabilizing group. },
591     Author = {Ge, Zhenbin and Cahill, David G. and Braun, Paul V.},
592     Date-Added = {2012-12-17 16:54:03 +0000},
593     Date-Modified = {2012-12-17 16:54:03 +0000},
594     Doi = {10.1021/jp048375k},
595     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048375k},
596     Journal = jpcb,
597     Number = {49},
598     Pages = {18870-18875},
599     Title = {AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution},
600     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
601     Volume = {108},
602     Year = {2004},
603     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048375k},
604     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048375k}}
605    
606     @article{doi:10.1021/jp8051888,
607     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
608     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
609     Date-Added = {2012-12-17 16:54:03 +0000},
610     Date-Modified = {2012-12-17 16:54:03 +0000},
611     Doi = {10.1021/jp8051888},
612     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
613     Journal = jpcc,
614     Number = {35},
615     Pages = {13320-13323},
616     Title = {Probing the Gold Nanorod−Ligand−Solvent Interface by Plasmonic Absorption and Thermal Decay},
617     Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
618     Volume = {112},
619     Year = {2008},
620     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
621     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
622    
623     @article{PhysRevB.67.054302,
624     Author = {Costescu, Ruxandra M. and Wall, Marcel A. and Cahill, David G.},
625     Date-Added = {2012-12-17 16:53:48 +0000},
626     Date-Modified = {2012-12-17 16:53:48 +0000},
627     Doi = {10.1103/PhysRevB.67.054302},
628     Journal = prb,
629     Month = {Feb},
630     Number = {5},
631     Numpages = {5},
632     Pages = {054302},
633     Publisher = {American Physical Society},
634     Title = {Thermal conductance of epitaxial interfaces},
635     Volume = {67},
636     Year = {2003},
637     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.67.054302}}
638    
639     @article{cahill:793,
640     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
641     Date-Added = {2012-12-17 16:53:36 +0000},
642     Date-Modified = {2012-12-17 16:53:36 +0000},
643     Doi = {10.1063/1.1524305},
644     Journal = {J. Appl. Phys.},
645     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
646     Number = {2},
647     Pages = {793-818},
648     Publisher = {AIP},
649     Title = {Nanoscale thermal transport},
650     Url = {http://link.aip.org/link/?JAP/93/793/1},
651     Volume = {93},
652     Year = {2003},
653     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
654     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
655    
656     @article{Eapen:2007mw,
657     Abstract = {In a well-dispersed nanofluid with strong cluster-fluid attraction, thermal conduction paths can arise through percolating amorphouslike interfacial structures. This results in a thermal conductivity enhancement beyond the Maxwell limit of 3 phi, with phi being the nanoparticle volume fraction. Our findings from nonequilibrium molecular dynamics simulations, which are amenable to experimental verification, can provide a theoretical basis for the development of future nanofluids.},
658     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
659     Author = {Eapen, Jacob and Li, Ju and Yip, Sidney},
660     Date = {DEC 2007},
661     Date-Added = {2012-12-17 16:53:30 +0000},
662     Date-Modified = {2012-12-17 16:53:30 +0000},
663     Doi = {ARTN 062501},
664     Journal = pre,
665     Publisher = {AMER PHYSICAL SOC},
666     Timescited = {0},
667     Title = {Beyond the Maxwell limit: Thermal conduction in nanofluids with percolating fluid structures},
668     Volume = {76},
669     Year = {2007},
670     Bdsk-Url-1 = {http://dx.doi.org/062501}}
671    
672     @article{Xue:2003ya,
673     Abstract = {Using nonequilibrium molecular dynamics simulations in which a temperature gradient is imposed, we determine the thermal resistance of a model liquid-solid interface. Our simulations reveal that the strength of the bonding between liquid and solid atoms plays a key role in determining interfacial thermal resistance. Moreover, we find that the functional dependence of the thermal resistance on the strength of the liquid-solid interactions exhibits two distinct regimes: (i) exponential dependence for weak bonding (nonwetting liquid) and (ii) power law dependence for strong bonding (wetting liquid). The identification of the two regimes of the Kapitza resistance has profound implications for understanding and designing the thermal properties of nanocomposite materials. (C) 2003 American Institute of Physics.},
674     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
675     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
676     Date = {JAN 1 2003},
677     Date-Added = {2012-12-17 16:53:22 +0000},
678     Date-Modified = {2012-12-17 16:53:22 +0000},
679     Doi = {DOI 10.1063/1.1525806},
680     Journal = jcp,
681     Pages = {337-339},
682     Publisher = {AMER INST PHYSICS},
683     Timescited = {19},
684     Title = {Two regimes of thermal resistance at a liquid-solid interface},
685     Volume = {118},
686     Year = {2003},
687     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1525806}}
688    
689     @article{Xue:2004oa,
690     Abstract = {Using non-equilibrium molecular dynamics simulations in which a temperature gradient is imposed, we study how the ordering of the liquid at the liquid-solid interface affects the interfacial thermal resistance. Our simulations of a simple monoatomic liquid show no effect on the thermal transport either normal to the surface or parallel to the surface. Even for of a liquid that is highly confined between two solids, we find no effect on thermal conductivity. This contrasts with well-known significant effect of confinement on the viscoelastic response. Our findings suggest that the experimentally observed large enhancement of thermal conductivity in suspensions of solid nanosized particles (nanofluids) can not be explained by altered thermal transport properties of the layered liquid. (C) 2004 Elsevier Ltd. All rights reserved.},
691     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
692     Author = {Xue, L and Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
693     Date = {SEP 2004},
694     Date-Added = {2012-12-17 16:53:22 +0000},
695     Date-Modified = {2012-12-17 16:53:22 +0000},
696     Doi = {DOI 10.1016/ijheatmasstransfer.2004.05.016},
697     Journal = {International Journal of Heat and Mass Transfer},
698     Keywords = {interfacial thermal resistance; liquid-solid interface; molecular dynamics simulations; nanofluids},
699     Pages = {4277-4284},
700     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
701     Timescited = {29},
702     Title = {Effect of liquid layering at the liquid-solid interface on thermal transport},
703     Volume = {47},
704     Year = {2004},
705     Bdsk-Url-1 = {http://dx.doi.org/10.1016/ijheatmasstransfer.2004.05.016}}
706    
707     @article{Lee:1999ct,
708     Abstract = {Oxide nanofluids were produced and their thermal conductivities were measured by a transient hot-wire method. The experimental results show that these nanofluids, containing a small amount of nanoparticles, have substantially higher thermal conductivities than the same liquids without nanoparticles. Comparisons between experiments and the Hamilton and Crosser model show that the model can predict the thermal conductivity of nanofluids containing large agglomerated Al2O3 particles. However, the model appears to be inadequate for nanofluids containing CuO particles. This suggests that not only particle shape but size is considered to be dominant in enhancing the thermal conductivity of nanofluids.},
709     Address = {345 E 47TH ST, NEW YORK, NY 10017 USA},
710     Author = {Lee, S and Choi, SUS and Li, S and Eastman, JA},
711     Date = {MAY 1999},
712     Date-Added = {2012-12-17 16:53:15 +0000},
713     Date-Modified = {2012-12-17 16:53:15 +0000},
714     Journal = {Journal of Heat Transfer-Transactions of the Asme},
715     Keywords = {conduction; enhancement; heat transfer; nanoscale; two-phase},
716     Pages = {280-289},
717     Publisher = {ASME-AMER SOC MECHANICAL ENG},
718     Timescited = {183},
719     Title = {Measuring thermal conductivity of fluids containing oxide nanoparticles},
720     Volume = {121},
721     Year = {1999}}
722    
723     @article{Keblinski:2002bx,
724     Abstract = {Recent measurements on nanofluids have demonstrated that the thermal conductivity increases with decreasing grain size. However, Such increases cannot be explained by existing theories. We explore four possible explanations for this anomalous increase: Brownian motion of the particles, molecular-level layering of the liquid at the liquid/particle interface, the nature of heat transport in the nanoparticles. and the effects of nanoparticle clustering. We show that the key factors in understanding thermal properties of nanofluids are the ballistic, rather than diffusive, nature of heat transport in the nanoparticles, combined with direct or fluid-mediated clustering effects that provide paths for rapid heat transport. (C) 2001 Elsevier Science Ltd. All rights reserved.},
725     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND},
726     Author = {Keblinski, P and Phillpot, SR and Choi, SUS and Eastman, JA},
727     Date = {FEB 2002},
728     Date-Added = {2012-12-17 16:53:06 +0000},
729     Date-Modified = {2012-12-17 16:53:06 +0000},
730     Journal = {International Journal of Heat and Mass Transfer},
731     Keywords = {thermal conductivity; nanofluids; molecular dynamics simulations; ballistic heat transport},
732     Pages = {855-863},
733     Publisher = {PERGAMON-ELSEVIER SCIENCE LTD},
734     Timescited = {161},
735     Title = {Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)},
736     Volume = {45},
737     Year = {2002}}
738    
739     @article{Eastman:2001wb,
740     Abstract = {It is shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure ethylene glycol or ethylene glycol containing the same volume fraction of dispersed oxide nanoparticles. The effective thermal conductivity of ethylene glycol is shown to be increased by up to 40\% for a nanofluid consisting of ethylene glycol containing approximately 0.3 vol \% Cu nanoparticles of mean diameter < 10 nm. The results are anomalous based on previous theoretical calculations that had predicted a strong effect of particle shape on effective nanofluid thermal conductivity, but no effect of either particle size or particle thermal conductivity. (C) 2001 American Institute of Physics.},
741     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
742     Author = {Eastman, JA and Choi, SUS and Li, S and Yu, W and Thompson, LJ},
743     Date = {FEB 5 2001},
744     Date-Added = {2012-12-17 16:52:55 +0000},
745     Date-Modified = {2012-12-17 16:52:55 +0000},
746     Journal = {Applied Physics Letters},
747     Pages = {718-720},
748     Publisher = {AMER INST PHYSICS},
749     Timescited = {246},
750     Title = {Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles},
751     Volume = {78},
752     Year = {2001}}
753    
754     @article{Eapen:2007th,
755     Abstract = {Transient hot-wire data on thermal conductivity of suspensions of silica and perfluorinated particles show agreement with the mean-field theory of Maxwell but not with the recently postulated microconvection mechanism. The influence of interfacial thermal resistance, convective effects at microscales, and the possibility of thermal conductivity enhancements beyond the Maxwell limit are discussed.},
756     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
757     Author = {Eapen, Jacob and Williams, Wesley C. and Buongiorno, Jacopo and Hu, Lin-Wen and Yip, Sidney and Rusconi, Roberto and Piazza, Roberto},
758     Date = {AUG 31 2007},
759     Date-Added = {2012-12-17 16:52:46 +0000},
760     Date-Modified = {2012-12-17 16:52:46 +0000},
761     Doi = {ARTN 095901},
762     Journal = prl,
763     Publisher = {AMER PHYSICAL SOC},
764     Timescited = {8},
765     Title = {Mean-field versus microconvection effects in nanofluid thermal conduction},
766     Volume = {99},
767     Year = {2007},
768     Bdsk-Url-1 = {http://dx.doi.org/095901}}
769    
770     @article{Plech:2005kx,
771     Abstract = {The transient structural response of laser excited gold nanoparticle sols has been recorded by pulsed X-ray scattering. Time resolved wide angle and small angle scattering (SAXS) record the changes in structure both of the nanoparticles and the water environment subsequent to femtosecond laser excitation. Within the first nanosecond after the excitation of the nanoparticles, the water phase shows a signature of compression, induced by a heat-induced evaporation of the water shell close to the heated nanoparticles. The particles themselves undergo a melting transition and are fragmented to Form new clusters in the nanometer range. (C) 2004 Elsevier B.V. All rights reserved.},
772     Author = {Plech, A and Kotaidis, V and Lorenc, M and Wulff, M},
773     Date-Added = {2012-12-17 16:52:34 +0000},
774     Date-Modified = {2012-12-17 16:52:34 +0000},
775     Doi = {DOI 10.1016/j.cplett.2004.11.072},
776     Journal = cpl,
777     Local-Url = {file://localhost/Users/charles/Documents/Papers/sdarticle3.pdf},
778     Pages = {565-569},
779     Title = {Thermal dynamics in laser excited metal nanoparticles},
780     Volume = {401},
781     Year = {2005},
782     Bdsk-Url-1 = {http://dx.doi.org/10.1016/j.cplett.2004.11.072}}
783    
784     @article{Wilson:2002uq,
785     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
786     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
787     Date-Added = {2012-12-17 16:52:22 +0000},
788     Date-Modified = {2012-12-17 16:52:22 +0000},
789     Doi = {ARTN 224301},
790     Journal = {Phys. Rev. B},
791     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
792     Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
793     Volume = {66},
794     Year = {2002},
795     Bdsk-Url-1 = {http://dx.doi.org/224301}}
796    
797     @article{Mazzaglia:2008to,
798     Abstract = {Amphiphilic cyclodextrins (CDs) modified in the upper rim with thiohexyl groups and in the lower rim with oligoethylene amino (SC6NH2) or oligoethylene hydroxyl groups (SC6OH) can bind gold colloids, yielding Au/CD particles with an average hydrodynamic radius (RH) of 2 and 25 rim in water solution. The systems were investigated by UV-vis, quasi-elastic light scattering, and FTIR-ATR techniques. The concentration of amphiphiles was kept above the concentration of gold colloids to afford complete covering. In the case of SC6NH2, basic conditions (Et3N, pH 11) yield promptly the decoration of Au, which can be stabilized by linkage of CD amino and/or thioether groups. The critical aggregation concentration of SC6NH2 was measured (similar to 4 mu M) by surface tension measurements, pointing out that about 50\% of CDs are present in nonaggregated form. Whereas Au/SC6NH2 colloids were stable in size and morphology for at least one month, the size of the Au/SC6OH system increases remarkably, forming nanoaggregates of 20 and 80 rim in two hours. Under physiological conditions, the gold/amino amphiphiles system can internalize in HeLa cells, as shown by extinction spectra registered on the immobilized cells. The gold delivered by cyclodextrins can induce photothermal damage upon irradiation, doubling the cell mortality with respect to uncovered gold colloids. These findings can open useful perspectives to the application of these self-assembled systems in cancer photothermal therapy.},
799     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
800     Author = {Mazzaglia, Antonino and Trapani, Mariachiara and Villari, Valentina and Micali, Norberto and Merlo, Francesca Marino and Zaccaria, Daniela and Sciortino, Maria Teresa and Previti, Francesco and Patane, Salvatore and Scolaro, Luigi Monsu},
801     Date = {MAY 1 2008},
802     Date-Added = {2012-12-17 16:52:15 +0000},
803     Date-Modified = {2012-12-17 16:52:15 +0000},
804     Doi = {DOI 10.1021/jp7120033},
805     Journal = jpcc,
806     Pages = {6764-6769},
807     Publisher = {AMER CHEMICAL SOC},
808     Timescited = {0},
809     Title = {Amphiphilic cyclodextrins as capping agents for gold colloids: A spectroscopic investigation with perspectives in photothermal therapy},
810     Volume = {112},
811     Year = {2008},
812     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp7120033}}
813    
814     @article{Gnyawali:2008lp,
815     Abstract = {Tissue surface temperature distribution on the treatment site can serve as an indicator for the effectiveness of a photothermal therapy. In this study, both infrared thermography and theoretical simulation were used to determine the surface temperature distribution during laser irradiation of both gel phantom and animal tumors. Selective photothermal interaction was attempted by using intratumoral indocyanine green enhancement and irradiation via a near-infrared laser. An immunoadjuvant was also used to enhance immunological responses during tumor treatment. Monte Carlo method for tissue absorption of light and finite difference method for heat diffusion in tissue were used to simulate the temperature distribution during the selective laser photothermal interaction. An infrared camera was used to capture the thermal images during the laser treatment and the surface temperature was determined. Our findings show that the theoretical and experimental results are in good agreement and that the surface temperature of irradiated tissue can be controlled with appropriate dye and adjuvant enhancement. These results can be used to control the laser tumor treatment parameters and to optimize the treatment outcome. More importantly, when used with immunotherapy as a precursor of immunological responses, the selective photothermal treatment can be guided by the tissue temperature profiles both in the tumor and on the surface.},
816     Address = {TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY},
817     Author = {Gnyawali, Surya C. and Chen, Yicho and Wu, Feng and Bartels, Kenneth E. and Wicksted, James P. and Liu, Hong and Sen, Chandan K. and Chen, Wei R.},
818     Date = {FEB 2008},
819     Date-Added = {2012-12-17 16:52:08 +0000},
820     Date-Modified = {2012-12-17 16:52:08 +0000},
821     Doi = {DOI 10.1007/s11517-007-0251-5},
822     Journal = {Medical \& Biological Engineering \& Computing},
823     Keywords = {infrared thermography; indocyanine green; glycated chitosan; surface temperature; Monte Carlo simulation},
824     Pages = {159-168},
825     Publisher = {SPRINGER HEIDELBERG},
826     Timescited = {0},
827     Title = {Temperature measurement on tissue surface during laser irradiation},
828     Volume = {46},
829     Year = {2008},
830     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11517-007-0251-5}}
831    
832     @article{Petrova:2007ad,
833     Abstract = {This paper describes our recent time-resolved spectroscopy studies of the properties of gold particles at high laser excitation levels. In these experiments, an intense pump laser pulse rapidly heats the particle, creating very high lattice temperatures - up to the melting point of bulk gold. These high temperatures can have dramatic effects on the particle and the surroundings. The lattice temperature created is determined by observing the coherently excited the vibrational modes of the particles. The periods of these modes depend on temperature, thus, they act as an internal thermometer. We have used these experiments to provide values for the threshold temperatures for explosive boiling of the solvent surrounding the particles, and laser induced structural transformations in non-spherical particles. The results of these experiments are relevant to the use of metal nanoparticles in photothermal therapy, where laser induced heating is used to selectively kill cells.},
834     Address = {LEKTORAT MINT, POSTFACH 80 13 60, D-81613 MUNICH, GERMANY},
835     Author = {Petrova, Hristina and Hu, Min and Hartland, Gregory V.},
836     Date = {2007},
837     Date-Added = {2012-12-17 16:52:01 +0000},
838     Date-Modified = {2012-12-17 16:52:01 +0000},
839     Doi = {DOI 10.1524/zpch.2007.221.3.361},
840     Journal = {Zeitschrift Fur Physikalische Chemie-International Journal of Research In Physical Chemistry \& Chemical Physics},
841     Keywords = {metal nanoparticles; phonon modes; photothermal properties; laser-induced heating},
842     Pages = {361-376},
843     Publisher = {OLDENBOURG VERLAG},
844     Timescited = {2},
845     Title = {Photothermal properties of gold nanoparticles},
846     Volume = {221},
847     Year = {2007},
848     Bdsk-Url-1 = {http://dx.doi.org/10.1524/zpch.2007.221.3.361}}
849    
850     @article{Jain:2007ux,
851     Abstract = {Noble metal, especially gold (Au) and silver (Ag) nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR). In this review, we discuss the SPR-enhanced optical properties of noble metal nanoparticles, with an emphasis on the recent advances in the utility of these plasmonic properties in molecular-specific imaging and sensing, photo-diagnostics, and selective photothermal therapy. The strongly enhanced SPR scattering from Au nanoparticles makes them useful as bright optical tags for molecular-specific biological imaging and detection using simple dark-field optical microscopy. On the other hand, the SPR absorption of the nanoparticles has allowed their use in the selective laser photothermal therapy of cancer. We also discuss the sensitivity of the nanoparticle SPR frequency to the local medium dielectric constant, which has been successfully exploited for the optical sensing of chemical and biological analytes. Plasmon coupling between metal nanoparticle pairs is also discussed, which forms the basis for nanoparticle assembly-based biodiagnostics and the plasmon ruler for dynamic measurement of nanoscale distances in biological systems.},
852     Address = {233 SPRING STREET, NEW YORK, NY 10013 USA},
853     Author = {Jain, Prashant K. and Huang, Xiaohua and El-Sayed, Ivan H. and El-Sayad, Mostafa A.},
854     Date = {SEP 2007},
855     Date-Added = {2012-12-17 16:51:52 +0000},
856     Date-Modified = {2012-12-17 16:51:52 +0000},
857     Doi = {DOI 10.1007/s11468-007-9031-1},
858     Journal = {Plasmonics},
859     Keywords = {surface plasmon resonance (SPR); SPR sensing; Mie scattering; metal nanocrystals for biodiagnostics; photothermal therapy; plasmon coupling},
860     Number = {3},
861     Pages = {107-118},
862     Publisher = {SPRINGER},
863     Timescited = {2},
864     Title = {Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems},
865     Volume = {2},
866     Year = {2007},
867     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s11468-007-9031-1}}
868    
869 kstocke1 3801 @techreport{Goddard1998,
870     Author = {Kimura, Y. and Cagin, T. and Goddard III, W.A.},
871 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
872     Date-Modified = {2012-12-05 22:18:01 +0000},
873 kstocke1 3801 Institution = {California Institute of Technology},
874     Lastchecked = {January 19, 2011},
875     Number = {003},
876     Title = {The Quantum Sutton-Chen Many Body Potential for Properties of fcc Metals},
877     Url = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf},
878     Year = {1998},
879     Bdsk-Url-1 = {http://csdrm.caltech.edu/publications/cit-asci-tr/cit-asci-tr003.pdf}}
880    
881     @article{Kuang2010,
882     Author = {Shenyu Kuang and J. Daniel Gezelter},
883 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
884     Date-Modified = {2012-12-05 22:18:01 +0000},
885 kstocke1 3801 Journal = {J. Chem. Phys.},
886     Keywords = {NIVS, RNEMD, NIVS-RNEMD},
887     Month = {October},
888     Pages = {164101-1 - 164101-9},
889     Title = {A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity},
890     Volume = {133},
891     Year = {2010}}
892    
893     @article{Kuang2012,
894     Author = {Shenyu Kuang and J. Daniel Gezelter},
895 kstocke1 3804 Date-Added = {2012-12-05 22:18:01 +0000},
896     Date-Modified = {2012-12-05 22:18:01 +0000},
897 kstocke1 3801 Journal = {Mol. Phys.},
898     Keywords = {VSS, RNEMD, VSS-RNEMD},
899     Month = {May},
900     Number = {9-10},
901     Pages = {691-701},
902     Title = {Velocity shearing and scaling RNEMD: a minimally perturbing method for simulating temperature and momentum gradients},
903     Volume = {110},
904     Year = {2012}}
905 kstocke1 3804
906     @article{doi:10.1080/0026897031000068578,
907     Abstract = { Using equilibrium and non-equilibrium molecular dynamics simulations, we determine the Kapitza resistance (or thermal contact resistance) at a model liquid-solid interface. The Kapitza resistance (or the associated Kapitza length) can reach appreciable values when the liquid does not wet the solid. The analogy with the hydrodynamic slip length is discussed. },
908     Author = {Barrat, Jean-Louis and Chiaruttini, Fran{\c c}ois},
909     Date-Added = {2011-12-13 17:17:05 -0500},
910     Date-Modified = {2011-12-13 17:17:05 -0500},
911     Doi = {10.1080/0026897031000068578},
912     Eprint = {http://tandfprod.literatumonline.com/doi/pdf/10.1080/0026897031000068578},
913     Journal = {Mol. Phys.},
914     Number = {11},
915     Pages = {1605-1610},
916     Title = {Kapitza resistance at the liquid---solid interface},
917     Url = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
918     Volume = {101},
919     Year = {2003},
920     Bdsk-Url-1 = {http://tandfprod.literatumonline.com/doi/abs/10.1080/0026897031000068578},
921     Bdsk-Url-2 = {http://dx.doi.org/10.1080/0026897031000068578}}
922    
923     @article{Medina2011,
924     Abstract = {Molecular dynamics (MD) simulations are carried out on a system of rigid or flexible water molecules at a series of temperatures between 273 and 368&#xa0;K. Collective transport coefficients, such as shear and bulk viscosities are calculated, and their behavior is systematically investigated as a function of flexibility and temperature. It is found that by including the intramolecular terms in the potential the calculated viscosity values are in overall much better agreement, compared to earlier and recent available experimental data, than those obtained with the rigid SPC/E model. The effect of the intramolecular degrees of freedom on transport properties of liquid water is analyzed and the incorporation of polarizability is discussed for further improvements. To our knowledge the present study constitutes the first compendium of results on viscosities for pure liquid water, including flexible models, that has been assembled.},
925     Author = {J.S. Medina and R. Prosmiti and P. Villarreal and G. Delgado-Barrio and G. Winter and B. Gonz{\'a}lez and J.V. Alem{\'a}n and C. Collado},
926     Date-Added = {2011-12-13 17:08:34 -0500},
927     Date-Modified = {2011-12-13 17:08:49 -0500},
928     Doi = {10.1016/j.chemphys.2011.07.001},
929     Issn = {0301-0104},
930     Journal = {Chemical Physics},
931     Keywords = {Viscosity calculations},
932     Number = {1-3},
933     Pages = {9 - 18},
934     Title = {Molecular dynamics simulations of rigid and flexible water models: Temperature dependence of viscosity},
935     Url = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
936     Volume = {388},
937     Year = {2011},
938     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/pii/S0301010411002813},
939     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.chemphys.2011.07.001}}
940    
941     @book{WagnerKruse,
942     Address = {Berlin},
943     Author = {W. Wagner and A. Kruse},
944     Date-Added = {2011-12-13 14:57:08 -0500},
945     Date-Modified = {2011-12-13 14:57:08 -0500},
946     Publisher = {Springer-Verlag},
947     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
948     Year = {1998}}
949    
950     @article{garde:PhysRevLett2009,
951     Author = {Shenogina, Natalia and Godawat, Rahul and Keblinski, Pawel and Garde, Shekhar},
952     Date-Added = {2011-12-13 12:48:51 -0500},
953     Date-Modified = {2011-12-13 12:48:51 -0500},
954     Doi = {10.1103/PhysRevLett.102.156101},
955     Journal = {Phys. Rev. Lett.},
956     Month = {Apr},
957     Number = {15},
958     Numpages = {4},
959     Pages = {156101},
960     Publisher = {American Physical Society},
961     Title = {How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces},
962     Volume = {102},
963     Year = {2009},
964     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.102.156101}}
965    
966     @article{garde:nl2005,
967     Abstract = { Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water−organic liquid, water−surfactant, surfactant−organic liquid, is relatively high (in the range of 65−370 MW/m2 K) compared to that for solid−liquid interfaces (∼10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid−liquid interfaces. },
968     Author = {Patel, Harshit A. and Garde, Shekhar and Keblinski, Pawel},
969     Date-Added = {2011-12-13 12:48:51 -0500},
970     Date-Modified = {2011-12-13 12:48:51 -0500},
971     Doi = {10.1021/nl051526q},
972     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl051526q},
973     Journal = {Nano Lett.},
974     Note = {PMID: 16277458},
975     Number = {11},
976     Pages = {2225-2231},
977     Title = {Thermal Resistance of Nanoscopic Liquid−Liquid Interfaces:  Dependence on Chemistry and Molecular Architecture},
978     Url = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
979     Volume = {5},
980     Year = {2005},
981     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
982     Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl051526q}}
983    
984     @article{melchionna93,
985     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
986     Date-Added = {2011-12-12 17:52:15 -0500},
987     Date-Modified = {2011-12-12 17:52:15 -0500},
988     Journal = {Mol. Phys.},
989     Pages = {533-544},
990     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
991     Volume = 78,
992     Year = 1993}
993    
994     @article{TraPPE-UA.thiols,
995     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
996     Date-Added = {2011-12-07 15:06:12 -0500},
997     Date-Modified = {2011-12-07 15:06:12 -0500},
998     Doi = {10.1021/jp0549125},
999     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
1000     Journal = {J. Phys. Chem. B},
1001     Number = {50},
1002     Pages = {24100-24107},
1003     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
1004     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
1005     Volume = {109},
1006     Year = {2005},
1007     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
1008     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
1009    
1010     @article{TraPPE-UA.alkylbenzenes,
1011     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
1012     Date-Added = {2011-12-07 15:06:12 -0500},
1013     Date-Modified = {2011-12-07 15:06:12 -0500},
1014     Doi = {10.1021/jp001044x},
1015     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
1016     Journal = {J. Phys. Chem. B},
1017     Number = {33},
1018     Pages = {8008-8016},
1019     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
1020     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1021     Volume = {104},
1022     Year = {2000},
1023     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
1024     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
1025    
1026     @article{TraPPE-UA.alkanes,
1027     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
1028     Date-Added = {2011-12-07 15:06:12 -0500},
1029     Date-Modified = {2011-12-07 15:06:12 -0500},
1030     Doi = {10.1021/jp972543+},
1031     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
1032     Journal = {J. Phys. Chem. B},
1033     Number = {14},
1034     Pages = {2569-2577},
1035     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
1036     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
1037     Volume = {102},
1038     Year = {1998},
1039     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
1040     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+},
1041     Bdsk-Url-3 = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B}}
1042    
1043     @article{ISI:000167766600035,
1044     Abstract = {Molecular dynamics simulations are used to
1045     investigate the separation of water films adjacent
1046     to a hot metal surface. The simulations clearly show
1047     that the water layers nearest the surface overheat
1048     and undergo explosive boiling. For thick films, the
1049     expansion of the vaporized molecules near the
1050     surface forces the outer water layers to move away
1051     from the surface. These results are of interest for
1052     mass spectrometry of biological molecules, steam
1053     cleaning of surfaces, and medical procedures.},
1054     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1055     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1056     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1057     Date-Added = {2011-12-07 15:02:32 -0500},
1058     Date-Modified = {2011-12-07 15:02:32 -0500},
1059     Doc-Delivery-Number = {416ED},
1060     Issn = {1089-5639},
1061     Journal = {J. Phys. Chem. A},
1062     Journal-Iso = {J. Phys. Chem. A},
1063     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1064     Language = {English},
1065     Month = {MAR 29},
1066     Number = {12},
1067     Number-Of-Cited-References = {65},
1068     Pages = {2748-2755},
1069     Publisher = {AMER CHEMICAL SOC},
1070     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1071     Times-Cited = {66},
1072     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
1073     Type = {Article},
1074     Unique-Id = {ISI:000167766600035},
1075     Volume = {105},
1076     Year = {2001}}
1077    
1078     @article{Chen90,
1079     Author = {A.~P. Sutton and J. Chen},
1080     Date-Added = {2011-12-07 15:01:59 -0500},
1081     Date-Modified = {2011-12-07 15:01:59 -0500},
1082     Journal = {Philos. Mag. Lett.},
1083     Pages = {139-146},
1084     Title = {Long-Range Finnis Sinclair Potentials},
1085     Volume = 61,
1086     Year = {1990}}
1087    
1088     @article{PhysRevB.59.3527,
1089     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
1090     Date-Added = {2011-12-07 15:01:36 -0500},
1091     Date-Modified = {2011-12-07 15:01:36 -0500},
1092     Doi = {10.1103/PhysRevB.59.3527},
1093     Journal = {Phys. Rev. B},
1094     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
1095     Month = {Feb},
1096     Number = {5},
1097     Numpages = {6},
1098     Pages = {3527-3533},
1099     Publisher = {American Physical Society},
1100     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
1101     Volume = {59},
1102     Year = {1999},
1103     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
1104    
1105     @article{Bedrov:2000,
1106     Abstract = {We have applied a new nonequilibrium molecular
1107     dynamics (NEMD) method {[}F. Muller-Plathe,
1108     J. Chem. Phys. 106, 6082 (1997)] previously applied
1109     to monatomic Lennard-Jones fluids in the
1110     determination of the thermal conductivity of
1111     molecular fluids. The method was modified in order
1112     to be applicable to systems with holonomic
1113     constraints. Because the method involves imposing a
1114     known heat flux it is particularly attractive for
1115     systems involving long-range and many-body
1116     interactions where calculation of the microscopic
1117     heat flux is difficult. The predicted thermal
1118     conductivities of liquid n-butane and water using
1119     the imposed-flux NEMD method were found to be in a
1120     good agreement with previous simulations and
1121     experiment. (C) 2000 American Institute of
1122     Physics. {[}S0021-9606(00)50841-1].},
1123     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1124     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1125     Author = {Bedrov, D and Smith, GD},
1126     Date-Added = {2011-12-07 15:00:27 -0500},
1127     Date-Modified = {2011-12-07 15:00:27 -0500},
1128     Doc-Delivery-Number = {369BF},
1129     Issn = {0021-9606},
1130     Journal = {J. Chem. Phys.},
1131     Journal-Iso = {J. Chem. Phys.},
1132     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1133     Language = {English},
1134     Month = {NOV 8},
1135     Number = {18},
1136     Number-Of-Cited-References = {26},
1137     Pages = {8080-8084},
1138     Publisher = {AMER INST PHYSICS},
1139     Read = {1},
1140     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1141     Times-Cited = {23},
1142     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
1143     Type = {Article},
1144     Unique-Id = {ISI:000090151400044},
1145     Volume = {113},
1146     Year = {2000}}
1147    
1148     @article{10.1063/1.3330544,
1149     Author = {Miguel Angel Gonz{\'a}lez and Jos{\'e} L. F. Abascal},
1150     Coden = {JCPSA6},
1151     Date-Added = {2011-12-07 14:59:20 -0500},
1152     Date-Modified = {2011-12-15 13:10:11 -0500},
1153     Doi = {DOI:10.1063/1.3330544},
1154     Eissn = {10897690},
1155     Issn = {00219606},
1156     Journal = {J. Chem. Phys.},
1157     Keywords = {shear strength; viscosity;},
1158     Number = {9},
1159     Pages = {096101},
1160     Publisher = {AIP},
1161     Title = {The shear viscosity of rigid water models},
1162     Url = {http://dx.doi.org/doi/10.1063/1.3330544},
1163     Volume = {132},
1164     Year = {2010},
1165     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3330544},
1166     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3330544}}
1167    
1168     @article{doi:10.1021/jp048434u,
1169     Abstract = { The different possible proton-ordered structures of ice Ih for an orthorombic unit cell with 8 water molecules were derived. The number of unique structures was found to be 16. The crystallographic coordinates of these are reported. The energetics of the different polymorphs were investigated by quantum-mechanical density-functional theory calculations and for comparison by molecular-mechanics analytical potential models. The polymorphs were found to be close in energy, i.e., within approximately 0.25 kcal/mol H2O, on the basis of the quantum-chemical DFT methods. At 277 K, the different energy levels are about evenly populated, but at a lower temperature, a transition to an ordered form is expected. This form was found to agree with the ice phase XI. The difference in lattice energies among the polymorphs was rationalized in terms of structural characteristics. The most important parameters to determine the lattice energies were found to be the distributions of water dimer H-bonded pair conformations, in an intricate manner. },
1170     Author = {Hirsch, Tomas K. and Ojam{\"a}e, Lars},
1171     Date-Added = {2011-12-07 14:38:30 -0500},
1172     Date-Modified = {2011-12-07 14:38:30 -0500},
1173     Doi = {10.1021/jp048434u},
1174     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp048434u},
1175     Journal = {J. Phys. Chem. B},
1176     Number = {40},
1177     Pages = {15856-15864},
1178     Title = {Quantum-Chemical and Force-Field Investigations of Ice Ih:  Computation of Proton-Ordered Structures and Prediction of Their Lattice Energies},
1179     Url = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1180     Volume = {108},
1181     Year = {2004},
1182     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp048434u},
1183     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp048434u}}
1184    
1185     @article{Meineke:2005gd,
1186     Abstract = {OOPSE is a new molecular dynamics simulation program
1187     that is capable of efficiently integrating equations
1188     of motion for atom types with orientational degrees
1189     of freedom (e.g. #sticky# atoms and point
1190     dipoles). Transition metals can also be simulated
1191     using the embedded atom method (EAM) potential
1192     included in the code. Parallel simulations are
1193     carried out using the force-based decomposition
1194     method. Simulations are specified using a very
1195     simple C-based meta-data language. A number of
1196     advanced integrators are included, and the basic
1197     integrator for orientational dynamics provides
1198     substantial improvements over older quaternion-based
1199     schemes.},
1200     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1201     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1202     Date-Added = {2011-12-07 13:33:04 -0500},
1203     Date-Modified = {2011-12-07 13:33:04 -0500},
1204     Doi = {DOI 10.1002/jcc.20161},
1205     Isi = {000226558200006},
1206     Isi-Recid = {142688207},
1207     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1208     Journal = {J. Comput. Chem.},
1209     Keywords = {OOPSE; molecular dynamics},
1210     Month = feb,
1211     Number = {3},
1212     Pages = {252-271},
1213     Publisher = {JOHN WILEY \& SONS INC},
1214     Times-Cited = {9},
1215     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1216     Volume = {26},
1217     Year = {2005},
1218     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1219     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1220    
1221     @article{hoover85,
1222     Author = {W.~G. Hoover},
1223     Date-Added = {2011-12-06 14:23:41 -0500},
1224     Date-Modified = {2011-12-06 14:23:41 -0500},
1225     Journal = {Phys. Rev. A},
1226     Pages = 1695,
1227     Title = {Canonical dynamics: Equilibrium phase-space distributions},
1228     Volume = 31,
1229     Year = 1985}
1230    
1231     @article{Maginn:2010,
1232     Abstract = {The reverse nonequilibrium molecular dynamics
1233     (RNEMD) method calculates the shear viscosity of a
1234     fluid by imposing a nonphysical exchange of momentum
1235     and measuring the resulting shear velocity
1236     gradient. In this study we investigate the range of
1237     momentum flux values over which RNEMD yields usable
1238     (linear) velocity gradients. We find that nonlinear
1239     velocity profiles result primarily from gradients in
1240     fluid temperature and density. The temperature
1241     gradient results from conversion of heat into bulk
1242     kinetic energy, which is transformed back into heat
1243     elsewhere via viscous heating. An expression is
1244     derived to predict the temperature profile resulting
1245     from a specified momentum flux for a given fluid and
1246     simulation cell. Although primarily bounded above,
1247     we also describe milder low-flux limitations. RNEMD
1248     results for a Lennard-Jones fluid agree with
1249     equilibrium molecular dynamics and conventional
1250     nonequilibrium molecular dynamics calculations at
1251     low shear, but RNEMD underpredicts viscosity
1252     relative to conventional NEMD at high shear.},
1253     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1254     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1255     Article-Number = {014103},
1256     Author = {Tenney, Craig M. and Maginn, Edward J.},
1257     Author-Email = {ed@nd.edu},
1258     Date-Added = {2011-12-05 18:29:08 -0500},
1259     Date-Modified = {2011-12-05 18:29:08 -0500},
1260     Doc-Delivery-Number = {542DQ},
1261     Doi = {10.1063/1.3276454},
1262     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1263     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1264     Issn = {0021-9606},
1265     Journal = {J. Chem. Phys.},
1266     Journal-Iso = {J. Chem. Phys.},
1267     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1268     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1269     Language = {English},
1270     Month = {JAN 7},
1271     Number = {1},
1272     Number-Of-Cited-References = {20},
1273     Pages = {014103},
1274     Publisher = {AMER INST PHYSICS},
1275     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1276     Times-Cited = {0},
1277     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
1278     Type = {Article},
1279     Unique-Id = {ISI:000273472300004},
1280     Volume = {132},
1281     Year = {2010},
1282     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1283    
1284     @article{ISI:000080382700030,
1285     Abstract = {A nonequilibrium method for calculating the shear
1286     viscosity is presented. It reverses the
1287     cause-and-effect picture customarily used in
1288     nonequilibrium molecular dynamics: the effect, the
1289     momentum flux or stress, is imposed, whereas the
1290     cause, the velocity gradient or shear rate, is
1291     obtained from the simulation. It differs from other
1292     Norton-ensemble methods by the way in which the
1293     steady-state momentum flux is maintained. This
1294     method involves a simple exchange of particle
1295     momenta, which is easy to implement. Moreover, it
1296     can be made to conserve the total energy as well as
1297     the total linear momentum, so no coupling to an
1298     external temperature bath is needed. The resulting
1299     raw data, the velocity profile, is a robust and
1300     rapidly converging property. The method is tested on
1301     the Lennard-Jones fluid near its triple point. It
1302     yields a viscosity of 3.2-3.3, in Lennard-Jones
1303     reduced units, in agreement with literature
1304     results. {[}S1063-651X(99)03105-0].},
1305     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1306     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1307     Author = {M\"{u}ller-Plathe, F},
1308     Date-Added = {2011-12-05 18:18:37 -0500},
1309     Date-Modified = {2011-12-05 18:18:37 -0500},
1310     Doc-Delivery-Number = {197TX},
1311     Issn = {1063-651X},
1312     Journal = {Phys. Rev. E},
1313     Journal-Iso = {Phys. Rev. E},
1314     Language = {English},
1315     Month = {MAY},
1316     Number = {5, Part A},
1317     Number-Of-Cited-References = {17},
1318     Pages = {4894-4898},
1319     Publisher = {AMERICAN PHYSICAL SOC},
1320     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1321     Times-Cited = {57},
1322     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1323     Type = {Article},
1324     Unique-Id = {ISI:000080382700030},
1325     Volume = {59},
1326     Year = {1999}}
1327    
1328     @article{MullerPlathe:1997xw,
1329     Abstract = {A nonequilibrium molecular dynamics method for
1330     calculating the thermal conductivity is
1331     presented. It reverses the usual cause and effect
1332     picture. The ''effect,'' the heat flux, is imposed
1333     on the system and the ''cause,'' the temperature
1334     gradient is obtained from the simulation. Besides
1335     being very simple to implement, the scheme offers
1336     several advantages such as compatibility with
1337     periodic boundary conditions, conservation of total
1338     energy and total linear momentum, and the sampling
1339     of a rapidly converging quantity (temperature
1340     gradient) rather than a slowly converging one (heat
1341     flux). The scheme is tested on the Lennard-Jones
1342     fluid. (C) 1997 American Institute of Physics.},
1343     Address = {WOODBURY},
1344     Author = {M\"{u}ller-Plathe, F.},
1345     Cited-Reference-Count = {13},
1346     Date = {APR 8},
1347     Date-Added = {2011-12-05 18:18:37 -0500},
1348     Date-Modified = {2011-12-05 18:18:37 -0500},
1349     Document-Type = {Article},
1350     Isi = {ISI:A1997WR62000032},
1351     Isi-Document-Delivery-Number = {WR620},
1352     Iso-Source-Abbreviation = {J. Chem. Phys.},
1353     Issn = {0021-9606},
1354     Journal = {J. Chem. Phys.},
1355     Language = {English},
1356     Month = {Apr},
1357     Number = {14},
1358     Page-Count = {4},
1359     Pages = {6082--6085},
1360     Publication-Type = {J},
1361     Publisher = {AMER INST PHYSICS},
1362     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1363     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1364     Source = {J CHEM PHYS},
1365     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1366     Times-Cited = {106},
1367     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1368     Volume = {106},
1369     Year = {1997}}
1370    
1371     @article{priezjev:204704,
1372     Author = {Nikolai V. Priezjev},
1373     Date-Added = {2011-11-28 14:39:18 -0500},
1374     Date-Modified = {2011-11-28 14:39:18 -0500},
1375     Doi = {10.1063/1.3663384},
1376     Eid = {204704},
1377     Journal = {J. Chem. Phys.},
1378     Keywords = {channel flow; diffusion; flow simulation; hydrodynamics; molecular dynamics method; pattern formation; random processes; shear flow; slip flow; wetting},
1379     Number = {20},
1380     Numpages = {9},
1381     Pages = {204704},
1382     Publisher = {AIP},
1383     Title = {Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures},
1384     Url = {http://link.aip.org/link/?JCP/135/204704/1},
1385     Volume = {135},
1386     Year = {2011},
1387     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/135/204704/1},
1388     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3663384}}
1389    
1390     @article{bryk:10258,
1391     Author = {Taras Bryk and A. D. J. Haymet},
1392     Date-Added = {2011-11-22 17:06:35 -0500},
1393     Date-Modified = {2011-11-22 17:06:35 -0500},
1394     Doi = {10.1063/1.1519538},
1395     Journal = {J. Chem. Phys.},
1396     Keywords = {liquid structure; molecular dynamics method; water; ice; interface structure},
1397     Number = {22},
1398     Pages = {10258-10268},
1399     Publisher = {AIP},
1400     Title = {Ice 1h/water interface of the SPC/E model: Molecular dynamics simulations of the equilibrium basal and prism interfaces},
1401     Url = {http://link.aip.org/link/?JCP/117/10258/1},
1402     Volume = {117},
1403     Year = {2002},
1404     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/117/10258/1},
1405     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1519538}}
1406    
1407     @misc{openmd,
1408     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
1409     Date-Added = {2011-11-18 15:32:23 -0500},
1410     Date-Modified = {2011-11-18 15:32:23 -0500},
1411     Howpublished = {Available at {\tt http://openmd.net}},
1412     Title = {{OpenMD, an open source engine for molecular dynamics}}}
1413    
1414     @article{kuang:AuThl,
1415     Author = {Kuang, Shenyu and Gezelter, J. Daniel},
1416     Date-Added = {2011-11-18 13:03:06 -0500},
1417     Date-Modified = {2011-12-05 17:58:01 -0500},
1418     Doi = {10.1021/jp2073478},
1419     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp2073478},
1420     Journal = {J. Phys. Chem. C},
1421     Number = {45},
1422     Pages = {22475-22483},
1423     Title = {Simulating Interfacial Thermal Conductance at Metal-Solvent Interfaces: The Role of Chemical Capping Agents},
1424     Url = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1425     Volume = {115},
1426     Year = {2011},
1427     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp2073478},
1428     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp2073478}}
1429    
1430     @article{10.1063/1.2772547,
1431     Author = {Hideo Kaburaki and Ju Li and Sidney Yip and Hajime Kimizuka},
1432     Coden = {JAPIAU},
1433     Date-Added = {2011-11-01 16:46:32 -0400},
1434     Date-Modified = {2011-11-01 16:46:32 -0400},
1435     Doi = {DOI:10.1063/1.2772547},
1436     Eissn = {10897550},
1437     Issn = {00218979},
1438     Keywords = {argon; Lennard-Jones potential; phonons; thermal conductivity;},
1439     Number = {4},
1440     Pages = {043514},
1441     Publisher = {AIP},
1442     Title = {Dynamical thermal conductivity of argon crystal},
1443     Url = {http://dx.doi.org/10.1063/1.2772547},
1444     Volume = {102},
1445     Year = {2007},
1446     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2772547}}
1447    
1448     @article{PhysRevLett.82.4671,
1449     Author = {Barrat, Jean-Louis and Bocquet, Lyd\'eric},
1450     Date-Added = {2011-11-01 16:44:29 -0400},
1451     Date-Modified = {2011-11-01 16:44:29 -0400},
1452     Doi = {10.1103/PhysRevLett.82.4671},
1453     Issue = {23},
1454     Journal = {Phys. Rev. Lett.},
1455     Month = {Jun},
1456     Pages = {4671--4674},
1457     Publisher = {American Physical Society},
1458     Title = {Large Slip Effect at a Nonwetting Fluid-Solid Interface},
1459     Url = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1460     Volume = {82},
1461     Year = {1999},
1462     Bdsk-Url-1 = {http://link.aps.org/doi/10.1103/PhysRevLett.82.4671},
1463     Bdsk-Url-2 = {http://dx.doi.org/10.1103/PhysRevLett.82.4671}}
1464    
1465     @article{10.1063/1.1610442,
1466     Author = {J. R. Schmidt and J. L. Skinner},
1467     Coden = {JCPSA6},
1468     Date-Added = {2011-10-13 16:28:43 -0400},
1469     Date-Modified = {2011-12-15 13:11:53 -0500},
1470     Doi = {DOI:10.1063/1.1610442},
1471     Eissn = {10897690},
1472     Issn = {00219606},
1473     Journal = {J. Chem. Phys.},
1474     Keywords = {hydrodynamics; Brownian motion; molecular dynamics method; diffusion;},
1475     Number = {15},
1476     Pages = {8062-8068},
1477     Publisher = {AIP},
1478     Title = {Hydrodynamic boundary conditions, the Stokes?Einstein law, and long-time tails in the Brownian limit},
1479     Url = {http://dx.doi.org/10.1063/1.1610442},
1480     Volume = {119},
1481     Year = {2003},
1482     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1610442}}
1483    
1484     @article{10.1063/1.3274802,
1485     Author = {Ting Chen and Berend Smit and Alexis T. Bell},
1486     Coden = {JCPSA6},
1487     Doi = {DOI:10.1063/1.3274802},
1488     Eissn = {10897690},
1489     Issn = {00219606},
1490     Keywords = {fluctuations; molecular dynamics method; viscosity;},
1491     Number = {24},
1492     Pages = {246101},
1493     Publisher = {AIP},
1494     Title = {Are pressure fluctuation-based equilibrium methods really worse than nonequilibrium methods for calculating viscosities?},
1495     Url = {http://dx.doi.org/doi/10.1063/1.3274802},
1496     Volume = {131},
1497     Year = {2009},
1498     Bdsk-Url-1 = {http://dx.doi.org/doi/10.1063/1.3274802},
1499     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3274802}}