ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/chuckDissertation/dissertation.bbl
Revision: 3496
Committed: Wed Apr 8 19:13:41 2009 UTC (15 years, 4 months ago) by chuckv
File size: 40566 byte(s)
Log Message:
Final Version

File Contents

# User Rev Content
1 chuckv 3483 \begin{thebibliography}{100}
2    
3     \bibitem{DAW:1993p1640}
4 chuckv 3496 M.~Daw, S.~Foiles and M.~Baskes, The embedded-atom method - a review of theory
5     and applications. {\em Mater. Sci. Rep.\/}, 9(7-8): 251--310 (Jan 1993).
6 chuckv 3483
7     \bibitem{kimura-quantum}
8     Y.~Kimura and T.~Cagin, The quantum sutton-chen manybody potential for
9     properties of fcc metals.
10    
11     \bibitem{Chen90}
12     A.~P. Sutton and J.~Chen, Long-range finnis sinclair potentials. {\em Phil.
13     Mag. Lett.\/}, 61: 139--146 (1990).
14    
15 chuckv 3496 \bibitem{PhysRevB.59.3527}
16     Y.~Qi, T.~\c{C}a\v{g}in, Y.~Kimura and W.~A. {Goddard III}, Molecular-dynamics
17     simulations of glass formation and crystallization in binary liquid
18     metals:\quad{}{C}u-{A}g and {C}u-{N}i. {\em Phys. Rev. B\/}, 59(5):
19     3527--3533 (Feb 1999).
20    
21 chuckv 3483 \bibitem{wolde:9932}
22     P.~R. ten Wolde, M.~J. Ruiz-Montero and D.~Frenkel, Numerical calculation of
23     the rate of crystal nucleation in a lennard-jones system at moderate
24     undercooling. {\em J. Chem. Phys.\/}, 104(24): 9932--9947 (1996).
25    
26 chuckv 3496 \bibitem{Greer:1995qy}
27     A.~L. Greer, Metallic glasses. {\em Science\/}, 267(5206): 1947--1953 (Mar
28     1995).
29    
30 chuckv 3483 \bibitem{Allen87}
31     M.~P. Allen and D.~J. Tildesley, {\em Computer Simulations of Liquids\/}.
32     Oxford University Press, New York (1987).
33    
34     \bibitem{Frenkel02}
35     D.~Frenkel and B.~Smit, {\em Understanding Molecular Simulation:
36     \uppercase{F}rom Algorithms to Applications\/}. Academic Press, New York,
37     second edition (2002).
38    
39     \bibitem{Leach01}
40     A.~R. Leach, {\em Molecular Modeling: Principles and Applications\/}. Pearson
41     Educated Limited, Harlow, England, second edition (2001).
42    
43     \bibitem{Meineke:2004uq}
44     M.~A. Meineke, C.~F. Vardeman~II, T.~Lin, C.~J. Fennell and J.~D. Gezelter,
45     {OOPSE:} an object-oriented parallel simulation engine for molecular
46     dynamics. {\em J. Comp Chem\/}, 26(3): 252--271 (2005).
47    
48     \bibitem{Nieminen:1990hw}
49     V.~Heine and J.~Hafnner, {\em Many-atom interactions in solids: proceedings of
50     the international workshop, Pajulahti, Finland, June 5-9, 1989\/}, volume~48
51     of {\em Springer proceedings in physics\/}. Springer-Verlag, Berlin (1990).
52    
53     \bibitem{Ashcroft:1976zt}
54     N.~W. Ashcroft and N.~D. Mermin, {\em Solid state physics\/}. Holt, Rinehart
55     and Winston, New York (1976).
56    
57     \bibitem{Drude:1900p1479}
58     P.~Drude, On the ionic theory of metals. {\em Phys Z\/}, 1: 161--165 (Jan
59     1900).
60    
61     \bibitem{Drude:1900p1481}
62     P.~Drude, On the electron theory of metals. {\em Ann Phys-Berlin\/}, 1(3):
63     566--613 (Jan 1900).
64    
65     \bibitem{Kittel:1996fk}
66     C.~Kittel, {\em Introduction to solid state physics\/}. Wiley, New York, 7th
67     edition (1996).
68    
69     \bibitem{Egelstaff:1992yb}
70     P.~A. Egelstaff, {\em An introduction to the liquid state\/}, volume~7.
71     Clarendon Press, Oxford, second edition (1992).
72    
73 chuckv 3496 \bibitem{Nrskov:1982p1753}
74     J.~K. N{\o}rskov, Covalent effects in the effective-medium theory of chemical
75     binding: Hydrogen heats of solution in the 3 d metals. {\em Phys. Rev. B\/},
76     26(6): 2875--2885 (Sep 1982).
77    
78 chuckv 3483 \bibitem{Nrskov:1980p1752}
79     J.~K. N{\o}rskov and N.~D. Lang, Effective-medium theory of chemical binding:
80 chuckv 3496 Application to chemisorption. {\em Phys. Rev. B\/}, 21(6): 2131--2136 (Mar
81 chuckv 3483 1980).
82    
83     \bibitem{Stott:1980p1754}
84     M.~J. Stott and E.~Zaremba, Quasiatoms: An approach to atoms in nonuniform
85 chuckv 3496 electronic systems. {\em Phys. Rev. B\/}, 22(4): 1564--1583 (Aug 1980).
86 chuckv 3483
87     \bibitem{Puska:1981p1755}
88     M.~J. Puska and M.~Manninen, Atoms embedded in an electron gas: Immersion
89 chuckv 3496 energies. {\em Phys. Rev. B\/}, 24(6): 3037--3047 (Sep 1981).
90 chuckv 3483
91 chuckv 3496 \bibitem{DAW:1983ht}
92     M.~Daw and M.~Baskes, Semiempirical, quantum-mechanical calculation of hydrogen
93     embrittlement in metals. {\em Phys. Rev. Lett.\/}, 50(17): 1285--1288 (1983).
94    
95 chuckv 3483 \bibitem{Daw84}
96     M.~S. Daw and M.~I. Baskes, Embedded-atom method: Derivation and application to
97 chuckv 3496 impurities, surfaces, and other defects in metals. {\em Phys. Rev. B\/},
98     29(12): 6443--6453 (1984).
99 chuckv 3483
100     \bibitem{Hohenberg:1964bs}
101     P.~Hohenberg and W.~Kohn, Inhomogeneous electron gas. {\em Phys. Rev.\/},
102     136(3B): B864--B871 (Nov 1964).
103    
104     \bibitem{DAW:1989p1673}
105 chuckv 3496 M.~Daw, Model of metallic cohesion - the embedded-atom method. {\em Phys. Rev.
106 chuckv 3483 B\/}, 39(11): 7441--7452 (Jan 1989).
107    
108     \bibitem{PhysRevB.33.7983}
109     S.~M. Foiles, M.~I. Baskes and M.~S. Daw, Embedded-atom-method functions for
110     the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys. {\em
111     Phys. Rev. B\/}, 33(12): 7983--7991 (Jun 1986).
112    
113     \bibitem{Voter:95}
114     A.~F. Voter, {\em Intermetallic Compounds: Principles and Practice\/},
115     volume~1, chapter~4, page~77. John Wiley and Sons Ltd (1995).
116    
117     \bibitem{Rose:1984rw}
118     J.~H. Rose, J.~R. Smith, F.~Guinea and J.~Ferrante, Universal features of the
119     equation of state of metals. {\em Phys. Rev. B\/}, 29(6): 2963--2969 (Mar
120     1984).
121    
122     \bibitem{BASKES:1987p1743}
123 chuckv 3496 M.~Baskes, Application of the embedded-atom method to covalent materials - a
124     semiempirical potential for silicon. {\em Phys. Rev. Lett.\/}, 59(23):
125 chuckv 3483 2666--2669 (Jan 1987).
126    
127 chuckv 3496 \bibitem{BASKES:1992p1735}
128     M.~Baskes, Modified embedded-atom potentials for cubic materials and
129     impurities. {\em Phys. Rev. B\/}, 46(5): 2727--2742 (Jan 1992).
130    
131 chuckv 3483 \bibitem{BASKES:1989p1746}
132 chuckv 3496 M.~Baskes, J.~Nelson and A.~Wright, Semiempirical modified embedded-atom
133     potentials for silicon and germanium. {\em Phys. Rev. B\/}, 40(9): 6085--6100
134 chuckv 3483 (Jan 1989).
135    
136 chuckv 3496 \bibitem{Ercolessi88}
137     F.~Ercolessi, M.~Parrinello and E.~Tosatti, Simulation of gold in the glue
138     model. {\em Phil. Mag. A\/}, 58: 213--226 (1988).
139 chuckv 3483
140     \bibitem{Finnis84}
141     M.~W. Finnis and J.~E. Sinclair, A simple empirical n-body potential for
142     transition-metals. {\em Phil. Mag. A\/}, 50: 45--55 (1984).
143    
144     \bibitem{Qi99}
145     Y.~Qi, T.~\c{C}a\v{g}in, Y.~Kimura and W.~A. {Goddard III}, Molecular-dynamics
146     simulations of glass formation and crystallization in binary liquid metals:
147     Cu-ag and cu-ni. 59(5): 3527--3533 (1999).
148    
149     \bibitem{Ercolessi02}
150     U.~Tartaglino, E.~Tosatti, D.~Passerone and F.~Ercolessi, Bending strain-driven
151 chuckv 3496 modification of surface resconstructions: Au(111). {\em Phys. Rev. B\/}, 65:
152     241406 (2002).
153 chuckv 3483
154 chuckv 3496 \bibitem{Goldstein:2001uf}
155     H.~Goldstein, C.~Poole and J.~Safko, {\em Classical Mechanics\/}. Addison
156     Wesley, San Francisco, third edition (2001).
157    
158 chuckv 3483 \bibitem{Tolman:1938kl}
159     R.~C. Tolman, {\em The Principles of Statistical Mechanics\/}. Oxford
160     University Press, Inc., New York (1938).
161    
162 chuckv 3496 \bibitem{McQuarrie:2000yt}
163     D.~A. McQuarrie, {\em Statistical mechanics\/}. University Science Books,
164     Sausalito, Calif. (2000).
165 chuckv 3483
166 chuckv 3496 \bibitem{swope:637}
167     W.~C. Swope, H.~C. Andersen, P.~H. Berens and K.~R. Wilson, A computer
168     simulation method for the calculation of equilibrium constants for the
169     formation of physical clusters of molecules: Application to small water
170     clusters. {\em The Journal of Chemical Physics\/}, 76(1): 637--649 (1982).
171    
172     \bibitem{Verlet67}
173     L.~Verlet, Computer ``experiments" on classical fluids. \uppercase{I.
174     T}hermodynamic properties of \uppercase{L}ennard-\uppercase{J}ones molecules.
175     {\em Phys. Rev.\/}, 159(1): 98--103 (1967).
176    
177     \bibitem{tuckerman:2278}
178     M.~Tuckerman, B.~J. Berne and G.~J. Martyna, Reply to comment on: Reversible
179     multiple time scale molecular dynamics. {\em J. Chem. Phys.\/}, 99(3):
180     2278--2279 (1993).
181    
182     \bibitem{BROOKS:1983uq}
183     B.~CL and M.~Karplus, Deformable stochastic boundaries in molecular-dynamics.
184     {\em J. Chem. Phys.\/}, 79: 6312--6325 (1983).
185    
186     \bibitem{BROOKS:1985kx}
187     C.~Brooks, A.~Brunger and M.~Karplus, Active-site dynamics in protein molecules
188     - a stochastic boundary molecular-dynamics approach. {\em Biopolymers\/}, 24:
189     843--865 (1985).
190    
191     \bibitem{BRUNGER:1984fj}
192     A.~Brunger, C.~Brooks and M.~Karplus, Stochastic boundary-conditions for
193     molecular-dynamics simulations of st2 water. {\em Chem. Phys. Lett.\/}, 105:
194     495--500 (1984).
195    
196     \bibitem{Schlick:2002hc}
197     T.~Schlick, {\em Molecular modeling and simulation: an interdisciplinary
198     guide\/}, volume v. 21. Springer, New York (2002).
199    
200     \bibitem{Fox88}
201     G.~C. Fox, M.~A. Johnson, G.~A. Lyzenga, S.~W. Otto, J.~K. Salmon and D.~W.
202     Walker, {\em Solving Promblems on Concurrent Processors\/}, volume~I.
203     Prentice-Hall, Englewood Cliffs, NJ (1988).
204    
205     \bibitem{plimpton95}
206     S.~Plimpton, Fast parallel algorithms for short-range molecular dymanics. {\em
207     J. Comp. Phys.\/}, 117: 1--19 (1995).
208    
209     \bibitem{Paradyn}
210     S.~J. Plimpton and B.~A. Hendrickson, Parallel molecular dynamics with the
211     embedded atom method. In J.~Broughton, P.~Bristowe and J.~Newsam, editors,
212     {\em Materials Theory and Modelling\/}, volume 291 of {\em MRS
213     Proceedings\/}, page~37, Materials Research Society, Pittsburgh, PA (1993).
214    
215     \bibitem{hendrickson:95}
216     B.~Hendrickson and S.~Plimpton, Parallel many-body simulations without
217     all-to-all communication. {\em J. Parallel Distr. Com.\/}, 27: 15--25 (1995).
218    
219 chuckv 3483 \bibitem{Pense92}
220     A.~W. Pense, The decline and fall of the roman denarius. {\em Mat. Char.\/},
221     29: 213 (1992).
222    
223     \bibitem{duwez:1136}
224     P.~Duwez, R.~H. Willens, W.~Klement and Jr, Continuous series of metastable
225 chuckv 3496 solid solutions in silver-copper alloys. {\em J. Appl. Phys.\/}, 31(6):
226     1136--1137 (1960).
227 chuckv 3483
228     \bibitem{Peker93}
229     A.~Peker and W.~L. Johnson, A highly processable metallic-glass -
230     $\mbox{Zr}_{41.2}\mbox{Ti}_{13.8}\mbox{Cu}_{12.5}\mbox{Ni}_{10.0}\mbox{Be}_{%
231     22.5}$. {\em Appl. Phys. Lett.\/}, 63: 2342--2344 (1993).
232    
233     \bibitem{Kob95a}
234     W.~Kob and H.~C. Andersen, Testing mode-coupling theory for a supercooled
235 chuckv 3496 binary lennard-jones mixtures: The van hove corraltion function. {\em Phys.
236     Rev. E\/}, 51: 4626--4641 (1995).
237 chuckv 3483
238     \bibitem{Kob95b}
239     W.~Kob and H.~C. Andersen, Testing mode-coupling theory for a supercooled
240     binary lennard-jones mixtures. ii. intermediate scattering function and
241 chuckv 3496 dynamic susceptibility. {\em Phys. Rev. E\/}, 52: 4134--4153 (1995).
242 chuckv 3483
243     \bibitem{Stillinger98}
244     S.~Sastry, P.~G. Debenedetti and F.~H. Stillinger, Signatures of distinct
245     dynamical regimes in the energy landscape of a glass-forming liquid. {\em
246     Nature\/}, 393: 554--557 (1998).
247    
248     \bibitem{Hansen86}
249     J.~P. Hansen and I.~R. McDonald, {\em Theory of Simple Liquids\/}. Academic
250     Press, London (1986).
251    
252     \bibitem{Gaukel98}
253     C.~Gaukel and H.~R. Schober, Diffusion mechanisms in under-cooled binary metal
254     liquids of $\mbox{Zr}_{67}\mbox{Cu}_{33}$. {\em Solid State Comm.\/}, 107:
255     1--5 (1998).
256    
257 chuckv 3496 \bibitem{Gezelter99}
258     J.~D. Gezelter, E.~Rabani and B.~J. Berne, Methods for calculating the hopping
259     rate for orientational and spatial diffusion in a molecular liquid:
260     $\mbox{CS}_{2}$. {\em J. Chem. Phys.\/}, 110: 3444 (1999).
261    
262 chuckv 3483 \bibitem{Rabani97}
263     E.~Rabani, J.~D. Gezelter and B.~J. Berne, Calculating the hopping rate for
264     self-diffusion on rough potential energy surfaces: Cage correlations. {\em J.
265     Chem. Phys.\/}, 107: 6867--6876 (1997).
266    
267     \bibitem{Rabani99}
268     E.~Rabani, J.~D. Gezelter and B.~J. Berne, Direct observation of
269     stretched-exponential relaxation in low-temperature lennard-jones systems
270 chuckv 3496 using the cage correlation function. {\em Phys. Rev. Lett.\/}, 82: 3649
271     (1999).
272 chuckv 3483
273     \bibitem{Rabani2000}
274     E.~Rabani, J.~D. Gezelter and B.~J. Berne, Reply to `comment on ``direct
275     observation of stretched-exponential relaxation in low-temperature
276 chuckv 3496 lennard-jones systems using th ecage correlation function'' '. {\em Phys.
277     Rev. Lett.\/}, 85: 467 (2000).
278 chuckv 3483
279     \bibitem{Zwanzig83}
280     R.~Zwanzig, On the relation between self-diffusion and viscosity of liquids.
281 chuckv 3496 {\em J. Chem. Phys.\/}, 79: 4507--4508 (1983).
282 chuckv 3483
283     \bibitem{Blumen83}
284     A.~Blumen, J.~Klafter and G.~Zumofen, Recombination in amorphous materials as a
285     continuous-time random-walk problem. {\em Phys. Rev. B\/}, 27: 3429--3435
286     (1983).
287    
288     \bibitem{Klafter94}
289     J.~Klafter and G.~Zumofen, Probability distributions for continuous-time random
290 chuckv 3496 walks with long tails. {\em Journal of Physical Chemistry\/}, 98: 7366--7370
291     (1994).
292 chuckv 3483
293     \bibitem{Klafter96}
294     J.~Klafter, M.~Shlesinger and G.~Zumofen, Beyond brownian motion. {\em Physics
295     Today\/}, 49: 33--39 (1996).
296    
297     \bibitem{Shlesinger99}
298     M.~F. Shlesinger, J.~Klafter and G.~Zumofen, Above, below, and beyond brownian
299     motion. {\em Am. J. Phys.\/}, 67: 1253--1259 (1999).
300    
301     \bibitem{Stillinger82}
302 chuckv 3496 F.~H. Stillinger and T.~A. Weber, Hidden structure in liquids. {\em Phys. Rev.
303     A\/}, 25(2): 978--989 (1982).
304 chuckv 3483
305     \bibitem{Stillinger83}
306     F.~H. Stillinger and T.~A. Weber, Dynamics of structural transitions in
307 chuckv 3496 liquids. {\em Phys. Rev. A\/}, 28(4): 2408--2416 (1983).
308 chuckv 3483
309 chuckv 3496 \bibitem{Stillinger85}
310     F.~H. Stillinger and T.~A. Weber, Inherent structure theory of liquids in the
311     hard-sphere limit. {\em J. Chem. Phys.\/}, 83(9): 4767--4775 (1985).
312    
313 chuckv 3483 \bibitem{Weber84}
314     T.~A. Weber and F.~H. Stillinger, The effect of density on the inherent
315 chuckv 3496 structure in liquids. {\em J. Chem. Phys.\/}, 80(6): 2742--2746 (1984).
316 chuckv 3483
317     \bibitem{Berne90}
318     B.~J. Berne and R.~Pecora, {\em Dynamic Light Scattering\/}. Robert E. Krieger
319     Publishing Company, Inc., Malabar, Florida (1990).
320    
321     \bibitem{Parkhurst75a}
322     H.~J. {Parkhurst, Jr.} and J.~Jonas, Dense liquids. i. the effect of density
323     and temperature on viscosity of tetramethylsilane and benzene-$\mbox{D}_6$.
324 chuckv 3496 {\em J. Chem. Phys.\/}, 63(6): 2698--2704 (1975).
325 chuckv 3483
326     \bibitem{Parkhurst75b}
327     H.~J. {Parkhurst, Jr.} and J.~Jonas, Dense liquids. ii. the effect of density
328 chuckv 3496 and temperature on viscosity of tetramethylsilane and benzene. {\em J. Chem.
329     Phys.\/}, 63(6): 2705--2709 (1975).
330 chuckv 3483
331     \bibitem{Ngai81}
332     K.~L. Ngai and F.-S. Liu, Dispersive diffusion transport and noise,
333     time-dependent diffusion coefficient, generalized einstein-nernst relation,
334     and dispersive diffusion-controlled unimolecular and bimolecular reactions.
335 chuckv 3496 {\em Phys. Rev. B\/}, 24: 1049--1065 (1981).
336 chuckv 3483
337     \bibitem{Gezelter97}
338     J.~D. Gezelter, E.~Rabani and B.~J. Berne, Can imaginary instantaneous normal
339 chuckv 3496 mode frequencies predict barriers to self-diffusion? {\em J. Chem. Phys.\/},
340     107: 4618 (1997).
341 chuckv 3483
342     \bibitem{Gezelter98a}
343     J.~D. Gezelter, E.~Rabani and B.~J. Berne, Response to 'comment on a critique
344 chuckv 3496 of the instantaneous normal mode (inm) approach to diffusion'. {\em J. Chem.
345     Phys.\/}, 109: 4695 (1998).
346 chuckv 3483
347 chuckv 3496 \bibitem{sheng:184203}
348     H.~W. Sheng, J.~H. He and E.~Ma, Molecular dynamics simulation studies of
349     atomic-level structures in rapidly quenched ag-cu nonequilibrium alloys. {\em
350     Phys. Rev. B\/}, 65(18): 184203 (2002).
351 chuckv 3483
352 chuckv 3496 \bibitem{MURRAY:1984lr}
353     J.~L. Murray, Calculations of stable and metastable equilibrium diagrams of the
354     ag-cu and cd-zn systems. {\em Metall Trans\/}, 15(2): 261--268 (1984).
355 chuckv 3483
356     \bibitem{Banhart:1992sv}
357     J.~Banhart, H.~Ebert, R.~Kuentzler and J.~Voitl\"{a}nder, Electronic properties
358     of single-phased metastable ag-cu alloys. 46(16): 9968--9975 (1992).
359    
360     \bibitem{Nagel96}
361     M.~Ediger, C.~Angell and S.~R. Nagel, Supercooled liquids and glasses. 100:
362     13200 (1996).
363    
364     \bibitem{Wendt78}
365 chuckv 3496 H.~Wendt and F.~F. Abraham. {\em Phys. Rev. Lett.\/}, 41: 1244 (1978).
366 chuckv 3483
367     \bibitem{Lewis91}
368 chuckv 3496 L.~J. Lewis, Atomic dynamics through the glass transition. {\em Phys. Rev.
369     B\/}, 44: 4245--4254 (1991).
370 chuckv 3483
371     \bibitem{Liu92}
372     R.~S. Liu, D.~W. Qi and S.~Wang, Subpeaks of structure factors for rapidly
373 chuckv 3496 quenched metals. {\em Phys. Rev. B\/}, 45: 451--453 (1992).
374 chuckv 3483
375     \bibitem{Tolman20}
376 chuckv 3496 R.~C. Tolman, Statistical mechanics applied to chemical kinetics. {\em J. Am.
377     Chem. Soc.\/}, 42: 2506 (1920).
378 chuckv 3483
379     \bibitem{Tolman27}
380     R.~C. Tolman, {\em Statistical Mechanics with Applications to Physics and
381     Chemistry\/}. Chemical Catalog Co., New York (1927).
382    
383 chuckv 3496 \bibitem{Truhlar00}
384     D.~G. Truhlar and A.~Kohen. private correspondence.
385    
386 chuckv 3483 \bibitem{Buffat:1976yq}
387     P.~Buffat and J.-P. Borel, Size effect on the melting temperature of gold
388     particles. {\em Phys. Rev. A\/}, 13: 2287--2298 (1976).
389    
390 chuckv 3496 \bibitem{Chen:1997p2142}
391     C.~Chen, A.~Herhold, C.~Johnson and A.~ALIVISATOS, Size dependence of
392     structural metastability in semiconductor nanocrystals. {\em Science\/},
393     276(5311): 398--401 (Jan 1997).
394 chuckv 3483
395 chuckv 3496 \bibitem{GOLDSTEIN:1992p2138}
396     A.~Goldstein, C.~Echer and A.~Alivisatos, Melting in semiconductor
397     nanocrystals. {\em Science\/}, 256(5062): 1425--1427 (Jan 1992).
398 chuckv 3483
399 chuckv 3496 \bibitem{Pawlow:1909p2134}
400     P.~Pawlow, The dependency of the melting point on the surface energy of a solid
401     body. (supplement.). {\em Z Phys Chem-Stoch Ve\/}, 65(5): 545--548 (Jan
402     1909).
403    
404     \bibitem{SOLLIARD:1985p2137}
405     C.~Solliard and M.~Flueli, Surface stress and size effect on the
406     lattice-parameter in small particles of gold and platinum. {\em Surf.
407     Sci.\/}, 156(JUN): 487--494 (Jan 1985).
408    
409     \bibitem{TOLBERT:1996p2141}
410     S.~Tolbert, A.~Herhold, L.~Brus and A.~Alivisatos, Pressure-induced structural
411     transformations in si nanocrystals: Surface and shape effects. {\em Phys.
412     Rev. Lett.\/}, 76(23): 4384--4387 (Jan 1996).
413    
414     \bibitem{MORI:1991p2144}
415     H.~Mori, M.~Komatsu, K.~Takeda and H.~Fujita, Spontaneous alloying of copper
416     into gold atom clusters. {\em Phil. Mag. Lett.\/}, 63(3): 173--178 (Jan
417     1991).
418    
419     \bibitem{MORI:1994p2372}
420     H.~Mori, H.~Yasuda and T.~Kamino, High-resolution electron-microscopy study of
421     spontaneous alloying in gold clusters. {\em Phil. Mag. Lett.\/}, 69(5):
422     279--283 (Jan 1994).
423    
424     \bibitem{YASUDA:1996p2387}
425     H.~Yasuda and H.~Mori, Phase stability and transformation in nanometre-sized
426     au-pb alloy clusters produced by spontaneous alloying. {\em Philos. Mag.
427     A\/}, 73(3): 567--573 (Jan 1996).
428    
429     \bibitem{yasuda:1100}
430     H.~Yasuda, H.~Mori, M.~Komatsu and K.~Takeda, Spontaneous alloying of copper
431     atoms into gold clusters at reduced temperatures. {\em J. Appl. Phys.\/},
432     73(3): 1100--1103 (1993).
433    
434     \bibitem{PhysRevLett.69.3747}
435     H.~Yasuda and H.~Mori, Spontaneous alloying of zinc atoms into gold clusters
436     and formation of compound clusters. {\em Phys. Rev. Lett.\/}, 69(26):
437     3747--3750 (Dec 1992).
438    
439     \bibitem{Mori1996244}
440     H.~Mori and H.~Yasuda, Effect of cluster size on phase stability in nm-sized
441     {A}u-{S}b alloy clusters. {\em Mat. Sci. Eng. A\/}, 217-218: 244 -- 248
442     (1996), International Conference on Nano-Clusters and Granular Materials.
443    
444     \bibitem{Schmid:2000ul}
445     A.~K. Schmid, N.~C. Bartelt and R.~Q. Hwang, Alloying at surfaces by the
446     migration of reactive two-dimensional islands. {\em Science\/}, 290(5496):
447     1561--1564 (2000).
448    
449     \bibitem{Das:1999p2397}
450     D.~Das, P.~Chatterjee, I.~Manna and S.~Pabi, A measure of enhanced diffusion
451     kinetics in mechanical alloying of cu-18 at.% al by planetary ball milling.
452     {\em Scripta Mater\/}, 41(8): 861--866 (Jan 1999).
453    
454 chuckv 3483 \bibitem{ShibataT._ja026764r}
455     T.~Shibata, B.~Bunker, Z.~Zhang, D.~Meisel, C.~Vardeman and J.~Gezelter,
456 chuckv 3496 Size-dependent spontaneous alloying of {A}u-{A}g nanoparticles. {\em J. Am.
457     Chem. Soc.\/}, 124(40): 11989--11996 (2002).
458 chuckv 3483
459 chuckv 3496 \bibitem{Frenkel:2000p2400}
460     A.~Frenkel, V.~Machavariani, A.~Rubshtein, Y.~Rosenberg, A.~Voronel and
461     E.~Stern, Local structure of disordered au-cu and au-ag alloys. {\em Phys.
462     Rev. B\/}, 62(14): 9364--9371 (Jan 2000).
463    
464     \bibitem{Hodak:2000rb}
465     J.~H. Hodak, A.~Henglein, M.~Giersig and G.~V. Hartland, Laser-induced
466     inter-diffusion in {A}u{A}g core-shell nanoparticles. {\em J. Phys. Chem.
467     B\/}, 104: 11708 -- 11718 (2000).
468    
469     \bibitem{HENGLEIN:1999p2419}
470     A.~Henglein, Radiolytic preparation of ultrafine colloidal gold particles in
471     aqueous solution: Optical spectrum, controlled growth, and some chemical
472     reactions. {\em Langmuir\/}, 15(20): 6738--6744 (Jan 1999).
473    
474     \bibitem{HengleinA._la981278w}
475     A.~Henglein and D.~Meisel, Radiolytic control of the size of colloidal gold
476     nanoparticles. {\em Langmuir\/}, 14(26): 7392--7396 (1998).
477    
478     \bibitem{MULVANEY:1993p2409}
479     P.~Mulvaney, M.~Giersig and A.~Henglein, Electrochemistry of multilayer
480     colloids - preparation and absorption-spectrum of gold-coated silver
481     particles. {\em J. Phys. Chem.\/}, 97(27): 7061--7064 (Jan 1993).
482    
483     \bibitem{Hodak:2000ek}
484     J.~H. Hodak, A.~Henglein and G.~V. Hartland, Coherent excitation of acoustic
485     breathing modes in bimetallic core−shell nanoparticles. {\em J. Phys.
486     Chem. B\/}, 104(21): 5053--5055 (2000).
487    
488     \bibitem{Link:1999p2468}
489     S.~Link, Z.~Wang and M.~El-Sayed, Alloy formation of gold-silver nanoparticles
490     and the dependence of the plasmon absorption on their composition (Jan 1999).
491    
492     \bibitem{JOHNSON:1989p2479}
493     R.~Johnson, Alloy models with the embedded-atom method. {\em Phys Rev B\/},
494     39(17): 12554--12559 (Jan 1989).
495    
496     \bibitem{Kohlrausch:1863zv}
497     F.~Kohlrausch. {\em Pogg. Ann. Physik\/}, 119: 352 (1863).
498    
499     \bibitem{Williams:1970fk}
500     G.~Williams and D.~C. Watts, Non-symmeric dielectric relaxation behaviour
501     arising from a simple empirical decay function. {\em Trans. Faraday Soc.\/},
502     66: 80--85 (1970).
503    
504     \bibitem{Vardeman-II:2001jn}
505     C.~F. {Vardeman II} and J.~D. Gezelter, Comparing models for diffusion in
506     supercooled liquids: The eutectic composition of the {A}g-{C}u alloy. {\em J.
507     Phys. Chem. A\/}, 105(12): 2568 (2001).
508    
509     \bibitem{Tu:1992uq}
510     K.~N. Tu and J.~W. Mayer, {\em Electronic Thin Film Science\/}. Macmillian: New
511     York (1992).
512    
513     \bibitem{el-sayed01}
514     S.~Link and M.~A. El-Sayed, Spectroscopic determination of the melting energy
515     of a gold nanorod. {\em J. Chem. Phys.\/}, 114: 2362--2368 (2001).
516    
517     \bibitem{el-sayed00}
518     S.~Link, Z.~L. Wang and M.~A. El-Sayed, How does a gold nanorod melt? {\em J.
519     Phys. Chem. B\/}, 104: 7867--7870 (2000).
520    
521 chuckv 3483 \bibitem{delfatti99}
522     N.~{Del Fatti}, C.~Voisin, F.~Chevy, F.~Vallee and C.~Flytzanis, Coherent
523 chuckv 3496 acoustic mode oscillation and damping in silver nanoparticles. {\em J. Chem.
524     Phys.\/}, 110: 11484--11487 (1999).
525 chuckv 3483
526 chuckv 3496 \bibitem{hartland02a}
527     G.~V. Hartland, Coherent vibrational motion in metal particles: Determination
528     of the vibrational amplitude and excitation mechanism. {\em J. Chem.
529     Phys.\/}, 116: 8048--8055 (2002).
530    
531 chuckv 3483 \bibitem{henglein99}
532     J.~H. Hodak, A.~Henglein and G.~V. Hartland, Size dependent properties of au
533     particles: Coherent excitation and dephasing of acoustic vibrational modes.
534 chuckv 3496 {\em J. Chem. Phys.\/}, 111: 8613--8621 (1999).
535 chuckv 3483
536     \bibitem{hartland02c}
537     J.~E. Sader, G.~V. Hartland and P.~Mulvaney, Theory of acoustic breathing modes
538 chuckv 3496 of core-shell nanoparticles. {\em J. Phys. Chem. B\/}, 106: 1399--1402
539     (2002).
540 chuckv 3483
541     \bibitem{HuM._jp020581+}
542     M.~Hu and G.~Hartland, Heat dissipation for {A}u particles in aqueous solution:
543 chuckv 3496 Relaxation time versus size. {\em J. Phys. Chem. B\/}, 106(28): 7029--7033
544     (2002).
545 chuckv 3483
546     \bibitem{hartland02d}
547     M.~Hu and G.~V. Hartland, Photophysics of metal nanoparticles: Heat dissipation
548     and coherent excitation of phonon modes. {\em Proceeding of SPIE\/}, 4803
549     (July 2002).
550    
551 chuckv 3496 \bibitem{HartlandG.V._jp0276092}
552     G.~Hartland, M.~Hu and J.~Sader, Softening of the symmetric breathing mode in
553     gold particles by laser-induced heating. {\em J. Phys. Chem. B\/}, 107(30):
554     7472--7478 (2003).
555    
556 chuckv 3483 \bibitem{Simon2001}
557     D.~T. Simon and M.~R. Geller, Electron-phonon dynamics in an ensemble of nearly
558 chuckv 3496 isolated nanoparticles. {\em Phys. Rev. B\/}, 64: 115412 (2001).
559 chuckv 3483
560     \bibitem{Hartland00}
561     J.~H. Hodak, A.~Henglein and G.~V. Hartland, Coherent excitation of acoustic
562 chuckv 3496 breathing modes in bimetallic core-shell nanoparticles. {\em J. Chem.
563     Phys\/}, 104: 5053--5055 (2000).
564 chuckv 3483
565     \bibitem{Voter:87}
566     A.~Voter and S.~Chen, Accurate interatomic potentials for ni, al, and ni3al.
567     {\em Mat. Res. Soc. Symp. Proc.\/}, 82: 175 (1987).
568    
569     \bibitem{plimpton93}
570     S.~J. Plimpton and B.~A. Hendrickson, Parallel molecular dynamics with the
571     embedded atom method. {\em MRS Proceedings\/}, 291: 37 (1993).
572    
573     \bibitem{hoover85}
574 chuckv 3496 W.~G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. {\em
575     Phys. Rev. A\/}, 31: 1695 (1985).
576 chuckv 3483
577     \bibitem{qhull}
578     Qhull (1993), software library is available from the National Science and
579     Technology Research Center for Computation and Visualization of Geometric
580     Structures (The Geometry Center), University of Minnesota. {\tt
581     http://www.geom.umn.edu/software/qhull/}.
582    
583 chuckv 3496 \bibitem{barber96quickhull}
584     C.~B. Barber, D.~P. Dobkin and H.~Huhdanpaa, The quickhull algorithm for convex
585     hulls. {\em ACM Transactions on Mathematical Software\/}, 22(4): 469--483
586     (1996).
587    
588 chuckv 3483 \bibitem{BernePecora}
589     B.~J. Berne and R.~Pecora, {\em Dynamic Light Scattering\/}. Dover
590     Publications, Inc., Mineola, New York (2000).
591    
592     \bibitem{melchionna93}
593     S.~Melchionna, G.~Ciccotti and B.~L. Holian, Hoover {\sc npt} dynamics for
594     systems varying in shape and size. {\em Mol. Phys.\/}, 78: 533--544 (1993).
595    
596     \bibitem{Lamb1882}
597     H.~Lamb, On the vibrations of an elastic sphere. {\em Proc. London Math.
598     Soc.\/}, 13: 189--212 (1882).
599    
600     \bibitem{Cerullo1999}
601     G.~Cerullo, S.~D. Silvestri and U.~Banin, Size-dependent dynamics of coherent
602 chuckv 3496 acoustic phonons in nanocrystal quantum dots. {\em Phys. Rev. B\/}, 60:
603     1928--1932 (1999).
604 chuckv 3483
605     \bibitem{Iida1988}
606     T.~Iida and R.~I.~L. Guthrie, {\em The Physical Properties of Liquid Metals\/}.
607     Clarendon Press, Oxford (1988).
608    
609     \bibitem{Hu:2006lr}
610     M.~Hu, J.~Chen, Z.-Y. Li, L.~Au, G.~V. Hartland, X.~Li, M.~Marquez and Y.~Xia,
611     Gold nanostructures: engineering their plasmonic properties for biomedical
612     applications (2006), Chem. Soc. Rev.
613    
614 chuckv 3496 \bibitem{West:2003fk}
615     J.~West and N.~Halas, Engineered nanomaterials for biophotonics applications:
616     Improving sensing, imaging, and therapeutics (2003), Annu. Rev. Biomed. Eng.
617    
618 chuckv 3483 \bibitem{Dick:2002qy}
619     K.~Dick, T.~Dhanasekaran, Z.~Zhang and D.~Meisel, Size-dependent melting of
620     silica-encapsulated gold nanoparticles. {\em J. Amer. Chem. Soc.\/}, 124:
621     2312--2317 (2002).
622    
623 chuckv 3496 \bibitem{Link:2000lr}
624     S.~Link and M.~A. El-Sayed, Shape and size dependence of radiative,
625     non-radiative and photothermal properties of gold nanocrystals. {\em
626     International Reviews in Physical Chemistry\/}, 19(3): 409--453 (2000).
627    
628 chuckv 3483 \bibitem{Mafune01}
629     F.~Mafune, J.~Kohno, Y.~Takeda and T.~Kondow, Dissociation and aggregation of
630     gold nanoparticles under laser irradiation. {\em J. Phys. Chem. B\/},
631     105(38): 9050--9056 (Sep 2001).
632    
633     \bibitem{Plech:2003yq}
634     A.~Plech, S.~Kurbitz, K.~Berg, H.~Graener, G.~Berg, S.~Gresillon, M.~Kaempfe,
635     J.~Feldmann, M.~Wulff and G.~von Plessen, Time-resolved x-ray diffraction on
636     laser-excited metal nanoparticles. {\em Europhys. Lett.\/}, 61: 762--768
637     (2003).
638    
639     \bibitem{plech:195423}
640     A.~Plech, V.~Kotaidis, S.~Gresillon, C.~Dahmen and G.~von Plessen,
641     Laser-induced heating and melting of gold nanoparticles studied by
642     time-resolved x-ray scattering. {\em Phys. Rev. B\/}, 70(19): 195423 (2004).
643    
644     \bibitem{Plech:2007rt}
645     A.~Plech, R.~Cerna, V.~Kotaidis, F.~Hudert, A.~Bartels and T.~Dekorsy, A
646     surface phase transition of supported gold nanoparticles. {\em Nano Lett.\/},
647     7: 1026--1031 (2007).
648    
649     \bibitem{Hartland:2003lr}
650     G.~Hartland, S.~Guillaudeu and J.~Hodak, Laser-induced alloying in metal
651     nanoparticles: Controlling spectral properties with light (2003), Molecules
652     As Components of Electronic Devices.
653    
654     \bibitem{Petrova:2007qy}
655     H.~Petrova, M.~Hu and G.~V. Hartland, Photothermal properties of gold
656     nanoparticles. {\em Zeitschrift Fur Physikalische Chemie-International
657     Journal of Research In Physical Chemistry \& Chemical Physics\/}, 221:
658     361--376 (2007).
659    
660     \bibitem{Hu:2004lr}
661     M.~Hu, H.~Petrova and G.~V. Hartland, Investigation of the properties of gold
662     nanoparticles in aqueous solution at extremely high lattice temperatures.
663     {\em Chem. Phys. Let.\/}, 391(4-6): 220--225 (Jun 2004).
664    
665     \bibitem{Wilson:2002uq}
666     O.~Wilson, X.~Hu, D.~Cahill and P.~Braun, Colloidal metal particles as probes
667     of nanoscale thermal transport in fluids. {\em Phys. Rev. B\/}, 66 (2002).
668    
669     \bibitem{VardemanC.F._jp051575r}
670     C.~Vardeman, P.~Conforti, M.~Sprague and J.~Gezelter, Breathing mode dynamics
671 chuckv 3496 and elastic properties of gold nanoparticles. {\em J. Phys. Chem. B\/},
672     109(35): 16695--16699 (2005).
673 chuckv 3483
674     \bibitem{Massalski:1986rt}
675     T.~B. Massalski, J.~L. Murray, L.~H. Bennett and H.~Baker, {\em Binary alloy
676     phase diagrams\/}. American Society for Metals, Metals Park, Ohio (1986).
677    
678     \bibitem{Ma:2005fk}
679     E.~Ma, Alloys created between immiscible elements. {\em Progress in Materials
680     Science\/}, 50(4): 413--509 (2005).
681    
682     \bibitem{najafabadi:3144}
683     R.~Najafabadi, D.~J. Srolovitz, E.~Ma and M.~Atzmon, Thermodynamic properties
684 chuckv 3496 of metastable ag-cu alloys. {\em J. Appl. Phys.\/}, 74(5): 3144--3149 (1993).
685 chuckv 3483
686     \bibitem{Malyavantham:2004cu}
687     G.~Malyavantham, D.~T. O'Brien, M.~F. Becker, J.~W. Keto and D.~Kovar, Au-cu
688     nanoparticles produced by laser ablation of mixtures of au and cu
689 chuckv 3496 microparticles. {\em J. Nanopart. Res.\/}, 6(6): 661 --664 (2004).
690 chuckv 3483
691     \bibitem{Kim:2003lv}
692     M.~Kim, H.~Na, K.~C. Lee, E.~A. Yoo and M.~Lee, Preperation and
693     characterization of au-ag and au-cu alloy nanoparticles in chloroform. {\em
694     J. Mat. Chem\/}, 13(7): 1789--1792 (2003).
695    
696     \bibitem{De:1996ta}
697     G.~De, M.~Gusso, L.~Tapfer, M.~Catalano, F.~Gonella, G.~Mattei, P.~Mazzoldi and
698     G.~Battaglin, Annealing behavior of silver, copper, and silver--copper
699 chuckv 3496 nanoclusters in a silica matrix synthesized by the sol-gel technique. {\em J.
700     Appl. Phys.\/}, 80(12): 6734--6739 (1996).
701 chuckv 3483
702     \bibitem{Magruder:1994rg}
703     R.~H. Magruder, III, D.~H. Osborne, Jr. and R.~A. Zuhr, Non-linear optical
704 chuckv 3496 properties of nanometer dimension {A}g-{C}u particles in silica formed by
705     sequential ion implantation. {\em J. Non-Cryst. Solids\/}, 176(2-3): 299
706     --303 (1994).
707 chuckv 3483
708     \bibitem{gonzalo:5163}
709     J.~Gonzalo, D.~Babonneau, C.~N. Afonso and J.-P. Barnes, Optical response of
710 chuckv 3496 mixed ag-cu nanocrystals produced by pulsed laser deposition. {\em J. Appl.
711     Phys.\/}, 96(9): 5163--5168 (2004).
712 chuckv 3483
713     \bibitem{HengleinA._jp992950g}
714     A.~Henglein, Formation and absorption spectrum of copper nanoparticles from the
715 chuckv 3496 radiolytic reduction of {C}u({CN})2-. {\em J. Phys. Chem. B\/}, 104(6):
716     1206--1211 (2000).
717 chuckv 3483
718     \bibitem{Kob:1999fk}
719     W.~Kob, Computer simulations of supercooled liquids and glasses. {\em Journal
720     of Physics: Condensed Matter\/}, 11(10): R85--R115 (1999).
721    
722     \bibitem{Steinhardt:1983mo}
723     P.~J. Steinhardt, D.~R. Nelson and M.~Ronchetti, Bond-orientational order in
724     liquids and glasses. {\em Phys. Rev. B\/}, 28(2): 784--804 (1983).
725    
726     \bibitem{Chen:2004ec}
727     Y.~Chen, X.~Bian, J.~Zhang, Y.~Zhang and L.~Wang, Structure and dynamics of
728     gold nanocluster under cooling conditions. {\em Modelling and Simulation in
729     Materials Science and Engineering\/}, 12(3): 373--379 (2004).
730    
731     \bibitem{Cleveland:1997jb}
732     C.~L. Cleveland, U.~Landman, T.~G. Schaaff, M.~N. Shafigullin, P.~W. Stephens
733     and R.~L. Whetten, Structural evolution of smaller gold nanocrystals: The
734     truncated decahedral motif. {\em Phys. Rev. Lett.\/}, 79: 1873--1876 (1997).
735    
736     \bibitem{Cleveland:1997gu}
737     C.~L. Cleveland, U.~Landman, M.~N. Shafigullin, P.~W. Stephens and R.~L.
738     Whetten, Structural evolution of larger gold clusters. {\em Z. Phys. D\/},
739     40: 503--508 (1997).
740    
741     \bibitem{Gafner:2004bg}
742     Y.~Y. Gafner, S.~L. Gafner and P.~Entel, Formation of an icosahedral structure
743     during crystallization of nickel nanoclusters. {\em Phys. Sol. State\/},
744     46(7): 1327--1330 (2004).
745    
746     \bibitem{Qi:2001nn}
747     Y.~Qi, T.~Cagin, W.~L. Johnson and W.~A.~G. III, Melting and crystallization in
748 chuckv 3496 ni nanoclusters: The mesoscale regime. {\em J. Chem. Phys.\/}, 115(1):
749     385--394 (2001).
750 chuckv 3483
751     \bibitem{Strandburg:1992qy}
752     K.~J. Strandburg, {\em Bond-orientational order in condensed matter systems\/}.
753     Springer-Verlag, New York (1992).
754    
755     \bibitem{Breaux:rz}
756     G.~A. Breaux, B.~Cao and M.~F. Jarrold, Second-order phase transitions in
757     amorphous gallium clusters. {\em J. Phys. Chem. B\/}, 10.1021/jp052887x
758     (2005).
759    
760     \bibitem{Wang:2003fk}
761     W.~Wang, P.~Wen, D.~Zhao, M.~Pan and R.~Wang, Relationship between glass
762     transition temperature and debye temperature in bulk metallic glasses. {\em
763     J. Mater. Res.\/}, 18: 2747--2751 (2003).
764    
765     \bibitem{Alcoutlabi:2005kx}
766     M.~Alcoutlabi and G.~McKenna, Effects of confinement on material behaviour at
767     the nanometre size scale. {\em J. Phys.: Condens. Matter\/}, 17: R461--R524
768     (2005).
769    
770     \bibitem{Jiang:2005lr}
771     H.~Jiang, K.~sik Moon and C.~P. Wong, Synthesis of ag-cu alloy nanoparticles
772     for lead-free interconnect materials. {\em Advanced Packaging Materials:
773     Processes, Properties and Interfaces, 2005. Proceedings. International
774     Symposium on\/}, pages 173--177 (2005).
775    
776     \bibitem{kotaidis:184702}
777     V.~Kotaidis, C.~Dahmen, G.~von Plessen, F.~Springer and A.~Plech, Excitation of
778     nanoscale vapor bubbles at the surface of gold nanoparticles in water. {\em
779 chuckv 3496 J. Chem. Phys.\/}, 124(18): 184702 (2006).
780 chuckv 3483
781     \bibitem{19521106}
782     F.~C. Frank, Supercooling of liquids. {\em Proceedings of the Royal Society of
783     London. Series A, Mathematical and Physical Sciences\/}, 215(1120): 43--46
784     (nov 1952).
785    
786     \bibitem{19871127}
787     P.~J. Steinhardt, Icosahedral solids: A new phase of matter? {\em Science\/},
788     238(4831): 1242--1247 (nov 1987).
789    
790     \bibitem{HOARE:1976fk}
791     M.~HOARE, Stability and local order in simple amorphous packings. {\em Annals
792     of the New York Academy of Sciences\/}, 279: 186--207 (1976).
793    
794     \bibitem{PhysRevLett.60.2295}
795     H.~J\'onsson and H.~C. Andersen, Icosahedral ordering in the lennard-jones
796     liquid and glass. {\em Phys. Rev. Lett.\/}, 60(22): 2295--2298 (May 1988).
797    
798     \bibitem{PhysRevLett.89.275502}
799     H.-S. Nam, N.~M. Hwang, B.~D. Yu and J.-K. Yoon, Formation of an icosahedral
800     structure during the freezing of gold nanoclusters: Surface-induced
801     mechanism. {\em Phys. Rev. Lett.\/}, 89(27): 275502 (Dec 2002).
802    
803     \bibitem{Waal:1995lr}
804     B.~W. van~de Waal, On the origin of second-peak splitting in the static
805 chuckv 3496 structure factor of metallic glasses. {\em J Non-Cryst. Solids\/}, 189(1-2):
806     118--128 (1995).
807 chuckv 3483
808     \bibitem{HoneycuttJ.Dana_j100303a014}
809     J.~D. Honeycutt and H.~C. Andersen, Molecular dynamics study of melting and
810 chuckv 3496 freezing of small lennard-jones clusters. {\em J. Phys. Chem.\/}, 91(19):
811     4950--4963 (1987).
812 chuckv 3483
813 chuckv 3496 \bibitem{hsu:4974}
814     C.~S. Hsu and A.~Rahman, Interaction potentials and their effect on crystal
815     nucleation and symmetry. {\em J. Chem. Phys.\/}, 71(12): 4974--4986 (1979).
816    
817 chuckv 3483 \bibitem{Iwamatsu:2007lr}
818     M.~Iwamatsu, Icosahedral binary clusters of glass-forming lennard-jones binary
819 chuckv 3496 alloy. {\em Mat. Sci. Eng. A\/}, 449-451: 975--978 (2007).
820 chuckv 3483
821     \bibitem{nose:1803}
822     S.~Nose and F.~Yonezawa, Isothermal--isobaric computer simulations of melting
823 chuckv 3496 and crystallization of a lennard-jones system. {\em J. Chem. Phys.\/}, 84(3):
824     1803--1814 (1986).
825 chuckv 3483
826     \bibitem{duijneveldt:4655}
827     J.~S. van Duijneveldt and D.~Frenkel, Computer simulation study of free energy
828 chuckv 3496 barriers in crystal nucleation. {\em J. Chem. Phys.\/}, 96(6): 4655--4668
829     (1992).
830 chuckv 3483
831     \bibitem{Zhu:1997lr}
832     L.~Zhu and A.~E. DePristo, Microstructures of bimetallic clusters: Bond order
833 chuckv 3496 metal simulator for disordered alloys. {\em J. Catal.\/}, 167(2): 400--407
834     (1997).
835 chuckv 3483
836 chuckv 3496 \bibitem{HuangS.-P._jp0204206}
837     S.-P. Huang and P.~Balbuena, Melting of bimetallic {C}u-{N}i nanoclusters. {\em
838     J. Phys. Chem. B\/}, 106(29): 7225--7236 (2002).
839    
840 chuckv 3483 \bibitem{MainardiD.S._la0014306}
841     D.~Mainardi and P.~Balbuena, Monte carlo simulation of {C}u-{N}i nanoclusters:
842     Surface segregation studies. {\em Langmuir\/}, 17(6): 2047--2050 (2001).
843    
844     \bibitem{Ramirez-Caballero:2006lr}
845     G.~E. Ramirez~Caballero and P.~B. Balbuena, Surface segregation phenomena in
846 chuckv 3496 {P}t{P}d nanoparticles: dependence on nanocluster size. {\em Mol. Sim.\/},
847     32(3/4): 297--303 (2006).
848 chuckv 3483
849 chuckv 3496 \bibitem{0953-8984-18-39-037}
850     S.~E. Baltazar, A.~H. Romero, J.~L. Rodr\'{i}guez-L\'{o}pez and
851     R.~Marto\ň\'{a}k, Finite single wall capped carbon nanotubes under
852     hydrostatic pressure. {\em J. Phys.: Condens. Matter\/}, 18(39): 9119--9128
853     (2006).
854    
855     \bibitem{Baltazar:2006lr}
856     S.~E. Baltazar, A.~H. Romero, J.~L. Rodriguez-Lopez, H.~Terrones and
857     R.~Martonak, Assessment of isobaric-isothermal (npt) simulations for finite
858     systems. {\em Comp. Mat. Sci.\/}, 37(4): 526--536 (2006).
859    
860     \bibitem{calvo:125414}
861     F.~Calvo and J.~P.~K. Doye, Pressure effects on the structure of nanoclusters.
862     {\em Phys. Rev. B\/}, 69(12): 125414 (2004).
863    
864     \bibitem{Kohanoff:2005}
865     J.~Kohanoff, A.~Caro and M.~Finnis, An isothermal-isobaric langevin thermostat
866     for simulating nanoparticles under pressure: Application to {A}u clusters.
867     {\em Chem. Phys. Chem.\/}, 6(9): 1848 -- 1852 (2005).
868    
869     \bibitem{0953-8984-14-26-101}
870     D.~Y. Sun and X.~G. Gong, A new constant-pressure molecular dynamics method for
871     finite systems. {\em J. Phys.: Condens. Matter\/}, 14(26): L487--L493 (2002).
872    
873     \bibitem{SpohrE._j100353a043}
874     E.~Spohr, Computer simulation of the water/platinum interface. {\em J. Phys.
875     Chem.\/}, 93(16): 6171--6180 (1989).
876    
877     \bibitem{Spohr:1995lr}
878     E.~Spohr, Ion adsorption on metal surfaces. the role of water-metal
879     interactions. {\em J. Mol. Liq.\/}, 64(1-2): 91--100 (1995).
880    
881     \bibitem{DouY._jp003913o}
882     Y.~Dou, L.~Zhigilei, N.~Winograd and B.~Garrison, Explosive boiling of water
883     films adjacent to heated surfaces: A microscopic description. {\em J. Phys.
884     Chem. A\/}, 105(12): 2748--2755 (2001).
885    
886     \bibitem{Meng:2004p151}
887     S.~Meng, E.~Wang and S.~Gao, Water adsorption on metal surfaces: A general
888     picture from density functional theory studies. {\em Phys. Rev. B\/}, 69:
889     195404 (Jan 2004).
890    
891     \bibitem{Meng:2003p289}
892     S.~Meng, E.~Wang and S.~Gao, A molecular picture of hydrophilic and hydrophobic
893     interactions from ab initio density functional theory calculations. {\em J.
894     Chem. Phys.\/}, 119: 7617--7620 (Jan 2003).
895    
896     \bibitem{liu96:new_model}
897     Y.~Liu and T.~Ichiye, Soft sticky dipole potential for liquid water: a new
898     model. {\em J. Phys. Chem.\/}, 100: 2723--2730 (1996).
899    
900     \bibitem{Bratko85}
901     D.~Bratko, L.~Blum and A.~Luzar, A simple model for the intermolecular
902     potential of water. {\em J. Chem. Phys.\/}, 83(12): 6367--6370 (1985).
903    
904     \bibitem{Bratko95}
905     L.~Blum, F.~Vericat and D.~Bratko, Towards an analytical model of water: The
906     octupolar model. {\em J. Phys. Chem.\/}, 102(3): 1461--1462 (1995).
907    
908     \bibitem{fennell04}
909     C.~J. Fennell and J.~D. Gezelter, On the structural and transport properties of
910     the soft sticky dipole(ssd) and related single point water models. {\em J.
911     Chem. Phys.\/}, 120(19): 9175--9184 (2004).
912    
913     \bibitem{Slater}
914     J.~C. Slater, {\em Quantum Theory of Molecules and Solids Vol. 4: The
915     Self-Consistent Field for Molecules and Solids\/}. McGraw-Hill, New York
916     (1974).
917    
918     \bibitem{Perdew1991}
919     J.~P. Perdew, {\em Unified Theory of Exchange and Correlation Beyond the Local
920     Density Approximation\/}, page~11. Electronic Structure of Solids, Akademie
921     Verlag, Berlin (1991).
922    
923     \bibitem{PERDEW:1992xi}
924     J.~Perdew, J.~Chevary, S.~Vosko, K.~Jackson, P.~MR, D.~Singh and C.~Fiolhais,
925     Atoms, molecules, solids, and surfaces - applications of the generalized
926     gradient approximation for exchange and correlation (1992), Physical Review
927     B.
928    
929     \bibitem{HAY:1985xt}
930     P.~Hay and W.~Wadt, Abinitio effective core potentials for molecular
931     calculations - potentials for k to au including the outermost core orbitals.
932     {\em J. Chem. Phys.\/}, 82: 299--310 (1985).
933    
934     \bibitem{LACV3P}
935     The lacv3p basis set is a triple-zeta contraction of the lacvp basis set
936     developed and tested at schr{\"o}dinger, inc.
937    
938     \bibitem{MCLEAN:1980xi}
939     A.~Mclean and G.~Chandler, Contracted gaussian-basis sets for molecular
940     calculations .1. 2nd row atoms, z=11-18. {\em J. Chem. Phys.\/}, 72:
941     5639--5648 (1980).
942    
943     \bibitem{KRISHNAN:1980aw}
944     R.~Krishnan, B.~JS, R.~Seeger and J.~Pople, Self-consistent molecular-orbital
945     methods .20. basis set for correlated wave-functions. {\em J. Chem. Phys.\/},
946     72: 650--654 (1980).
947    
948     \bibitem{CLARK:1983sb}
949     T.~Clark, J.~Chandrasekhar, G.~Spitznagel and P.~Schleyer, Efficient diffuse
950     function-augmented basis-sets for anion calculations .3. the 3-21+g basis set
951     for 1st-row elements, li-f. {\em J. Comp. Chem.\/}, 4: 294--301 (1983).
952    
953     \bibitem{FRISCH:1984dp}
954     M.~Frisch, J.~Pople and J.~Binkley, Self-consistent molecular-orbital methods
955     .25. supplementary functions for gaussian-basis sets. {\em J. Chem. Phys.\/},
956     80: 3265--3269 (1984).
957    
958     \bibitem{Kresse:1996zm}
959     G.~Kresse and J.~Furthm{\"u}ller, Efficiency of ab-initio total energy
960     calculations for metals and semiconductors using a plane-wave basis set. {\em
961     Computational Materials Science\/}, 6(1): 15--50 (1996).
962    
963     \bibitem{PhysRevB.50.17953}
964     P.~E. Bl\"ochl, Projector augmented-wave method. {\em Phys. Rev. B\/}, 50(24):
965     17953--17979 (Dec 1994).
966    
967     \bibitem{PhysRevB.59.1758}
968     G.~Kresse and D.~Joubert, From ultrasoft pseudopotentials to the projector
969     augmented-wave method. {\em Phys. Rev. B\/}, 59(3): 1758--1775 (Jan 1999).
970    
971     \bibitem{PhysRevB.45.13244}
972     J.~P. Perdew and Y.~Wang, Accurate and simple analytic representation of the
973     electron-gas correlation energy. {\em Phys. Rev. B\/}, 45(23): 13244--13249
974     (Jun 1992).
975    
976     \bibitem{PhysRevB.46.6671}
977     J.~P. Perdew, J.~A. Chevary, S.~H. Vosko, K.~A. Jackson, M.~R. Pederson, D.~J.
978     Singh and C.~Fiolhais, Atoms, molecules, solids, and surfaces: Applications
979     of the generalized gradient approximation for exchange and correlation. {\em
980     Phys. Rev. B\/}, 46(11): 6671--6687 (Sep 1992).
981    
982     \bibitem{PhysRevB.13.5188}
983     H.~J. Monkhorst and J.~D. Pack, Special points for brillouin-zone integrations.
984     {\em Phys. Rev. B\/}, 13(12): 5188--5192 (Jun 1976).
985    
986 chuckv 3483 \end{thebibliography}