ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/chuckDissertation/dissertation.bbl
Revision: 3496
Committed: Wed Apr 8 19:13:41 2009 UTC (15 years, 2 months ago) by chuckv
File size: 40566 byte(s)
Log Message:
Final Version

File Contents

# Content
1 \begin{thebibliography}{100}
2
3 \bibitem{DAW:1993p1640}
4 M.~Daw, S.~Foiles and M.~Baskes, The embedded-atom method - a review of theory
5 and applications. {\em Mater. Sci. Rep.\/}, 9(7-8): 251--310 (Jan 1993).
6
7 \bibitem{kimura-quantum}
8 Y.~Kimura and T.~Cagin, The quantum sutton-chen manybody potential for
9 properties of fcc metals.
10
11 \bibitem{Chen90}
12 A.~P. Sutton and J.~Chen, Long-range finnis sinclair potentials. {\em Phil.
13 Mag. Lett.\/}, 61: 139--146 (1990).
14
15 \bibitem{PhysRevB.59.3527}
16 Y.~Qi, T.~\c{C}a\v{g}in, Y.~Kimura and W.~A. {Goddard III}, Molecular-dynamics
17 simulations of glass formation and crystallization in binary liquid
18 metals:\quad{}{C}u-{A}g and {C}u-{N}i. {\em Phys. Rev. B\/}, 59(5):
19 3527--3533 (Feb 1999).
20
21 \bibitem{wolde:9932}
22 P.~R. ten Wolde, M.~J. Ruiz-Montero and D.~Frenkel, Numerical calculation of
23 the rate of crystal nucleation in a lennard-jones system at moderate
24 undercooling. {\em J. Chem. Phys.\/}, 104(24): 9932--9947 (1996).
25
26 \bibitem{Greer:1995qy}
27 A.~L. Greer, Metallic glasses. {\em Science\/}, 267(5206): 1947--1953 (Mar
28 1995).
29
30 \bibitem{Allen87}
31 M.~P. Allen and D.~J. Tildesley, {\em Computer Simulations of Liquids\/}.
32 Oxford University Press, New York (1987).
33
34 \bibitem{Frenkel02}
35 D.~Frenkel and B.~Smit, {\em Understanding Molecular Simulation:
36 \uppercase{F}rom Algorithms to Applications\/}. Academic Press, New York,
37 second edition (2002).
38
39 \bibitem{Leach01}
40 A.~R. Leach, {\em Molecular Modeling: Principles and Applications\/}. Pearson
41 Educated Limited, Harlow, England, second edition (2001).
42
43 \bibitem{Meineke:2004uq}
44 M.~A. Meineke, C.~F. Vardeman~II, T.~Lin, C.~J. Fennell and J.~D. Gezelter,
45 {OOPSE:} an object-oriented parallel simulation engine for molecular
46 dynamics. {\em J. Comp Chem\/}, 26(3): 252--271 (2005).
47
48 \bibitem{Nieminen:1990hw}
49 V.~Heine and J.~Hafnner, {\em Many-atom interactions in solids: proceedings of
50 the international workshop, Pajulahti, Finland, June 5-9, 1989\/}, volume~48
51 of {\em Springer proceedings in physics\/}. Springer-Verlag, Berlin (1990).
52
53 \bibitem{Ashcroft:1976zt}
54 N.~W. Ashcroft and N.~D. Mermin, {\em Solid state physics\/}. Holt, Rinehart
55 and Winston, New York (1976).
56
57 \bibitem{Drude:1900p1479}
58 P.~Drude, On the ionic theory of metals. {\em Phys Z\/}, 1: 161--165 (Jan
59 1900).
60
61 \bibitem{Drude:1900p1481}
62 P.~Drude, On the electron theory of metals. {\em Ann Phys-Berlin\/}, 1(3):
63 566--613 (Jan 1900).
64
65 \bibitem{Kittel:1996fk}
66 C.~Kittel, {\em Introduction to solid state physics\/}. Wiley, New York, 7th
67 edition (1996).
68
69 \bibitem{Egelstaff:1992yb}
70 P.~A. Egelstaff, {\em An introduction to the liquid state\/}, volume~7.
71 Clarendon Press, Oxford, second edition (1992).
72
73 \bibitem{Nrskov:1982p1753}
74 J.~K. N{\o}rskov, Covalent effects in the effective-medium theory of chemical
75 binding: Hydrogen heats of solution in the 3 d metals. {\em Phys. Rev. B\/},
76 26(6): 2875--2885 (Sep 1982).
77
78 \bibitem{Nrskov:1980p1752}
79 J.~K. N{\o}rskov and N.~D. Lang, Effective-medium theory of chemical binding:
80 Application to chemisorption. {\em Phys. Rev. B\/}, 21(6): 2131--2136 (Mar
81 1980).
82
83 \bibitem{Stott:1980p1754}
84 M.~J. Stott and E.~Zaremba, Quasiatoms: An approach to atoms in nonuniform
85 electronic systems. {\em Phys. Rev. B\/}, 22(4): 1564--1583 (Aug 1980).
86
87 \bibitem{Puska:1981p1755}
88 M.~J. Puska and M.~Manninen, Atoms embedded in an electron gas: Immersion
89 energies. {\em Phys. Rev. B\/}, 24(6): 3037--3047 (Sep 1981).
90
91 \bibitem{DAW:1983ht}
92 M.~Daw and M.~Baskes, Semiempirical, quantum-mechanical calculation of hydrogen
93 embrittlement in metals. {\em Phys. Rev. Lett.\/}, 50(17): 1285--1288 (1983).
94
95 \bibitem{Daw84}
96 M.~S. Daw and M.~I. Baskes, Embedded-atom method: Derivation and application to
97 impurities, surfaces, and other defects in metals. {\em Phys. Rev. B\/},
98 29(12): 6443--6453 (1984).
99
100 \bibitem{Hohenberg:1964bs}
101 P.~Hohenberg and W.~Kohn, Inhomogeneous electron gas. {\em Phys. Rev.\/},
102 136(3B): B864--B871 (Nov 1964).
103
104 \bibitem{DAW:1989p1673}
105 M.~Daw, Model of metallic cohesion - the embedded-atom method. {\em Phys. Rev.
106 B\/}, 39(11): 7441--7452 (Jan 1989).
107
108 \bibitem{PhysRevB.33.7983}
109 S.~M. Foiles, M.~I. Baskes and M.~S. Daw, Embedded-atom-method functions for
110 the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys. {\em
111 Phys. Rev. B\/}, 33(12): 7983--7991 (Jun 1986).
112
113 \bibitem{Voter:95}
114 A.~F. Voter, {\em Intermetallic Compounds: Principles and Practice\/},
115 volume~1, chapter~4, page~77. John Wiley and Sons Ltd (1995).
116
117 \bibitem{Rose:1984rw}
118 J.~H. Rose, J.~R. Smith, F.~Guinea and J.~Ferrante, Universal features of the
119 equation of state of metals. {\em Phys. Rev. B\/}, 29(6): 2963--2969 (Mar
120 1984).
121
122 \bibitem{BASKES:1987p1743}
123 M.~Baskes, Application of the embedded-atom method to covalent materials - a
124 semiempirical potential for silicon. {\em Phys. Rev. Lett.\/}, 59(23):
125 2666--2669 (Jan 1987).
126
127 \bibitem{BASKES:1992p1735}
128 M.~Baskes, Modified embedded-atom potentials for cubic materials and
129 impurities. {\em Phys. Rev. B\/}, 46(5): 2727--2742 (Jan 1992).
130
131 \bibitem{BASKES:1989p1746}
132 M.~Baskes, J.~Nelson and A.~Wright, Semiempirical modified embedded-atom
133 potentials for silicon and germanium. {\em Phys. Rev. B\/}, 40(9): 6085--6100
134 (Jan 1989).
135
136 \bibitem{Ercolessi88}
137 F.~Ercolessi, M.~Parrinello and E.~Tosatti, Simulation of gold in the glue
138 model. {\em Phil. Mag. A\/}, 58: 213--226 (1988).
139
140 \bibitem{Finnis84}
141 M.~W. Finnis and J.~E. Sinclair, A simple empirical n-body potential for
142 transition-metals. {\em Phil. Mag. A\/}, 50: 45--55 (1984).
143
144 \bibitem{Qi99}
145 Y.~Qi, T.~\c{C}a\v{g}in, Y.~Kimura and W.~A. {Goddard III}, Molecular-dynamics
146 simulations of glass formation and crystallization in binary liquid metals:
147 Cu-ag and cu-ni. 59(5): 3527--3533 (1999).
148
149 \bibitem{Ercolessi02}
150 U.~Tartaglino, E.~Tosatti, D.~Passerone and F.~Ercolessi, Bending strain-driven
151 modification of surface resconstructions: Au(111). {\em Phys. Rev. B\/}, 65:
152 241406 (2002).
153
154 \bibitem{Goldstein:2001uf}
155 H.~Goldstein, C.~Poole and J.~Safko, {\em Classical Mechanics\/}. Addison
156 Wesley, San Francisco, third edition (2001).
157
158 \bibitem{Tolman:1938kl}
159 R.~C. Tolman, {\em The Principles of Statistical Mechanics\/}. Oxford
160 University Press, Inc., New York (1938).
161
162 \bibitem{McQuarrie:2000yt}
163 D.~A. McQuarrie, {\em Statistical mechanics\/}. University Science Books,
164 Sausalito, Calif. (2000).
165
166 \bibitem{swope:637}
167 W.~C. Swope, H.~C. Andersen, P.~H. Berens and K.~R. Wilson, A computer
168 simulation method for the calculation of equilibrium constants for the
169 formation of physical clusters of molecules: Application to small water
170 clusters. {\em The Journal of Chemical Physics\/}, 76(1): 637--649 (1982).
171
172 \bibitem{Verlet67}
173 L.~Verlet, Computer ``experiments" on classical fluids. \uppercase{I.
174 T}hermodynamic properties of \uppercase{L}ennard-\uppercase{J}ones molecules.
175 {\em Phys. Rev.\/}, 159(1): 98--103 (1967).
176
177 \bibitem{tuckerman:2278}
178 M.~Tuckerman, B.~J. Berne and G.~J. Martyna, Reply to comment on: Reversible
179 multiple time scale molecular dynamics. {\em J. Chem. Phys.\/}, 99(3):
180 2278--2279 (1993).
181
182 \bibitem{BROOKS:1983uq}
183 B.~CL and M.~Karplus, Deformable stochastic boundaries in molecular-dynamics.
184 {\em J. Chem. Phys.\/}, 79: 6312--6325 (1983).
185
186 \bibitem{BROOKS:1985kx}
187 C.~Brooks, A.~Brunger and M.~Karplus, Active-site dynamics in protein molecules
188 - a stochastic boundary molecular-dynamics approach. {\em Biopolymers\/}, 24:
189 843--865 (1985).
190
191 \bibitem{BRUNGER:1984fj}
192 A.~Brunger, C.~Brooks and M.~Karplus, Stochastic boundary-conditions for
193 molecular-dynamics simulations of st2 water. {\em Chem. Phys. Lett.\/}, 105:
194 495--500 (1984).
195
196 \bibitem{Schlick:2002hc}
197 T.~Schlick, {\em Molecular modeling and simulation: an interdisciplinary
198 guide\/}, volume v. 21. Springer, New York (2002).
199
200 \bibitem{Fox88}
201 G.~C. Fox, M.~A. Johnson, G.~A. Lyzenga, S.~W. Otto, J.~K. Salmon and D.~W.
202 Walker, {\em Solving Promblems on Concurrent Processors\/}, volume~I.
203 Prentice-Hall, Englewood Cliffs, NJ (1988).
204
205 \bibitem{plimpton95}
206 S.~Plimpton, Fast parallel algorithms for short-range molecular dymanics. {\em
207 J. Comp. Phys.\/}, 117: 1--19 (1995).
208
209 \bibitem{Paradyn}
210 S.~J. Plimpton and B.~A. Hendrickson, Parallel molecular dynamics with the
211 embedded atom method. In J.~Broughton, P.~Bristowe and J.~Newsam, editors,
212 {\em Materials Theory and Modelling\/}, volume 291 of {\em MRS
213 Proceedings\/}, page~37, Materials Research Society, Pittsburgh, PA (1993).
214
215 \bibitem{hendrickson:95}
216 B.~Hendrickson and S.~Plimpton, Parallel many-body simulations without
217 all-to-all communication. {\em J. Parallel Distr. Com.\/}, 27: 15--25 (1995).
218
219 \bibitem{Pense92}
220 A.~W. Pense, The decline and fall of the roman denarius. {\em Mat. Char.\/},
221 29: 213 (1992).
222
223 \bibitem{duwez:1136}
224 P.~Duwez, R.~H. Willens, W.~Klement and Jr, Continuous series of metastable
225 solid solutions in silver-copper alloys. {\em J. Appl. Phys.\/}, 31(6):
226 1136--1137 (1960).
227
228 \bibitem{Peker93}
229 A.~Peker and W.~L. Johnson, A highly processable metallic-glass -
230 $\mbox{Zr}_{41.2}\mbox{Ti}_{13.8}\mbox{Cu}_{12.5}\mbox{Ni}_{10.0}\mbox{Be}_{%
231 22.5}$. {\em Appl. Phys. Lett.\/}, 63: 2342--2344 (1993).
232
233 \bibitem{Kob95a}
234 W.~Kob and H.~C. Andersen, Testing mode-coupling theory for a supercooled
235 binary lennard-jones mixtures: The van hove corraltion function. {\em Phys.
236 Rev. E\/}, 51: 4626--4641 (1995).
237
238 \bibitem{Kob95b}
239 W.~Kob and H.~C. Andersen, Testing mode-coupling theory for a supercooled
240 binary lennard-jones mixtures. ii. intermediate scattering function and
241 dynamic susceptibility. {\em Phys. Rev. E\/}, 52: 4134--4153 (1995).
242
243 \bibitem{Stillinger98}
244 S.~Sastry, P.~G. Debenedetti and F.~H. Stillinger, Signatures of distinct
245 dynamical regimes in the energy landscape of a glass-forming liquid. {\em
246 Nature\/}, 393: 554--557 (1998).
247
248 \bibitem{Hansen86}
249 J.~P. Hansen and I.~R. McDonald, {\em Theory of Simple Liquids\/}. Academic
250 Press, London (1986).
251
252 \bibitem{Gaukel98}
253 C.~Gaukel and H.~R. Schober, Diffusion mechanisms in under-cooled binary metal
254 liquids of $\mbox{Zr}_{67}\mbox{Cu}_{33}$. {\em Solid State Comm.\/}, 107:
255 1--5 (1998).
256
257 \bibitem{Gezelter99}
258 J.~D. Gezelter, E.~Rabani and B.~J. Berne, Methods for calculating the hopping
259 rate for orientational and spatial diffusion in a molecular liquid:
260 $\mbox{CS}_{2}$. {\em J. Chem. Phys.\/}, 110: 3444 (1999).
261
262 \bibitem{Rabani97}
263 E.~Rabani, J.~D. Gezelter and B.~J. Berne, Calculating the hopping rate for
264 self-diffusion on rough potential energy surfaces: Cage correlations. {\em J.
265 Chem. Phys.\/}, 107: 6867--6876 (1997).
266
267 \bibitem{Rabani99}
268 E.~Rabani, J.~D. Gezelter and B.~J. Berne, Direct observation of
269 stretched-exponential relaxation in low-temperature lennard-jones systems
270 using the cage correlation function. {\em Phys. Rev. Lett.\/}, 82: 3649
271 (1999).
272
273 \bibitem{Rabani2000}
274 E.~Rabani, J.~D. Gezelter and B.~J. Berne, Reply to `comment on ``direct
275 observation of stretched-exponential relaxation in low-temperature
276 lennard-jones systems using th ecage correlation function'' '. {\em Phys.
277 Rev. Lett.\/}, 85: 467 (2000).
278
279 \bibitem{Zwanzig83}
280 R.~Zwanzig, On the relation between self-diffusion and viscosity of liquids.
281 {\em J. Chem. Phys.\/}, 79: 4507--4508 (1983).
282
283 \bibitem{Blumen83}
284 A.~Blumen, J.~Klafter and G.~Zumofen, Recombination in amorphous materials as a
285 continuous-time random-walk problem. {\em Phys. Rev. B\/}, 27: 3429--3435
286 (1983).
287
288 \bibitem{Klafter94}
289 J.~Klafter and G.~Zumofen, Probability distributions for continuous-time random
290 walks with long tails. {\em Journal of Physical Chemistry\/}, 98: 7366--7370
291 (1994).
292
293 \bibitem{Klafter96}
294 J.~Klafter, M.~Shlesinger and G.~Zumofen, Beyond brownian motion. {\em Physics
295 Today\/}, 49: 33--39 (1996).
296
297 \bibitem{Shlesinger99}
298 M.~F. Shlesinger, J.~Klafter and G.~Zumofen, Above, below, and beyond brownian
299 motion. {\em Am. J. Phys.\/}, 67: 1253--1259 (1999).
300
301 \bibitem{Stillinger82}
302 F.~H. Stillinger and T.~A. Weber, Hidden structure in liquids. {\em Phys. Rev.
303 A\/}, 25(2): 978--989 (1982).
304
305 \bibitem{Stillinger83}
306 F.~H. Stillinger and T.~A. Weber, Dynamics of structural transitions in
307 liquids. {\em Phys. Rev. A\/}, 28(4): 2408--2416 (1983).
308
309 \bibitem{Stillinger85}
310 F.~H. Stillinger and T.~A. Weber, Inherent structure theory of liquids in the
311 hard-sphere limit. {\em J. Chem. Phys.\/}, 83(9): 4767--4775 (1985).
312
313 \bibitem{Weber84}
314 T.~A. Weber and F.~H. Stillinger, The effect of density on the inherent
315 structure in liquids. {\em J. Chem. Phys.\/}, 80(6): 2742--2746 (1984).
316
317 \bibitem{Berne90}
318 B.~J. Berne and R.~Pecora, {\em Dynamic Light Scattering\/}. Robert E. Krieger
319 Publishing Company, Inc., Malabar, Florida (1990).
320
321 \bibitem{Parkhurst75a}
322 H.~J. {Parkhurst, Jr.} and J.~Jonas, Dense liquids. i. the effect of density
323 and temperature on viscosity of tetramethylsilane and benzene-$\mbox{D}_6$.
324 {\em J. Chem. Phys.\/}, 63(6): 2698--2704 (1975).
325
326 \bibitem{Parkhurst75b}
327 H.~J. {Parkhurst, Jr.} and J.~Jonas, Dense liquids. ii. the effect of density
328 and temperature on viscosity of tetramethylsilane and benzene. {\em J. Chem.
329 Phys.\/}, 63(6): 2705--2709 (1975).
330
331 \bibitem{Ngai81}
332 K.~L. Ngai and F.-S. Liu, Dispersive diffusion transport and noise,
333 time-dependent diffusion coefficient, generalized einstein-nernst relation,
334 and dispersive diffusion-controlled unimolecular and bimolecular reactions.
335 {\em Phys. Rev. B\/}, 24: 1049--1065 (1981).
336
337 \bibitem{Gezelter97}
338 J.~D. Gezelter, E.~Rabani and B.~J. Berne, Can imaginary instantaneous normal
339 mode frequencies predict barriers to self-diffusion? {\em J. Chem. Phys.\/},
340 107: 4618 (1997).
341
342 \bibitem{Gezelter98a}
343 J.~D. Gezelter, E.~Rabani and B.~J. Berne, Response to 'comment on a critique
344 of the instantaneous normal mode (inm) approach to diffusion'. {\em J. Chem.
345 Phys.\/}, 109: 4695 (1998).
346
347 \bibitem{sheng:184203}
348 H.~W. Sheng, J.~H. He and E.~Ma, Molecular dynamics simulation studies of
349 atomic-level structures in rapidly quenched ag-cu nonequilibrium alloys. {\em
350 Phys. Rev. B\/}, 65(18): 184203 (2002).
351
352 \bibitem{MURRAY:1984lr}
353 J.~L. Murray, Calculations of stable and metastable equilibrium diagrams of the
354 ag-cu and cd-zn systems. {\em Metall Trans\/}, 15(2): 261--268 (1984).
355
356 \bibitem{Banhart:1992sv}
357 J.~Banhart, H.~Ebert, R.~Kuentzler and J.~Voitl\"{a}nder, Electronic properties
358 of single-phased metastable ag-cu alloys. 46(16): 9968--9975 (1992).
359
360 \bibitem{Nagel96}
361 M.~Ediger, C.~Angell and S.~R. Nagel, Supercooled liquids and glasses. 100:
362 13200 (1996).
363
364 \bibitem{Wendt78}
365 H.~Wendt and F.~F. Abraham. {\em Phys. Rev. Lett.\/}, 41: 1244 (1978).
366
367 \bibitem{Lewis91}
368 L.~J. Lewis, Atomic dynamics through the glass transition. {\em Phys. Rev.
369 B\/}, 44: 4245--4254 (1991).
370
371 \bibitem{Liu92}
372 R.~S. Liu, D.~W. Qi and S.~Wang, Subpeaks of structure factors for rapidly
373 quenched metals. {\em Phys. Rev. B\/}, 45: 451--453 (1992).
374
375 \bibitem{Tolman20}
376 R.~C. Tolman, Statistical mechanics applied to chemical kinetics. {\em J. Am.
377 Chem. Soc.\/}, 42: 2506 (1920).
378
379 \bibitem{Tolman27}
380 R.~C. Tolman, {\em Statistical Mechanics with Applications to Physics and
381 Chemistry\/}. Chemical Catalog Co., New York (1927).
382
383 \bibitem{Truhlar00}
384 D.~G. Truhlar and A.~Kohen. private correspondence.
385
386 \bibitem{Buffat:1976yq}
387 P.~Buffat and J.-P. Borel, Size effect on the melting temperature of gold
388 particles. {\em Phys. Rev. A\/}, 13: 2287--2298 (1976).
389
390 \bibitem{Chen:1997p2142}
391 C.~Chen, A.~Herhold, C.~Johnson and A.~ALIVISATOS, Size dependence of
392 structural metastability in semiconductor nanocrystals. {\em Science\/},
393 276(5311): 398--401 (Jan 1997).
394
395 \bibitem{GOLDSTEIN:1992p2138}
396 A.~Goldstein, C.~Echer and A.~Alivisatos, Melting in semiconductor
397 nanocrystals. {\em Science\/}, 256(5062): 1425--1427 (Jan 1992).
398
399 \bibitem{Pawlow:1909p2134}
400 P.~Pawlow, The dependency of the melting point on the surface energy of a solid
401 body. (supplement.). {\em Z Phys Chem-Stoch Ve\/}, 65(5): 545--548 (Jan
402 1909).
403
404 \bibitem{SOLLIARD:1985p2137}
405 C.~Solliard and M.~Flueli, Surface stress and size effect on the
406 lattice-parameter in small particles of gold and platinum. {\em Surf.
407 Sci.\/}, 156(JUN): 487--494 (Jan 1985).
408
409 \bibitem{TOLBERT:1996p2141}
410 S.~Tolbert, A.~Herhold, L.~Brus and A.~Alivisatos, Pressure-induced structural
411 transformations in si nanocrystals: Surface and shape effects. {\em Phys.
412 Rev. Lett.\/}, 76(23): 4384--4387 (Jan 1996).
413
414 \bibitem{MORI:1991p2144}
415 H.~Mori, M.~Komatsu, K.~Takeda and H.~Fujita, Spontaneous alloying of copper
416 into gold atom clusters. {\em Phil. Mag. Lett.\/}, 63(3): 173--178 (Jan
417 1991).
418
419 \bibitem{MORI:1994p2372}
420 H.~Mori, H.~Yasuda and T.~Kamino, High-resolution electron-microscopy study of
421 spontaneous alloying in gold clusters. {\em Phil. Mag. Lett.\/}, 69(5):
422 279--283 (Jan 1994).
423
424 \bibitem{YASUDA:1996p2387}
425 H.~Yasuda and H.~Mori, Phase stability and transformation in nanometre-sized
426 au-pb alloy clusters produced by spontaneous alloying. {\em Philos. Mag.
427 A\/}, 73(3): 567--573 (Jan 1996).
428
429 \bibitem{yasuda:1100}
430 H.~Yasuda, H.~Mori, M.~Komatsu and K.~Takeda, Spontaneous alloying of copper
431 atoms into gold clusters at reduced temperatures. {\em J. Appl. Phys.\/},
432 73(3): 1100--1103 (1993).
433
434 \bibitem{PhysRevLett.69.3747}
435 H.~Yasuda and H.~Mori, Spontaneous alloying of zinc atoms into gold clusters
436 and formation of compound clusters. {\em Phys. Rev. Lett.\/}, 69(26):
437 3747--3750 (Dec 1992).
438
439 \bibitem{Mori1996244}
440 H.~Mori and H.~Yasuda, Effect of cluster size on phase stability in nm-sized
441 {A}u-{S}b alloy clusters. {\em Mat. Sci. Eng. A\/}, 217-218: 244 -- 248
442 (1996), International Conference on Nano-Clusters and Granular Materials.
443
444 \bibitem{Schmid:2000ul}
445 A.~K. Schmid, N.~C. Bartelt and R.~Q. Hwang, Alloying at surfaces by the
446 migration of reactive two-dimensional islands. {\em Science\/}, 290(5496):
447 1561--1564 (2000).
448
449 \bibitem{Das:1999p2397}
450 D.~Das, P.~Chatterjee, I.~Manna and S.~Pabi, A measure of enhanced diffusion
451 kinetics in mechanical alloying of cu-18 at.% al by planetary ball milling.
452 {\em Scripta Mater\/}, 41(8): 861--866 (Jan 1999).
453
454 \bibitem{ShibataT._ja026764r}
455 T.~Shibata, B.~Bunker, Z.~Zhang, D.~Meisel, C.~Vardeman and J.~Gezelter,
456 Size-dependent spontaneous alloying of {A}u-{A}g nanoparticles. {\em J. Am.
457 Chem. Soc.\/}, 124(40): 11989--11996 (2002).
458
459 \bibitem{Frenkel:2000p2400}
460 A.~Frenkel, V.~Machavariani, A.~Rubshtein, Y.~Rosenberg, A.~Voronel and
461 E.~Stern, Local structure of disordered au-cu and au-ag alloys. {\em Phys.
462 Rev. B\/}, 62(14): 9364--9371 (Jan 2000).
463
464 \bibitem{Hodak:2000rb}
465 J.~H. Hodak, A.~Henglein, M.~Giersig and G.~V. Hartland, Laser-induced
466 inter-diffusion in {A}u{A}g core-shell nanoparticles. {\em J. Phys. Chem.
467 B\/}, 104: 11708 -- 11718 (2000).
468
469 \bibitem{HENGLEIN:1999p2419}
470 A.~Henglein, Radiolytic preparation of ultrafine colloidal gold particles in
471 aqueous solution: Optical spectrum, controlled growth, and some chemical
472 reactions. {\em Langmuir\/}, 15(20): 6738--6744 (Jan 1999).
473
474 \bibitem{HengleinA._la981278w}
475 A.~Henglein and D.~Meisel, Radiolytic control of the size of colloidal gold
476 nanoparticles. {\em Langmuir\/}, 14(26): 7392--7396 (1998).
477
478 \bibitem{MULVANEY:1993p2409}
479 P.~Mulvaney, M.~Giersig and A.~Henglein, Electrochemistry of multilayer
480 colloids - preparation and absorption-spectrum of gold-coated silver
481 particles. {\em J. Phys. Chem.\/}, 97(27): 7061--7064 (Jan 1993).
482
483 \bibitem{Hodak:2000ek}
484 J.~H. Hodak, A.~Henglein and G.~V. Hartland, Coherent excitation of acoustic
485 breathing modes in bimetallic core−shell nanoparticles. {\em J. Phys.
486 Chem. B\/}, 104(21): 5053--5055 (2000).
487
488 \bibitem{Link:1999p2468}
489 S.~Link, Z.~Wang and M.~El-Sayed, Alloy formation of gold-silver nanoparticles
490 and the dependence of the plasmon absorption on their composition (Jan 1999).
491
492 \bibitem{JOHNSON:1989p2479}
493 R.~Johnson, Alloy models with the embedded-atom method. {\em Phys Rev B\/},
494 39(17): 12554--12559 (Jan 1989).
495
496 \bibitem{Kohlrausch:1863zv}
497 F.~Kohlrausch. {\em Pogg. Ann. Physik\/}, 119: 352 (1863).
498
499 \bibitem{Williams:1970fk}
500 G.~Williams and D.~C. Watts, Non-symmeric dielectric relaxation behaviour
501 arising from a simple empirical decay function. {\em Trans. Faraday Soc.\/},
502 66: 80--85 (1970).
503
504 \bibitem{Vardeman-II:2001jn}
505 C.~F. {Vardeman II} and J.~D. Gezelter, Comparing models for diffusion in
506 supercooled liquids: The eutectic composition of the {A}g-{C}u alloy. {\em J.
507 Phys. Chem. A\/}, 105(12): 2568 (2001).
508
509 \bibitem{Tu:1992uq}
510 K.~N. Tu and J.~W. Mayer, {\em Electronic Thin Film Science\/}. Macmillian: New
511 York (1992).
512
513 \bibitem{el-sayed01}
514 S.~Link and M.~A. El-Sayed, Spectroscopic determination of the melting energy
515 of a gold nanorod. {\em J. Chem. Phys.\/}, 114: 2362--2368 (2001).
516
517 \bibitem{el-sayed00}
518 S.~Link, Z.~L. Wang and M.~A. El-Sayed, How does a gold nanorod melt? {\em J.
519 Phys. Chem. B\/}, 104: 7867--7870 (2000).
520
521 \bibitem{delfatti99}
522 N.~{Del Fatti}, C.~Voisin, F.~Chevy, F.~Vallee and C.~Flytzanis, Coherent
523 acoustic mode oscillation and damping in silver nanoparticles. {\em J. Chem.
524 Phys.\/}, 110: 11484--11487 (1999).
525
526 \bibitem{hartland02a}
527 G.~V. Hartland, Coherent vibrational motion in metal particles: Determination
528 of the vibrational amplitude and excitation mechanism. {\em J. Chem.
529 Phys.\/}, 116: 8048--8055 (2002).
530
531 \bibitem{henglein99}
532 J.~H. Hodak, A.~Henglein and G.~V. Hartland, Size dependent properties of au
533 particles: Coherent excitation and dephasing of acoustic vibrational modes.
534 {\em J. Chem. Phys.\/}, 111: 8613--8621 (1999).
535
536 \bibitem{hartland02c}
537 J.~E. Sader, G.~V. Hartland and P.~Mulvaney, Theory of acoustic breathing modes
538 of core-shell nanoparticles. {\em J. Phys. Chem. B\/}, 106: 1399--1402
539 (2002).
540
541 \bibitem{HuM._jp020581+}
542 M.~Hu and G.~Hartland, Heat dissipation for {A}u particles in aqueous solution:
543 Relaxation time versus size. {\em J. Phys. Chem. B\/}, 106(28): 7029--7033
544 (2002).
545
546 \bibitem{hartland02d}
547 M.~Hu and G.~V. Hartland, Photophysics of metal nanoparticles: Heat dissipation
548 and coherent excitation of phonon modes. {\em Proceeding of SPIE\/}, 4803
549 (July 2002).
550
551 \bibitem{HartlandG.V._jp0276092}
552 G.~Hartland, M.~Hu and J.~Sader, Softening of the symmetric breathing mode in
553 gold particles by laser-induced heating. {\em J. Phys. Chem. B\/}, 107(30):
554 7472--7478 (2003).
555
556 \bibitem{Simon2001}
557 D.~T. Simon and M.~R. Geller, Electron-phonon dynamics in an ensemble of nearly
558 isolated nanoparticles. {\em Phys. Rev. B\/}, 64: 115412 (2001).
559
560 \bibitem{Hartland00}
561 J.~H. Hodak, A.~Henglein and G.~V. Hartland, Coherent excitation of acoustic
562 breathing modes in bimetallic core-shell nanoparticles. {\em J. Chem.
563 Phys\/}, 104: 5053--5055 (2000).
564
565 \bibitem{Voter:87}
566 A.~Voter and S.~Chen, Accurate interatomic potentials for ni, al, and ni3al.
567 {\em Mat. Res. Soc. Symp. Proc.\/}, 82: 175 (1987).
568
569 \bibitem{plimpton93}
570 S.~J. Plimpton and B.~A. Hendrickson, Parallel molecular dynamics with the
571 embedded atom method. {\em MRS Proceedings\/}, 291: 37 (1993).
572
573 \bibitem{hoover85}
574 W.~G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. {\em
575 Phys. Rev. A\/}, 31: 1695 (1985).
576
577 \bibitem{qhull}
578 Qhull (1993), software library is available from the National Science and
579 Technology Research Center for Computation and Visualization of Geometric
580 Structures (The Geometry Center), University of Minnesota. {\tt
581 http://www.geom.umn.edu/software/qhull/}.
582
583 \bibitem{barber96quickhull}
584 C.~B. Barber, D.~P. Dobkin and H.~Huhdanpaa, The quickhull algorithm for convex
585 hulls. {\em ACM Transactions on Mathematical Software\/}, 22(4): 469--483
586 (1996).
587
588 \bibitem{BernePecora}
589 B.~J. Berne and R.~Pecora, {\em Dynamic Light Scattering\/}. Dover
590 Publications, Inc., Mineola, New York (2000).
591
592 \bibitem{melchionna93}
593 S.~Melchionna, G.~Ciccotti and B.~L. Holian, Hoover {\sc npt} dynamics for
594 systems varying in shape and size. {\em Mol. Phys.\/}, 78: 533--544 (1993).
595
596 \bibitem{Lamb1882}
597 H.~Lamb, On the vibrations of an elastic sphere. {\em Proc. London Math.
598 Soc.\/}, 13: 189--212 (1882).
599
600 \bibitem{Cerullo1999}
601 G.~Cerullo, S.~D. Silvestri and U.~Banin, Size-dependent dynamics of coherent
602 acoustic phonons in nanocrystal quantum dots. {\em Phys. Rev. B\/}, 60:
603 1928--1932 (1999).
604
605 \bibitem{Iida1988}
606 T.~Iida and R.~I.~L. Guthrie, {\em The Physical Properties of Liquid Metals\/}.
607 Clarendon Press, Oxford (1988).
608
609 \bibitem{Hu:2006lr}
610 M.~Hu, J.~Chen, Z.-Y. Li, L.~Au, G.~V. Hartland, X.~Li, M.~Marquez and Y.~Xia,
611 Gold nanostructures: engineering their plasmonic properties for biomedical
612 applications (2006), Chem. Soc. Rev.
613
614 \bibitem{West:2003fk}
615 J.~West and N.~Halas, Engineered nanomaterials for biophotonics applications:
616 Improving sensing, imaging, and therapeutics (2003), Annu. Rev. Biomed. Eng.
617
618 \bibitem{Dick:2002qy}
619 K.~Dick, T.~Dhanasekaran, Z.~Zhang and D.~Meisel, Size-dependent melting of
620 silica-encapsulated gold nanoparticles. {\em J. Amer. Chem. Soc.\/}, 124:
621 2312--2317 (2002).
622
623 \bibitem{Link:2000lr}
624 S.~Link and M.~A. El-Sayed, Shape and size dependence of radiative,
625 non-radiative and photothermal properties of gold nanocrystals. {\em
626 International Reviews in Physical Chemistry\/}, 19(3): 409--453 (2000).
627
628 \bibitem{Mafune01}
629 F.~Mafune, J.~Kohno, Y.~Takeda and T.~Kondow, Dissociation and aggregation of
630 gold nanoparticles under laser irradiation. {\em J. Phys. Chem. B\/},
631 105(38): 9050--9056 (Sep 2001).
632
633 \bibitem{Plech:2003yq}
634 A.~Plech, S.~Kurbitz, K.~Berg, H.~Graener, G.~Berg, S.~Gresillon, M.~Kaempfe,
635 J.~Feldmann, M.~Wulff and G.~von Plessen, Time-resolved x-ray diffraction on
636 laser-excited metal nanoparticles. {\em Europhys. Lett.\/}, 61: 762--768
637 (2003).
638
639 \bibitem{plech:195423}
640 A.~Plech, V.~Kotaidis, S.~Gresillon, C.~Dahmen and G.~von Plessen,
641 Laser-induced heating and melting of gold nanoparticles studied by
642 time-resolved x-ray scattering. {\em Phys. Rev. B\/}, 70(19): 195423 (2004).
643
644 \bibitem{Plech:2007rt}
645 A.~Plech, R.~Cerna, V.~Kotaidis, F.~Hudert, A.~Bartels and T.~Dekorsy, A
646 surface phase transition of supported gold nanoparticles. {\em Nano Lett.\/},
647 7: 1026--1031 (2007).
648
649 \bibitem{Hartland:2003lr}
650 G.~Hartland, S.~Guillaudeu and J.~Hodak, Laser-induced alloying in metal
651 nanoparticles: Controlling spectral properties with light (2003), Molecules
652 As Components of Electronic Devices.
653
654 \bibitem{Petrova:2007qy}
655 H.~Petrova, M.~Hu and G.~V. Hartland, Photothermal properties of gold
656 nanoparticles. {\em Zeitschrift Fur Physikalische Chemie-International
657 Journal of Research In Physical Chemistry \& Chemical Physics\/}, 221:
658 361--376 (2007).
659
660 \bibitem{Hu:2004lr}
661 M.~Hu, H.~Petrova and G.~V. Hartland, Investigation of the properties of gold
662 nanoparticles in aqueous solution at extremely high lattice temperatures.
663 {\em Chem. Phys. Let.\/}, 391(4-6): 220--225 (Jun 2004).
664
665 \bibitem{Wilson:2002uq}
666 O.~Wilson, X.~Hu, D.~Cahill and P.~Braun, Colloidal metal particles as probes
667 of nanoscale thermal transport in fluids. {\em Phys. Rev. B\/}, 66 (2002).
668
669 \bibitem{VardemanC.F._jp051575r}
670 C.~Vardeman, P.~Conforti, M.~Sprague and J.~Gezelter, Breathing mode dynamics
671 and elastic properties of gold nanoparticles. {\em J. Phys. Chem. B\/},
672 109(35): 16695--16699 (2005).
673
674 \bibitem{Massalski:1986rt}
675 T.~B. Massalski, J.~L. Murray, L.~H. Bennett and H.~Baker, {\em Binary alloy
676 phase diagrams\/}. American Society for Metals, Metals Park, Ohio (1986).
677
678 \bibitem{Ma:2005fk}
679 E.~Ma, Alloys created between immiscible elements. {\em Progress in Materials
680 Science\/}, 50(4): 413--509 (2005).
681
682 \bibitem{najafabadi:3144}
683 R.~Najafabadi, D.~J. Srolovitz, E.~Ma and M.~Atzmon, Thermodynamic properties
684 of metastable ag-cu alloys. {\em J. Appl. Phys.\/}, 74(5): 3144--3149 (1993).
685
686 \bibitem{Malyavantham:2004cu}
687 G.~Malyavantham, D.~T. O'Brien, M.~F. Becker, J.~W. Keto and D.~Kovar, Au-cu
688 nanoparticles produced by laser ablation of mixtures of au and cu
689 microparticles. {\em J. Nanopart. Res.\/}, 6(6): 661 --664 (2004).
690
691 \bibitem{Kim:2003lv}
692 M.~Kim, H.~Na, K.~C. Lee, E.~A. Yoo and M.~Lee, Preperation and
693 characterization of au-ag and au-cu alloy nanoparticles in chloroform. {\em
694 J. Mat. Chem\/}, 13(7): 1789--1792 (2003).
695
696 \bibitem{De:1996ta}
697 G.~De, M.~Gusso, L.~Tapfer, M.~Catalano, F.~Gonella, G.~Mattei, P.~Mazzoldi and
698 G.~Battaglin, Annealing behavior of silver, copper, and silver--copper
699 nanoclusters in a silica matrix synthesized by the sol-gel technique. {\em J.
700 Appl. Phys.\/}, 80(12): 6734--6739 (1996).
701
702 \bibitem{Magruder:1994rg}
703 R.~H. Magruder, III, D.~H. Osborne, Jr. and R.~A. Zuhr, Non-linear optical
704 properties of nanometer dimension {A}g-{C}u particles in silica formed by
705 sequential ion implantation. {\em J. Non-Cryst. Solids\/}, 176(2-3): 299
706 --303 (1994).
707
708 \bibitem{gonzalo:5163}
709 J.~Gonzalo, D.~Babonneau, C.~N. Afonso and J.-P. Barnes, Optical response of
710 mixed ag-cu nanocrystals produced by pulsed laser deposition. {\em J. Appl.
711 Phys.\/}, 96(9): 5163--5168 (2004).
712
713 \bibitem{HengleinA._jp992950g}
714 A.~Henglein, Formation and absorption spectrum of copper nanoparticles from the
715 radiolytic reduction of {C}u({CN})2-. {\em J. Phys. Chem. B\/}, 104(6):
716 1206--1211 (2000).
717
718 \bibitem{Kob:1999fk}
719 W.~Kob, Computer simulations of supercooled liquids and glasses. {\em Journal
720 of Physics: Condensed Matter\/}, 11(10): R85--R115 (1999).
721
722 \bibitem{Steinhardt:1983mo}
723 P.~J. Steinhardt, D.~R. Nelson and M.~Ronchetti, Bond-orientational order in
724 liquids and glasses. {\em Phys. Rev. B\/}, 28(2): 784--804 (1983).
725
726 \bibitem{Chen:2004ec}
727 Y.~Chen, X.~Bian, J.~Zhang, Y.~Zhang and L.~Wang, Structure and dynamics of
728 gold nanocluster under cooling conditions. {\em Modelling and Simulation in
729 Materials Science and Engineering\/}, 12(3): 373--379 (2004).
730
731 \bibitem{Cleveland:1997jb}
732 C.~L. Cleveland, U.~Landman, T.~G. Schaaff, M.~N. Shafigullin, P.~W. Stephens
733 and R.~L. Whetten, Structural evolution of smaller gold nanocrystals: The
734 truncated decahedral motif. {\em Phys. Rev. Lett.\/}, 79: 1873--1876 (1997).
735
736 \bibitem{Cleveland:1997gu}
737 C.~L. Cleveland, U.~Landman, M.~N. Shafigullin, P.~W. Stephens and R.~L.
738 Whetten, Structural evolution of larger gold clusters. {\em Z. Phys. D\/},
739 40: 503--508 (1997).
740
741 \bibitem{Gafner:2004bg}
742 Y.~Y. Gafner, S.~L. Gafner and P.~Entel, Formation of an icosahedral structure
743 during crystallization of nickel nanoclusters. {\em Phys. Sol. State\/},
744 46(7): 1327--1330 (2004).
745
746 \bibitem{Qi:2001nn}
747 Y.~Qi, T.~Cagin, W.~L. Johnson and W.~A.~G. III, Melting and crystallization in
748 ni nanoclusters: The mesoscale regime. {\em J. Chem. Phys.\/}, 115(1):
749 385--394 (2001).
750
751 \bibitem{Strandburg:1992qy}
752 K.~J. Strandburg, {\em Bond-orientational order in condensed matter systems\/}.
753 Springer-Verlag, New York (1992).
754
755 \bibitem{Breaux:rz}
756 G.~A. Breaux, B.~Cao and M.~F. Jarrold, Second-order phase transitions in
757 amorphous gallium clusters. {\em J. Phys. Chem. B\/}, 10.1021/jp052887x
758 (2005).
759
760 \bibitem{Wang:2003fk}
761 W.~Wang, P.~Wen, D.~Zhao, M.~Pan and R.~Wang, Relationship between glass
762 transition temperature and debye temperature in bulk metallic glasses. {\em
763 J. Mater. Res.\/}, 18: 2747--2751 (2003).
764
765 \bibitem{Alcoutlabi:2005kx}
766 M.~Alcoutlabi and G.~McKenna, Effects of confinement on material behaviour at
767 the nanometre size scale. {\em J. Phys.: Condens. Matter\/}, 17: R461--R524
768 (2005).
769
770 \bibitem{Jiang:2005lr}
771 H.~Jiang, K.~sik Moon and C.~P. Wong, Synthesis of ag-cu alloy nanoparticles
772 for lead-free interconnect materials. {\em Advanced Packaging Materials:
773 Processes, Properties and Interfaces, 2005. Proceedings. International
774 Symposium on\/}, pages 173--177 (2005).
775
776 \bibitem{kotaidis:184702}
777 V.~Kotaidis, C.~Dahmen, G.~von Plessen, F.~Springer and A.~Plech, Excitation of
778 nanoscale vapor bubbles at the surface of gold nanoparticles in water. {\em
779 J. Chem. Phys.\/}, 124(18): 184702 (2006).
780
781 \bibitem{19521106}
782 F.~C. Frank, Supercooling of liquids. {\em Proceedings of the Royal Society of
783 London. Series A, Mathematical and Physical Sciences\/}, 215(1120): 43--46
784 (nov 1952).
785
786 \bibitem{19871127}
787 P.~J. Steinhardt, Icosahedral solids: A new phase of matter? {\em Science\/},
788 238(4831): 1242--1247 (nov 1987).
789
790 \bibitem{HOARE:1976fk}
791 M.~HOARE, Stability and local order in simple amorphous packings. {\em Annals
792 of the New York Academy of Sciences\/}, 279: 186--207 (1976).
793
794 \bibitem{PhysRevLett.60.2295}
795 H.~J\'onsson and H.~C. Andersen, Icosahedral ordering in the lennard-jones
796 liquid and glass. {\em Phys. Rev. Lett.\/}, 60(22): 2295--2298 (May 1988).
797
798 \bibitem{PhysRevLett.89.275502}
799 H.-S. Nam, N.~M. Hwang, B.~D. Yu and J.-K. Yoon, Formation of an icosahedral
800 structure during the freezing of gold nanoclusters: Surface-induced
801 mechanism. {\em Phys. Rev. Lett.\/}, 89(27): 275502 (Dec 2002).
802
803 \bibitem{Waal:1995lr}
804 B.~W. van~de Waal, On the origin of second-peak splitting in the static
805 structure factor of metallic glasses. {\em J Non-Cryst. Solids\/}, 189(1-2):
806 118--128 (1995).
807
808 \bibitem{HoneycuttJ.Dana_j100303a014}
809 J.~D. Honeycutt and H.~C. Andersen, Molecular dynamics study of melting and
810 freezing of small lennard-jones clusters. {\em J. Phys. Chem.\/}, 91(19):
811 4950--4963 (1987).
812
813 \bibitem{hsu:4974}
814 C.~S. Hsu and A.~Rahman, Interaction potentials and their effect on crystal
815 nucleation and symmetry. {\em J. Chem. Phys.\/}, 71(12): 4974--4986 (1979).
816
817 \bibitem{Iwamatsu:2007lr}
818 M.~Iwamatsu, Icosahedral binary clusters of glass-forming lennard-jones binary
819 alloy. {\em Mat. Sci. Eng. A\/}, 449-451: 975--978 (2007).
820
821 \bibitem{nose:1803}
822 S.~Nose and F.~Yonezawa, Isothermal--isobaric computer simulations of melting
823 and crystallization of a lennard-jones system. {\em J. Chem. Phys.\/}, 84(3):
824 1803--1814 (1986).
825
826 \bibitem{duijneveldt:4655}
827 J.~S. van Duijneveldt and D.~Frenkel, Computer simulation study of free energy
828 barriers in crystal nucleation. {\em J. Chem. Phys.\/}, 96(6): 4655--4668
829 (1992).
830
831 \bibitem{Zhu:1997lr}
832 L.~Zhu and A.~E. DePristo, Microstructures of bimetallic clusters: Bond order
833 metal simulator for disordered alloys. {\em J. Catal.\/}, 167(2): 400--407
834 (1997).
835
836 \bibitem{HuangS.-P._jp0204206}
837 S.-P. Huang and P.~Balbuena, Melting of bimetallic {C}u-{N}i nanoclusters. {\em
838 J. Phys. Chem. B\/}, 106(29): 7225--7236 (2002).
839
840 \bibitem{MainardiD.S._la0014306}
841 D.~Mainardi and P.~Balbuena, Monte carlo simulation of {C}u-{N}i nanoclusters:
842 Surface segregation studies. {\em Langmuir\/}, 17(6): 2047--2050 (2001).
843
844 \bibitem{Ramirez-Caballero:2006lr}
845 G.~E. Ramirez~Caballero and P.~B. Balbuena, Surface segregation phenomena in
846 {P}t{P}d nanoparticles: dependence on nanocluster size. {\em Mol. Sim.\/},
847 32(3/4): 297--303 (2006).
848
849 \bibitem{0953-8984-18-39-037}
850 S.~E. Baltazar, A.~H. Romero, J.~L. Rodr\'{i}guez-L\'{o}pez and
851 R.~Marto\ň\'{a}k, Finite single wall capped carbon nanotubes under
852 hydrostatic pressure. {\em J. Phys.: Condens. Matter\/}, 18(39): 9119--9128
853 (2006).
854
855 \bibitem{Baltazar:2006lr}
856 S.~E. Baltazar, A.~H. Romero, J.~L. Rodriguez-Lopez, H.~Terrones and
857 R.~Martonak, Assessment of isobaric-isothermal (npt) simulations for finite
858 systems. {\em Comp. Mat. Sci.\/}, 37(4): 526--536 (2006).
859
860 \bibitem{calvo:125414}
861 F.~Calvo and J.~P.~K. Doye, Pressure effects on the structure of nanoclusters.
862 {\em Phys. Rev. B\/}, 69(12): 125414 (2004).
863
864 \bibitem{Kohanoff:2005}
865 J.~Kohanoff, A.~Caro and M.~Finnis, An isothermal-isobaric langevin thermostat
866 for simulating nanoparticles under pressure: Application to {A}u clusters.
867 {\em Chem. Phys. Chem.\/}, 6(9): 1848 -- 1852 (2005).
868
869 \bibitem{0953-8984-14-26-101}
870 D.~Y. Sun and X.~G. Gong, A new constant-pressure molecular dynamics method for
871 finite systems. {\em J. Phys.: Condens. Matter\/}, 14(26): L487--L493 (2002).
872
873 \bibitem{SpohrE._j100353a043}
874 E.~Spohr, Computer simulation of the water/platinum interface. {\em J. Phys.
875 Chem.\/}, 93(16): 6171--6180 (1989).
876
877 \bibitem{Spohr:1995lr}
878 E.~Spohr, Ion adsorption on metal surfaces. the role of water-metal
879 interactions. {\em J. Mol. Liq.\/}, 64(1-2): 91--100 (1995).
880
881 \bibitem{DouY._jp003913o}
882 Y.~Dou, L.~Zhigilei, N.~Winograd and B.~Garrison, Explosive boiling of water
883 films adjacent to heated surfaces: A microscopic description. {\em J. Phys.
884 Chem. A\/}, 105(12): 2748--2755 (2001).
885
886 \bibitem{Meng:2004p151}
887 S.~Meng, E.~Wang and S.~Gao, Water adsorption on metal surfaces: A general
888 picture from density functional theory studies. {\em Phys. Rev. B\/}, 69:
889 195404 (Jan 2004).
890
891 \bibitem{Meng:2003p289}
892 S.~Meng, E.~Wang and S.~Gao, A molecular picture of hydrophilic and hydrophobic
893 interactions from ab initio density functional theory calculations. {\em J.
894 Chem. Phys.\/}, 119: 7617--7620 (Jan 2003).
895
896 \bibitem{liu96:new_model}
897 Y.~Liu and T.~Ichiye, Soft sticky dipole potential for liquid water: a new
898 model. {\em J. Phys. Chem.\/}, 100: 2723--2730 (1996).
899
900 \bibitem{Bratko85}
901 D.~Bratko, L.~Blum and A.~Luzar, A simple model for the intermolecular
902 potential of water. {\em J. Chem. Phys.\/}, 83(12): 6367--6370 (1985).
903
904 \bibitem{Bratko95}
905 L.~Blum, F.~Vericat and D.~Bratko, Towards an analytical model of water: The
906 octupolar model. {\em J. Phys. Chem.\/}, 102(3): 1461--1462 (1995).
907
908 \bibitem{fennell04}
909 C.~J. Fennell and J.~D. Gezelter, On the structural and transport properties of
910 the soft sticky dipole(ssd) and related single point water models. {\em J.
911 Chem. Phys.\/}, 120(19): 9175--9184 (2004).
912
913 \bibitem{Slater}
914 J.~C. Slater, {\em Quantum Theory of Molecules and Solids Vol. 4: The
915 Self-Consistent Field for Molecules and Solids\/}. McGraw-Hill, New York
916 (1974).
917
918 \bibitem{Perdew1991}
919 J.~P. Perdew, {\em Unified Theory of Exchange and Correlation Beyond the Local
920 Density Approximation\/}, page~11. Electronic Structure of Solids, Akademie
921 Verlag, Berlin (1991).
922
923 \bibitem{PERDEW:1992xi}
924 J.~Perdew, J.~Chevary, S.~Vosko, K.~Jackson, P.~MR, D.~Singh and C.~Fiolhais,
925 Atoms, molecules, solids, and surfaces - applications of the generalized
926 gradient approximation for exchange and correlation (1992), Physical Review
927 B.
928
929 \bibitem{HAY:1985xt}
930 P.~Hay and W.~Wadt, Abinitio effective core potentials for molecular
931 calculations - potentials for k to au including the outermost core orbitals.
932 {\em J. Chem. Phys.\/}, 82: 299--310 (1985).
933
934 \bibitem{LACV3P}
935 The lacv3p basis set is a triple-zeta contraction of the lacvp basis set
936 developed and tested at schr{\"o}dinger, inc.
937
938 \bibitem{MCLEAN:1980xi}
939 A.~Mclean and G.~Chandler, Contracted gaussian-basis sets for molecular
940 calculations .1. 2nd row atoms, z=11-18. {\em J. Chem. Phys.\/}, 72:
941 5639--5648 (1980).
942
943 \bibitem{KRISHNAN:1980aw}
944 R.~Krishnan, B.~JS, R.~Seeger and J.~Pople, Self-consistent molecular-orbital
945 methods .20. basis set for correlated wave-functions. {\em J. Chem. Phys.\/},
946 72: 650--654 (1980).
947
948 \bibitem{CLARK:1983sb}
949 T.~Clark, J.~Chandrasekhar, G.~Spitznagel and P.~Schleyer, Efficient diffuse
950 function-augmented basis-sets for anion calculations .3. the 3-21+g basis set
951 for 1st-row elements, li-f. {\em J. Comp. Chem.\/}, 4: 294--301 (1983).
952
953 \bibitem{FRISCH:1984dp}
954 M.~Frisch, J.~Pople and J.~Binkley, Self-consistent molecular-orbital methods
955 .25. supplementary functions for gaussian-basis sets. {\em J. Chem. Phys.\/},
956 80: 3265--3269 (1984).
957
958 \bibitem{Kresse:1996zm}
959 G.~Kresse and J.~Furthm{\"u}ller, Efficiency of ab-initio total energy
960 calculations for metals and semiconductors using a plane-wave basis set. {\em
961 Computational Materials Science\/}, 6(1): 15--50 (1996).
962
963 \bibitem{PhysRevB.50.17953}
964 P.~E. Bl\"ochl, Projector augmented-wave method. {\em Phys. Rev. B\/}, 50(24):
965 17953--17979 (Dec 1994).
966
967 \bibitem{PhysRevB.59.1758}
968 G.~Kresse and D.~Joubert, From ultrasoft pseudopotentials to the projector
969 augmented-wave method. {\em Phys. Rev. B\/}, 59(3): 1758--1775 (Jan 1999).
970
971 \bibitem{PhysRevB.45.13244}
972 J.~P. Perdew and Y.~Wang, Accurate and simple analytic representation of the
973 electron-gas correlation energy. {\em Phys. Rev. B\/}, 45(23): 13244--13249
974 (Jun 1992).
975
976 \bibitem{PhysRevB.46.6671}
977 J.~P. Perdew, J.~A. Chevary, S.~H. Vosko, K.~A. Jackson, M.~R. Pederson, D.~J.
978 Singh and C.~Fiolhais, Atoms, molecules, solids, and surfaces: Applications
979 of the generalized gradient approximation for exchange and correlation. {\em
980 Phys. Rev. B\/}, 46(11): 6671--6687 (Sep 1992).
981
982 \bibitem{PhysRevB.13.5188}
983 H.~J. Monkhorst and J.~D. Pack, Special points for brillouin-zone integrations.
984 {\em Phys. Rev. B\/}, 13(12): 5188--5192 (Jun 1976).
985
986 \end{thebibliography}