ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/electrostaticMethodsPaper/SupportingInfo.tex
Revision: 2666
Committed: Thu Mar 23 15:46:45 2006 UTC (18 years, 3 months ago) by chrisfen
Content type: application/x-tex
File size: 42257 byte(s)
Log Message:
initial proof of supporting info.

File Contents

# User Rev Content
1 chrisfen 2599 %\documentclass[prb,aps,twocolumn,tabularx]{revtex4}
2 chrisfen 2666 \documentclass[11pt]{article}
3 gezelter 2658 %\usepackage{endfloat}
4 chrisfen 2599 \usepackage{amsmath}
5     \usepackage{amssymb}
6     \usepackage{epsf}
7     \usepackage{times}
8     \usepackage{mathptm}
9     \usepackage{setspace}
10     \usepackage{tabularx}
11     \usepackage{graphicx}
12     \usepackage{booktabs}
13     %\usepackage{berkeley}
14     \usepackage[ref]{overcite}
15     \pagestyle{plain}
16     \pagenumbering{arabic}
17     \oddsidemargin 0.0cm \evensidemargin 0.0cm
18     \topmargin -21pt \headsep 10pt
19     \textheight 9.0in \textwidth 6.5in
20     \brokenpenalty=10000
21     \renewcommand{\baselinestretch}{1.2}
22     \renewcommand\citemid{\ } % no comma in optional reference note
23    
24     \begin{document}
25    
26 gezelter 2658 This document includes individual system-based comparisons of the
27 chrisfen 2666 studied methods with smooth particle mesh Ewald {\sc spme}. Each of
28     the seven systems comprises its own section and has its own discussion
29     and tabular listing of the results for the $\Delta E$, force and
30     torque vector magnitude, and force and torque vector direction
31     comparisons.
32 chrisfen 2599
33 chrisfen 2660 \section{\label{app:water}Liquid Water}
34 chrisfen 2599
35 chrisfen 2666 The first system considered was liquid water at 300K using the SPC/E
36     model of water.\cite{Berendsen87} The results for the energy gap
37     comparisons and the force and torque vector magnitude comparisons are
38     shown in table \ref{tab:spce}. The force and torque vector
39     directionality results are displayed separately in table
40     \ref{tab:spceAng}, where the effect of group-based cutoffs and
41 gezelter 2658 switching functions on the {\sc sp} and {\sc sf} potentials are
42 chrisfen 2666 investigated.
43 chrisfen 2599 \begin{table}[htbp]
44     \centering
45 gezelter 2658 \caption{Regression results for the liquid water system. Tabulated
46     results include $\Delta E$ values (top set), force vector magnitudes
47     (middle set) and torque vector magnitudes (bottom set). PC = Pure
48     Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
49     Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
50     \infty$).}
51 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
52     \\
53     \toprule
54     & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
55     \cmidrule(lr){3-4}
56     \cmidrule(lr){5-6}
57     \cmidrule(l){7-8}
58     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
59     \midrule
60     PC & & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\
61     SP & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\
62     & 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\
63     & 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\
64     & 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\
65     SF & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\
66     & 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\
67     & 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\
68     & 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\
69     GSC & & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\
70 chrisfen 2660 RF & & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\
71 chrisfen 2599 \midrule
72     PC & & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\
73     SP & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\
74     & 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\
75     & 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\
76     & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
77     SF & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\
78     & 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
79     & 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\
80     & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
81     GSC & & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
82     RF & & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
83     \midrule
84     PC & & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\
85     SP & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\
86     & 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\
87     & 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\
88     & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
89     SF & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\
90     & 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\
91     & 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\
92     & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
93     GSC & & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\
94     RF & & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\
95     \bottomrule
96     \end{tabular}
97 chrisfen 2652 \label{tab:spce}
98 chrisfen 2599 \end{table}
99    
100     \begin{table}[htbp]
101     \centering
102 gezelter 2658 \caption{Variance results from Gaussian fits to angular
103     distributions of the force and torque vectors in the liquid water
104     system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
105     GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon
106     \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF =
107     Group Switched Shifted Force.}
108 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
109     \\
110     \toprule
111     & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
112     \cmidrule(lr){3-5}
113     \cmidrule(l){6-8}
114     Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
115     \midrule
116     PC & & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\
117     SP & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\
118     & 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\
119     & 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\
120     & 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\
121     SF & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\
122     & 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\
123     & 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\
124     & 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\
125     GSC & & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
126     RF & & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\
127     \midrule
128     GSSP & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
129     & 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\
130     & 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\
131     & 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\
132     GSSF & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\
133     & 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\
134     & 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\
135     & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\
136     \bottomrule
137     \end{tabular}
138 chrisfen 2642 \label{tab:spceAng}
139 chrisfen 2599 \end{table}
140    
141 chrisfen 2666 The water results appear to parallel the combined results seen in the
142     discussion section of the main paper. There is good agreement with
143     {\sc spme} in both energetic and dynamic behavior when using the {\sc sf}
144     method with and without damping. The {\sc sp} method does well with an
145     $\alpha$ around 0.2 \AA$^{-1}$, particularly with cutoff radii greater
146     than 12 \AA. Overdamping the electrostatics reduces the agreement between both these methods and {\sc spme}.
147 chrisfen 2642
148 chrisfen 2666 The pure cutoff ({\sc pc}) method performs poorly, again mirroring the
149     observations in the main portion of this paper. In contrast to the
150     combined values, however, the use of a switching function and group
151     based cutoffs really improves the results for these neutral water
152     molecules. The group switched cutoff ({\sc gsc}) does not mimic the
153     energetics of {\sc spme} as well as the {\sc sp} (with moderate
154     damping) and {\sc sf} methods, but the dynamics are quite good. The
155     switching functions corrects discontinuities in the potential and
156     forces, leading to these improved results. Such improvements with the
157     use of a switching function has been recognized in previous
158     studies,\cite{Andrea83,Steinbach94} and this proves to be a useful
159     tactic for stably incorporating local area electrostatic effects.
160 chrisfen 2652
161 chrisfen 2666 The reaction field ({\sc rf}) method simply extends upon the results
162     observed in the {\sc gsc} case. Both methods are similar in form
163     (i.e. neutral groups, switching function), but {\sc rf} incorporates
164     an added effect from the external dielectric. This similarity
165     translates into the same good dynamic results and improved energetic
166     agreement with {\sc spme}. Though this agreement is not to the level
167     of the moderately damped {\sc sp} and {\sc sf} methods, these results
168     show how incorporating some implicit properties of the surroundings
169     (i.e. $\epsilon_\textrm{S}$) can improve the solvent depiction.
170 chrisfen 2652
171 gezelter 2658 A final note for the liquid water system, use of group cutoffs and a
172 chrisfen 2666 switching function leads to noticeable improvements in the {\sc sp}
173     and {\sc sf} methods, primarily in directionality of the force and
174     torque vectors (table \ref{tab:spceAng}). The {\sc sp} method shows
175     significant narrowing of the angle distribution when using little to
176     no damping and only modest improvement for the recommended conditions
177     ($\alpha$ = 0.2 \AA${-1}$ and $R_\textrm{c} \geqslant 12$~\AA). The
178     {\sc sf} method shows modest narrowing across all damping and cutoff
179     ranges of interest. When overdamping these methods, group cutoffs and
180     the switching function do not improve the force and torque
181     directionalities.
182 chrisfen 2652
183 chrisfen 2660 \section{\label{app:ice}Solid Water: Ice I$_\textrm{c}$}
184 chrisfen 2599
185 gezelter 2658 In addition to the disordered molecular system above, the ordered
186     molecular system of ice I$_\textrm{c}$ was also considered. The
187     results for the energy gap comparisons and the force and torque vector
188     magnitude comparisons are shown in table \ref{tab:ice}. The force and
189     torque vector directionality results are displayed separately in table
190     \ref{tab:iceAng}, where the effect of group-based cutoffs and
191     switching functions on the {\sc sp} and {\sc sf} potentials are
192     investigated.
193 chrisfen 2652
194 chrisfen 2599 \begin{table}[htbp]
195     \centering
196 gezelter 2658 \caption{Regression results for the ice I$_\textrm{c}$
197     system. Tabulated results include $\Delta E$ values (top set), force
198     vector magnitudes (middle set) and torque vector magnitudes (bottom
199     set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
200     GSC = Group Switched Cutoff, and RF = Reaction Field (where
201     $\varepsilon \approx \infty$).}
202 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
203     \\
204     \toprule
205     & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
206     \cmidrule(lr){3-4}
207     \cmidrule(lr){5-6}
208     \cmidrule(l){7-8}
209     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
210     \midrule
211     PC & & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\
212     SP & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\
213     & 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\
214     & 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\
215     & 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\
216     SF & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\
217     & 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\
218     & 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\
219     & 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\
220     GSC & & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\
221     RF & & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\
222     \midrule
223     PC & & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\
224     SP & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\
225     & 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\
226     & 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\
227     & 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\
228     SF & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\
229     & 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\
230     & 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\
231     & 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\
232     GSC & & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\
233     RF & & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\
234     \midrule
235     PC & & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\
236     SP & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\
237     & 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\
238     & 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\
239     & 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\
240     SF & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\
241     & 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\
242     & 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\
243     & 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\
244     GSC & & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\
245     RF & & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\
246     \bottomrule
247     \end{tabular}
248 chrisfen 2652 \label{tab:ice}
249 chrisfen 2599 \end{table}
250    
251     \begin{table}[htbp]
252     \centering
253     \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the ice I$_\textrm{c}$ system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
254     \begin{tabular}{@{} ccrrrrrr @{}}
255     \\
256     \toprule
257     & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
258     \cmidrule(lr){3-5}
259     \cmidrule(l){6-8}
260     Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
261     \midrule
262     PC & & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\
263     SP & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\
264     & 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\
265     & 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\
266     & 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\
267     SF & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\
268     & 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\
269     & 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\
270     & 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\
271     GSC & & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
272     RF & & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\
273     \midrule
274     GSSP & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
275     & 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\
276     & 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\
277     & 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
278     GSSF & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\
279     & 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\
280     & 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\
281     & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
282     \bottomrule
283     \end{tabular}
284 chrisfen 2652 \label{tab:iceAng}
285 chrisfen 2599 \end{table}
286    
287 chrisfen 2666 Highly ordered systems are a difficult test for the pairwise methods
288     in that they lack the periodicity term of the Ewald summation. As
289     expected, the energy gap agreement with {\sc spme} reduces for the
290     {\sc sp} and {\sc sf} methods with parameters that were acceptable for
291     the disordered liquid system. Moving to higher $R_\textrm{c}$ helps
292     improve the agreement, though at an increase in computational cost.
293     The dynamics of this crystalline system (both in magnitude and
294     direction) are little affected. Both methods still reproduce the Ewald
295     behavior with the same parameter recommendations from the previous
296     section.
297 chrisfen 2652
298 chrisfen 2666 It is also worth noting that {\sc rf} exhibits improved energy gap
299     results over the liquid water system. One possible explanation is
300 gezelter 2658 that the ice I$_\textrm{c}$ crystal is ordered such that the net
301     dipole moment of the crystal is zero. With $\epsilon_\textrm{S} =
302     \infty$, the reaction field incorporates this structural organization
303     by actively enforcing a zeroed dipole moment within each cutoff
304     sphere.
305 chrisfen 2652
306 chrisfen 2660 \section{\label{app:melt}NaCl Melt}
307 chrisfen 2599
308 gezelter 2658 A high temperature NaCl melt was tested to gauge the accuracy of the
309 chrisfen 2666 pairwise summation methods in a charged disordered system. The results
310     for the energy gap comparisons and the force and torque vector
311 gezelter 2658 magnitude comparisons are shown in table \ref{tab:melt}. The force
312     and torque vector directionality results are displayed separately in
313     table \ref{tab:meltAng}, where the effect of group-based cutoffs and
314     switching functions on the {\sc sp} and {\sc sf} potentials are
315 chrisfen 2666 investigated.
316 chrisfen 2652
317 chrisfen 2599 \begin{table}[htbp]
318     \centering
319     \caption{Regression results for the molten NaCl system. Tabulated results include $\Delta E$ values (top set) and force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
320     \begin{tabular}{@{} ccrrrrrr @{}}
321     \\
322     \toprule
323     & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
324     \cmidrule(lr){3-4}
325     \cmidrule(lr){5-6}
326     \cmidrule(l){7-8}
327     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
328     \midrule
329     PC & & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\
330 chrisfen 2655 SP & 0.0 & 0.928 & 0.996 & 0.931 & 0.998 & 0.950 & 0.999 \\
331     & 0.1 & 0.977 & 0.998 & 0.998 & 1.000 & 0.997 & 1.000 \\
332 chrisfen 2599 & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
333     & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
334 chrisfen 2655 SF & 0.0 & 0.996 & 1.000 & 0.995 & 1.000 & 0.997 & 1.000 \\
335     & 0.1 & 1.021 & 1.000 & 1.024 & 1.000 & 1.007 & 1.000 \\
336 chrisfen 2599 & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
337     & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
338     \midrule
339     PC & & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\
340 chrisfen 2655 SP & 0.0 & 0.973 & 0.981 & 0.975 & 0.988 & 0.979 & 0.992 \\
341     & 0.1 & 0.987 & 0.992 & 0.993 & 0.998 & 0.997 & 0.999 \\
342 chrisfen 2599 & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
343     & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
344 chrisfen 2655 SF & 0.0 & 0.996 & 0.997 & 0.997 & 0.999 & 0.998 & 1.000 \\
345     & 0.1 & 1.000 & 0.997 & 1.001 & 0.999 & 1.000 & 1.000 \\
346 chrisfen 2599 & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
347     & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
348     \bottomrule
349     \end{tabular}
350 chrisfen 2652 \label{tab:melt}
351 chrisfen 2599 \end{table}
352    
353     \begin{table}[htbp]
354     \centering
355     \caption{Variance results from Gaussian fits to angular distributions of the force vectors in the molten NaCl system. PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
356     \begin{tabular}{@{} ccrrrrrr @{}}
357     \\
358     \toprule
359     & & \multicolumn{3}{c}{Force $\sigma^2$} \\
360     \cmidrule(lr){3-5}
361     \cmidrule(l){6-8}
362     Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
363     \midrule
364     PC & & 13.294 & 8.035 & 5.366 \\
365     SP & 0.0 & 13.316 & 8.037 & 5.385 \\
366     & 0.1 & 5.705 & 1.391 & 0.360 \\
367     & 0.2 & 2.415 & 7.534 & 13.927 \\
368     & 0.3 & 23.769 & 67.306 & 57.252 \\
369     SF & 0.0 & 1.693 & 0.603 & 0.256 \\
370     & 0.1 & 1.687 & 0.653 & 0.272 \\
371     & 0.2 & 2.598 & 7.523 & 13.930 \\
372     & 0.3 & 23.734 & 67.305 & 57.252 \\
373     \bottomrule
374     \end{tabular}
375 chrisfen 2652 \label{tab:meltAng}
376 chrisfen 2599 \end{table}
377    
378 chrisfen 2660 The molten NaCl system shows more sensitivity to the electrostatic
379     damping than the water systems. The most noticeable point is that the
380     undamped {\sc sf} method does very well at replicating the {\sc spme}
381     configurational energy differences and forces. Light damping appears
382     to minimally improve the dynamics, but this comes with a deterioration
383     of the energy gap results. In contrast, this light damping improves
384     the {\sc sp} energy gaps and forces. Moderate and heavy electrostatic
385     damping reduce the agreement with {\sc spme} for both methods. From
386     these observations, the undamped {\sc sf} method is the best choice
387     for disordered systems of charges.
388 chrisfen 2654
389 chrisfen 2660 \section{\label{app:salt}NaCl Crystal}
390 chrisfen 2599
391 gezelter 2658 A 1000K NaCl crystal was used to investigate the accuracy of the
392     pairwise summation methods in an ordered system of charged
393     particles. The results for the energy gap comparisons and the force
394     and torque vector magnitude comparisons are shown in table
395     \ref{tab:salt}. The force and torque vector directionality results
396     are displayed separately in table \ref{tab:saltAng}, where the effect
397     of group-based cutoffs and switching functions on the {\sc sp} and
398     {\sc sf} potentials are investigated.
399 chrisfen 2652
400 chrisfen 2599 \begin{table}[htbp]
401     \centering
402 gezelter 2658 \caption{Regression results for the crystalline NaCl
403     system. Tabulated results include $\Delta E$ values (top set) and
404     force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted
405     Potential, and SF = Shifted Force.}
406 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
407     \\
408     \toprule
409     & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
410     \cmidrule(lr){3-4}
411     \cmidrule(lr){5-6}
412     \cmidrule(l){7-8}
413     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
414     \midrule
415     PC & & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\
416     SP & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\
417     & 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\
418     & 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\
419     & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\
420     SF & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\
421     & 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\
422     & 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\
423     & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\
424     \midrule
425     PC & & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\
426     SP & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\
427     & 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\
428     & 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\
429     & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
430     SF & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\
431     & 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\
432     & 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\
433     & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
434     \bottomrule
435     \end{tabular}
436 chrisfen 2652 \label{tab:salt}
437 chrisfen 2599 \end{table}
438    
439     \begin{table}[htbp]
440     \centering
441 gezelter 2658 \caption{Variance results from Gaussian fits to angular
442     distributions of the force vectors in the crystalline NaCl system. PC
443     = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
444     Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
445     \infty$).}
446 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
447     \\
448     \toprule
449     & & \multicolumn{3}{c}{Force $\sigma^2$} \\
450     \cmidrule(lr){3-5}
451     \cmidrule(l){6-8}
452     Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
453     \midrule
454     PC & & 111.945 & 111.824 & 111.866 \\
455     SP & 0.0 & 112.414 & 152.215 & 38.087 \\
456     & 0.1 & 52.361 & 42.574 & 2.819 \\
457     & 0.2 & 10.847 & 9.709 & 9.686 \\
458     & 0.3 & 31.128 & 31.104 & 31.029 \\
459     SF & 0.0 & 10.025 & 3.555 & 1.648 \\
460     & 0.1 & 9.462 & 3.303 & 1.721 \\
461     & 0.2 & 11.454 & 9.813 & 9.701 \\
462     & 0.3 & 31.120 & 31.105 & 31.029 \\
463     \bottomrule
464     \end{tabular}
465 chrisfen 2652 \label{tab:saltAng}
466 chrisfen 2599 \end{table}
467    
468 chrisfen 2660 The crystalline NaCl system is the most challenging test case for the
469     pairwise summation methods, as evidenced by the results in tables
470     \ref{tab:salt} and \ref{tab:saltAng}. The undamped and weakly damped
471     {\sc sf} methods with a 12 \AA\ cutoff radius seem to be the best
472     choices. These methods match well with {\sc spme} across the energy
473     gap, force magnitude, and force directionality tests. The {\sc sp}
474 chrisfen 2666 method struggles in all cases, with the exception of good dynamics
475 chrisfen 2660 reproduction when using weak electrostatic damping with a large cutoff
476     radius.
477 chrisfen 2599
478 chrisfen 2660 The moderate electrostatic damping case is not as good as we would
479     expect given the good long-time dynamics results observed for this
480 chrisfen 2666 system. Since the data tabulated in table \ref{tab:salt} and
481     \ref{tab:saltAng} are a test of instantaneous dynamics, this indicates
482     that good long-time dynamics comes in part at the expense of
483 chrisfen 2660 short-time dynamics. Further indication of this comes from the full
484     power spectra shown in the main text. It appears as though a
485 chrisfen 2666 distortion is introduced between 200 to 350 cm$^{-1}$ with increased
486 chrisfen 2660 $\alpha$.
487    
488     \section{\label{app:solnWeak}Weak NaCl Solution}
489    
490 gezelter 2658 In an effort to bridge the charged atomic and neutral molecular
491     systems, Na$^+$ and Cl$^-$ ion charge defects were incorporated into
492     the liquid water system. This low ionic strength system consists of 4
493     ions in the 1000 SPC/E water solvent ($\approx$0.11 M). The results
494     for the energy gap comparisons and the force and torque vector
495     magnitude comparisons are shown in table \ref{tab:solnWeak}. The
496     force and torque vector directionality results are displayed
497     separately in table \ref{tab:solnWeakAng}, where the effect of
498     group-based cutoffs and switching functions on the {\sc sp} and {\sc
499     sf} potentials are investigated.
500 chrisfen 2652
501 chrisfen 2599 \begin{table}[htbp]
502     \centering
503 gezelter 2658 \caption{Regression results for the weak NaCl solution
504     system. Tabulated results include $\Delta E$ values (top set), force
505     vector magnitudes (middle set) and torque vector magnitudes (bottom
506     set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
507     GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon
508     \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF =
509     Group Switched Shifted Force.}
510 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
511     \\
512     \toprule
513     & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
514     \cmidrule(lr){3-4}
515     \cmidrule(lr){5-6}
516     \cmidrule(l){7-8}
517     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
518     \midrule
519     PC & & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\
520     SP & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\
521     & 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\
522     & 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\
523     & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
524     SF & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\
525     & 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\
526     & 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\
527     & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
528     GSC & & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\
529     RF & & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\
530     \midrule
531     PC & & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\
532     SP & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\
533     & 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\
534     & 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\
535     & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
536     SF & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\
537     & 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\
538     & 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\
539     & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
540     GSC & & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\
541     RF & & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\
542     \midrule
543     PC & & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\
544     SP & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\
545     & 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\
546     & 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\
547     & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
548     SF & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\
549     & 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\
550     & 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\
551     & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
552     GSC & & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\
553     RF & & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\
554     \bottomrule
555     \end{tabular}
556 chrisfen 2652 \label{tab:solnWeak}
557 chrisfen 2599 \end{table}
558    
559     \begin{table}[htbp]
560     \centering
561 gezelter 2658 \caption{Variance results from Gaussian fits to angular
562     distributions of the force and torque vectors in the weak NaCl
563     solution system. PC = Pure Cutoff, SP = Shifted Potential, SF =
564     Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where
565     $\varepsilon \approx \infty$), GSSP = Group Switched Shifted
566     Potential, and GSSF = Group Switched Shifted Force.}
567 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
568     \\
569     \toprule
570     & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
571     \cmidrule(lr){3-5}
572     \cmidrule(l){6-8}
573     Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
574     \midrule
575     PC & & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\
576     SP & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\
577     & 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\
578     & 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\
579     & 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\
580     SF & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\
581     & 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\
582     & 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\
583     & 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\
584     GSC & & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
585     RF & & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\
586     \midrule
587     GSSP & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
588     & 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\
589     & 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\
590     & 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\
591     GSSF & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\
592     & 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\
593     & 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\
594     & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\
595     \bottomrule
596     \end{tabular}
597 chrisfen 2652 \label{tab:solnWeakAng}
598 chrisfen 2599 \end{table}
599    
600 chrisfen 2666 Because this system is a perturbation of the pure liquid water system,
601     comparisons are best drawn between these two sets. The {\sc sp} and
602     {\sc sf} methods are not significantly affected by the inclusion of a
603     few ions. The aspect of cutoff sphere neutralization aids in the
604     smooth incorporation of these ions; thus, all of the observations
605     regarding these methods carry over from section \ref{app:water}. The
606     differences between these systems are more visible for the {\sc rf}
607     method. Though good force agreement is still maintained, the energy
608     gaps show a significant increase in the data scatter. This foreshadows
609     the breakdown of the method as we introduce charged inhomogeneities.
610 chrisfen 2599
611 chrisfen 2660 \section{\label{app:solnStr}Strong NaCl Solution}
612    
613 gezelter 2658 The bridging of the charged atomic and neutral molecular systems was
614 chrisfen 2660 further developed by considering a high ionic strength system
615     consisting of 40 ions in the 1000 SPC/E water solvent ($\approx$1.1
616     M). The results for the energy gap comparisons and the force and
617     torque vector magnitude comparisons are shown in table
618     \ref{tab:solnWeak}. The force and torque vector directionality
619 chrisfen 2666 results are displayed separately in table \ref{tab:solnWeakAng}, where
620 chrisfen 2660 the effect of group-based cutoffs and switching functions on the {\sc
621     sp} and {\sc sf} potentials are investigated.
622 chrisfen 2652
623 chrisfen 2599 \begin{table}[htbp]
624     \centering
625 gezelter 2658 \caption{Regression results for the strong NaCl solution
626     system. Tabulated results include $\Delta E$ values (top set), force
627     vector magnitudes (middle set) and torque vector magnitudes (bottom
628     set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
629     GSC = Group Switched Cutoff, and RF = Reaction Field (where
630     $\varepsilon \approx \infty$).}
631 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
632     \\
633     \toprule
634     & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
635     \cmidrule(lr){3-4}
636     \cmidrule(lr){5-6}
637     \cmidrule(l){7-8}
638     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
639     \midrule
640     PC & & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\
641     SP & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\
642     & 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\
643     & 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\
644     & 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\
645     SF & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\
646     & 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\
647     & 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\
648     & 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\
649     GSC & & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\
650     RF & & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\
651     \midrule
652     PC & & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\
653     SP & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\
654     & 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\
655     & 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\
656     & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
657     SF & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\
658     & 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\
659     & 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\
660     & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
661     GSC & & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\
662     RF & & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\
663     \midrule
664     PC & & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\
665     SP & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\
666     & 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\
667     & 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\
668     & 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\
669     SF & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\
670     & 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\
671     & 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\
672     & 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\
673     GSC & & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\
674     RF & & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\
675     \bottomrule
676     \end{tabular}
677 chrisfen 2652 \label{tab:solnStr}
678 chrisfen 2599 \end{table}
679    
680     \begin{table}[htbp]
681     \centering
682     \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the strong NaCl solution system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
683     \begin{tabular}{@{} ccrrrrrr @{}}
684     \\
685     \toprule
686     & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
687     \cmidrule(lr){3-5}
688     \cmidrule(l){6-8}
689     Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
690     \midrule
691     PC & & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\
692     SP & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\
693     & 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\
694     & 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\
695     & 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\
696     SF & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\
697     & 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\
698     & 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\
699     & 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\
700     GSC & & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\
701     RF & & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\
702     \midrule
703     GSSP & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\
704     & 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\
705     & 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\
706     & 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\
707     GSSF & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\
708     & 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\
709     & 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\
710     & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\
711     \bottomrule
712     \end{tabular}
713 chrisfen 2652 \label{tab:solnStrAng}
714 chrisfen 2599 \end{table}
715    
716 chrisfen 2660 The {\sc rf} method struggles with the jump in ionic strength. The
717 chrisfen 2666 configuration energy difference degrade to unusable levels while the
718     forces and torques show a more modest reduction in the agreement with
719     {\sc spme}. The {\sc rf} method was designed for homogeneous systems,
720     and this attribute is apparent in these results.
721 chrisfen 2599
722 chrisfen 2660 The {\sc sp} and {\sc sf} methods require larger cutoffs to maintain
723     their agreement with {\sc spme}. With these results, we still
724     recommend no to moderate damping for the {\sc sf} method and moderate
725     damping for the {\sc sp} method, both with cutoffs greater than 12
726     \AA.
727    
728     \section{\label{app:argon}Argon Sphere in Water}
729    
730 gezelter 2658 The final model system studied was 6 \AA\ sphere of Argon solvated by
731     SPC/E water. The results for the energy gap comparisons and the force
732     and torque vector magnitude comparisons are shown in table
733     \ref{tab:solnWeak}. The force and torque vector directionality
734     results are displayed separately in table \ref{tab:solnWeakAng}, where
735     the effect of group-based cutoffs and switching functions on the {\sc
736     sp} and {\sc sf} potentials are investigated.
737 chrisfen 2652
738 chrisfen 2599 \begin{table}[htbp]
739     \centering
740 gezelter 2658 \caption{Regression results for the 6 \AA\ argon sphere in liquid
741     water system. Tabulated results include $\Delta E$ values (top set),
742     force vector magnitudes (middle set) and torque vector magnitudes
743     (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted
744     Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where
745     $\varepsilon \approx \infty$).}
746 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
747     \\
748     \toprule
749     & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
750     \cmidrule(lr){3-4}
751     \cmidrule(lr){5-6}
752     \cmidrule(l){7-8}
753     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
754     \midrule
755     PC & & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\
756     SP & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\
757     & 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\
758     & 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\
759     & 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\
760     SF & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\
761     & 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\
762     & 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\
763     & 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\
764     GSC & & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\
765     RF & & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\
766     \midrule
767     PC & & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\
768     SP & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\
769     & 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\
770     & 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\
771     & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
772     SF & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
773     & 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
774     & 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
775     & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
776     GSC & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
777     RF & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
778     \midrule
779     PC & & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\
780     SP & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\
781     & 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\
782     & 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\
783     & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
784     SF & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\
785     & 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\
786     & 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\
787     & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
788     GSC & & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\
789     RF & & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\
790     \bottomrule
791     \end{tabular}
792 chrisfen 2652 \label{tab:argon}
793 chrisfen 2599 \end{table}
794    
795     \begin{table}[htbp]
796     \centering
797 gezelter 2658 \caption{Variance results from Gaussian fits to angular
798     distributions of the force and torque vectors in the 6 \AA\ sphere of
799     argon in liquid water system. PC = Pure Cutoff, SP = Shifted
800     Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF =
801     Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group
802     Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
803 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
804     \\
805     \toprule
806     & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
807     \cmidrule(lr){3-5}
808     \cmidrule(l){6-8}
809     Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
810     \midrule
811     PC & & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\
812     SP & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\
813     & 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\
814     & 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\
815     & 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\
816     SF & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\
817     & 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\
818     & 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\
819     & 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\
820     GSC & & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
821     RF & & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\
822     \midrule
823     GSSP & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
824     & 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\
825     & 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\
826     & 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\
827     GSSF & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\
828     & 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\
829     & 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\
830     & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\
831     \bottomrule
832     \end{tabular}
833 chrisfen 2652 \label{tab:argonAng}
834 chrisfen 2599 \end{table}
835    
836 chrisfen 2666 This system appears not to show in any significant deviation in the
837     previously observed results. The {\sc sp} and {\sc sf} methods give
838     result qualities similar to those observed in section
839     \ref{app:water}. The only significant difference is the improvement
840     for the configuration energy differences for the {\sc rf} method. This
841     is surprising in that we are introducing an inhomogeneity to the
842     system; however, this inhomogeneity is charge-neutral and does not
843     result in charged cutoff spheres. The charge-neutrality of the cutoff
844     spheres, which the {\sc sp} and {\sc sf} methods explicitly enforce,
845     seems to play a greater role in the stability of the {\sc rf} method
846     than the required homogeneity of the environment.
847 chrisfen 2660
848 chrisfen 2641 \newpage
849    
850     \bibliographystyle{jcp2}
851     \bibliography{electrostaticMethods}
852    
853 gezelter 2658 \end{document}