ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/electrostaticMethodsPaper/SupportingInfo.tex
Revision: 2667
Committed: Fri Mar 24 02:39:59 2006 UTC (18 years, 3 months ago) by chrisfen
Content type: application/x-tex
File size: 41698 byte(s)
Log Message:
Figure adjusted and Steve's recommendations incorporated

File Contents

# User Rev Content
1 chrisfen 2599 %\documentclass[prb,aps,twocolumn,tabularx]{revtex4}
2 chrisfen 2666 \documentclass[11pt]{article}
3 gezelter 2658 %\usepackage{endfloat}
4 chrisfen 2599 \usepackage{amsmath}
5     \usepackage{amssymb}
6     \usepackage{epsf}
7     \usepackage{times}
8     \usepackage{mathptm}
9     \usepackage{setspace}
10     \usepackage{tabularx}
11     \usepackage{graphicx}
12     \usepackage{booktabs}
13     %\usepackage{berkeley}
14     \usepackage[ref]{overcite}
15     \pagestyle{plain}
16     \pagenumbering{arabic}
17     \oddsidemargin 0.0cm \evensidemargin 0.0cm
18     \topmargin -21pt \headsep 10pt
19     \textheight 9.0in \textwidth 6.5in
20     \brokenpenalty=10000
21     \renewcommand{\baselinestretch}{1.2}
22     \renewcommand\citemid{\ } % no comma in optional reference note
23    
24     \begin{document}
25    
26 gezelter 2658 This document includes individual system-based comparisons of the
27 chrisfen 2666 studied methods with smooth particle mesh Ewald {\sc spme}. Each of
28     the seven systems comprises its own section and has its own discussion
29     and tabular listing of the results for the $\Delta E$, force and
30     torque vector magnitude, and force and torque vector direction
31     comparisons.
32 chrisfen 2599
33 chrisfen 2660 \section{\label{app:water}Liquid Water}
34 chrisfen 2599
35 chrisfen 2666 The first system considered was liquid water at 300K using the SPC/E
36     model of water.\cite{Berendsen87} The results for the energy gap
37     comparisons and the force and torque vector magnitude comparisons are
38     shown in table \ref{tab:spce}. The force and torque vector
39     directionality results are displayed separately in table
40     \ref{tab:spceAng}, where the effect of group-based cutoffs and
41 gezelter 2658 switching functions on the {\sc sp} and {\sc sf} potentials are
42 chrisfen 2666 investigated.
43 chrisfen 2599 \begin{table}[htbp]
44     \centering
45 gezelter 2658 \caption{Regression results for the liquid water system. Tabulated
46     results include $\Delta E$ values (top set), force vector magnitudes
47     (middle set) and torque vector magnitudes (bottom set). PC = Pure
48     Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
49     Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
50     \infty$).}
51 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
52     \\
53     \toprule
54     & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
55     \cmidrule(lr){3-4}
56     \cmidrule(lr){5-6}
57     \cmidrule(l){7-8}
58     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
59     \midrule
60     PC & & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\
61     SP & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\
62     & 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\
63     & 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\
64     & 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\
65     SF & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\
66     & 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\
67     & 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\
68     & 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\
69     GSC & & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\
70 chrisfen 2660 RF & & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\
71 chrisfen 2599 \midrule
72     PC & & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\
73     SP & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\
74     & 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\
75     & 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\
76     & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
77     SF & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\
78     & 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
79     & 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\
80     & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
81     GSC & & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
82     RF & & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
83     \midrule
84     PC & & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\
85     SP & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\
86     & 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\
87     & 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\
88     & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
89     SF & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\
90     & 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\
91     & 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\
92     & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
93     GSC & & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\
94     RF & & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\
95     \bottomrule
96     \end{tabular}
97 chrisfen 2652 \label{tab:spce}
98 chrisfen 2599 \end{table}
99    
100     \begin{table}[htbp]
101     \centering
102 gezelter 2658 \caption{Variance results from Gaussian fits to angular
103     distributions of the force and torque vectors in the liquid water
104     system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
105     GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon
106     \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF =
107     Group Switched Shifted Force.}
108 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
109     \\
110     \toprule
111     & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
112     \cmidrule(lr){3-5}
113     \cmidrule(l){6-8}
114     Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
115     \midrule
116     PC & & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\
117     SP & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\
118     & 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\
119     & 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\
120     & 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\
121     SF & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\
122     & 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\
123     & 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\
124     & 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\
125     GSC & & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
126     RF & & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\
127     \midrule
128     GSSP & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
129     & 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\
130     & 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\
131     & 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\
132     GSSF & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\
133     & 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\
134     & 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\
135     & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\
136     \bottomrule
137     \end{tabular}
138 chrisfen 2642 \label{tab:spceAng}
139 chrisfen 2599 \end{table}
140    
141 chrisfen 2666 The water results appear to parallel the combined results seen in the
142     discussion section of the main paper. There is good agreement with
143     {\sc spme} in both energetic and dynamic behavior when using the {\sc sf}
144     method with and without damping. The {\sc sp} method does well with an
145     $\alpha$ around 0.2 \AA$^{-1}$, particularly with cutoff radii greater
146     than 12 \AA. Overdamping the electrostatics reduces the agreement between both these methods and {\sc spme}.
147 chrisfen 2642
148 chrisfen 2666 The pure cutoff ({\sc pc}) method performs poorly, again mirroring the
149     observations in the main portion of this paper. In contrast to the
150     combined values, however, the use of a switching function and group
151 chrisfen 2667 based cutoffs greatly improves the results for these neutral water
152 chrisfen 2666 molecules. The group switched cutoff ({\sc gsc}) does not mimic the
153     energetics of {\sc spme} as well as the {\sc sp} (with moderate
154     damping) and {\sc sf} methods, but the dynamics are quite good. The
155 chrisfen 2667 switching functions correct discontinuities in the potential and
156 chrisfen 2666 forces, leading to these improved results. Such improvements with the
157 chrisfen 2667 use of a switching function have been recognized in previous
158 chrisfen 2666 studies,\cite{Andrea83,Steinbach94} and this proves to be a useful
159     tactic for stably incorporating local area electrostatic effects.
160 chrisfen 2652
161 chrisfen 2666 The reaction field ({\sc rf}) method simply extends upon the results
162     observed in the {\sc gsc} case. Both methods are similar in form
163     (i.e. neutral groups, switching function), but {\sc rf} incorporates
164     an added effect from the external dielectric. This similarity
165     translates into the same good dynamic results and improved energetic
166     agreement with {\sc spme}. Though this agreement is not to the level
167     of the moderately damped {\sc sp} and {\sc sf} methods, these results
168     show how incorporating some implicit properties of the surroundings
169     (i.e. $\epsilon_\textrm{S}$) can improve the solvent depiction.
170 chrisfen 2652
171 chrisfen 2667 As a final note for the liquid water system, use of group cutoffs and a
172 chrisfen 2666 switching function leads to noticeable improvements in the {\sc sp}
173     and {\sc sf} methods, primarily in directionality of the force and
174     torque vectors (table \ref{tab:spceAng}). The {\sc sp} method shows
175     significant narrowing of the angle distribution when using little to
176     no damping and only modest improvement for the recommended conditions
177     ($\alpha$ = 0.2 \AA${-1}$ and $R_\textrm{c} \geqslant 12$~\AA). The
178     {\sc sf} method shows modest narrowing across all damping and cutoff
179     ranges of interest. When overdamping these methods, group cutoffs and
180     the switching function do not improve the force and torque
181     directionalities.
182 chrisfen 2652
183 chrisfen 2660 \section{\label{app:ice}Solid Water: Ice I$_\textrm{c}$}
184 chrisfen 2599
185 gezelter 2658 In addition to the disordered molecular system above, the ordered
186     molecular system of ice I$_\textrm{c}$ was also considered. The
187     results for the energy gap comparisons and the force and torque vector
188     magnitude comparisons are shown in table \ref{tab:ice}. The force and
189     torque vector directionality results are displayed separately in table
190     \ref{tab:iceAng}, where the effect of group-based cutoffs and
191     switching functions on the {\sc sp} and {\sc sf} potentials are
192     investigated.
193 chrisfen 2652
194 chrisfen 2599 \begin{table}[htbp]
195     \centering
196 gezelter 2658 \caption{Regression results for the ice I$_\textrm{c}$
197     system. Tabulated results include $\Delta E$ values (top set), force
198     vector magnitudes (middle set) and torque vector magnitudes (bottom
199     set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
200     GSC = Group Switched Cutoff, and RF = Reaction Field (where
201     $\varepsilon \approx \infty$).}
202 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
203     \\
204     \toprule
205     & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
206     \cmidrule(lr){3-4}
207     \cmidrule(lr){5-6}
208     \cmidrule(l){7-8}
209     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
210     \midrule
211     PC & & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\
212     SP & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\
213     & 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\
214     & 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\
215     & 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\
216     SF & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\
217     & 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\
218     & 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\
219     & 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\
220     GSC & & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\
221     RF & & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\
222     \midrule
223     PC & & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\
224     SP & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\
225     & 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\
226     & 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\
227     & 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\
228     SF & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\
229     & 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\
230     & 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\
231     & 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\
232     GSC & & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\
233     RF & & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\
234     \midrule
235     PC & & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\
236     SP & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\
237     & 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\
238     & 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\
239     & 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\
240     SF & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\
241     & 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\
242     & 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\
243     & 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\
244     GSC & & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\
245     RF & & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\
246     \bottomrule
247     \end{tabular}
248 chrisfen 2652 \label{tab:ice}
249 chrisfen 2599 \end{table}
250    
251     \begin{table}[htbp]
252     \centering
253     \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the ice I$_\textrm{c}$ system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
254     \begin{tabular}{@{} ccrrrrrr @{}}
255     \\
256     \toprule
257     & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
258     \cmidrule(lr){3-5}
259     \cmidrule(l){6-8}
260     Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
261     \midrule
262     PC & & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\
263     SP & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\
264     & 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\
265     & 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\
266     & 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\
267     SF & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\
268     & 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\
269     & 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\
270     & 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\
271     GSC & & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
272     RF & & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\
273     \midrule
274     GSSP & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
275     & 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\
276     & 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\
277     & 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
278     GSSF & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\
279     & 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\
280     & 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\
281     & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
282     \bottomrule
283     \end{tabular}
284 chrisfen 2652 \label{tab:iceAng}
285 chrisfen 2599 \end{table}
286    
287 chrisfen 2666 Highly ordered systems are a difficult test for the pairwise methods
288     in that they lack the periodicity term of the Ewald summation. As
289 chrisfen 2667 expected, the energy gap agreement with {\sc spme} is reduced for the
290 chrisfen 2666 {\sc sp} and {\sc sf} methods with parameters that were acceptable for
291     the disordered liquid system. Moving to higher $R_\textrm{c}$ helps
292     improve the agreement, though at an increase in computational cost.
293     The dynamics of this crystalline system (both in magnitude and
294     direction) are little affected. Both methods still reproduce the Ewald
295     behavior with the same parameter recommendations from the previous
296     section.
297 chrisfen 2652
298 chrisfen 2666 It is also worth noting that {\sc rf} exhibits improved energy gap
299     results over the liquid water system. One possible explanation is
300 gezelter 2658 that the ice I$_\textrm{c}$ crystal is ordered such that the net
301     dipole moment of the crystal is zero. With $\epsilon_\textrm{S} =
302     \infty$, the reaction field incorporates this structural organization
303     by actively enforcing a zeroed dipole moment within each cutoff
304     sphere.
305 chrisfen 2652
306 chrisfen 2660 \section{\label{app:melt}NaCl Melt}
307 chrisfen 2599
308 gezelter 2658 A high temperature NaCl melt was tested to gauge the accuracy of the
309 chrisfen 2666 pairwise summation methods in a charged disordered system. The results
310 chrisfen 2667 for the energy gap comparisons and the force vector magnitude
311     comparisons are shown in table \ref{tab:melt}. The force vector
312     directionality results are displayed separately in table
313     \ref{tab:meltAng}.
314 chrisfen 2652
315 chrisfen 2599 \begin{table}[htbp]
316     \centering
317     \caption{Regression results for the molten NaCl system. Tabulated results include $\Delta E$ values (top set) and force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
318     \begin{tabular}{@{} ccrrrrrr @{}}
319     \\
320     \toprule
321     & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
322     \cmidrule(lr){3-4}
323     \cmidrule(lr){5-6}
324     \cmidrule(l){7-8}
325     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
326     \midrule
327     PC & & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\
328 chrisfen 2655 SP & 0.0 & 0.928 & 0.996 & 0.931 & 0.998 & 0.950 & 0.999 \\
329     & 0.1 & 0.977 & 0.998 & 0.998 & 1.000 & 0.997 & 1.000 \\
330 chrisfen 2599 & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
331     & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
332 chrisfen 2655 SF & 0.0 & 0.996 & 1.000 & 0.995 & 1.000 & 0.997 & 1.000 \\
333     & 0.1 & 1.021 & 1.000 & 1.024 & 1.000 & 1.007 & 1.000 \\
334 chrisfen 2599 & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
335     & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
336     \midrule
337     PC & & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\
338 chrisfen 2655 SP & 0.0 & 0.973 & 0.981 & 0.975 & 0.988 & 0.979 & 0.992 \\
339     & 0.1 & 0.987 & 0.992 & 0.993 & 0.998 & 0.997 & 0.999 \\
340 chrisfen 2599 & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
341     & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
342 chrisfen 2655 SF & 0.0 & 0.996 & 0.997 & 0.997 & 0.999 & 0.998 & 1.000 \\
343     & 0.1 & 1.000 & 0.997 & 1.001 & 0.999 & 1.000 & 1.000 \\
344 chrisfen 2599 & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
345     & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
346     \bottomrule
347     \end{tabular}
348 chrisfen 2652 \label{tab:melt}
349 chrisfen 2599 \end{table}
350    
351     \begin{table}[htbp]
352     \centering
353     \caption{Variance results from Gaussian fits to angular distributions of the force vectors in the molten NaCl system. PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
354     \begin{tabular}{@{} ccrrrrrr @{}}
355     \\
356     \toprule
357     & & \multicolumn{3}{c}{Force $\sigma^2$} \\
358     \cmidrule(lr){3-5}
359     \cmidrule(l){6-8}
360     Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
361     \midrule
362     PC & & 13.294 & 8.035 & 5.366 \\
363     SP & 0.0 & 13.316 & 8.037 & 5.385 \\
364     & 0.1 & 5.705 & 1.391 & 0.360 \\
365     & 0.2 & 2.415 & 7.534 & 13.927 \\
366     & 0.3 & 23.769 & 67.306 & 57.252 \\
367     SF & 0.0 & 1.693 & 0.603 & 0.256 \\
368     & 0.1 & 1.687 & 0.653 & 0.272 \\
369     & 0.2 & 2.598 & 7.523 & 13.930 \\
370     & 0.3 & 23.734 & 67.305 & 57.252 \\
371     \bottomrule
372     \end{tabular}
373 chrisfen 2652 \label{tab:meltAng}
374 chrisfen 2599 \end{table}
375    
376 chrisfen 2660 The molten NaCl system shows more sensitivity to the electrostatic
377     damping than the water systems. The most noticeable point is that the
378     undamped {\sc sf} method does very well at replicating the {\sc spme}
379     configurational energy differences and forces. Light damping appears
380     to minimally improve the dynamics, but this comes with a deterioration
381     of the energy gap results. In contrast, this light damping improves
382     the {\sc sp} energy gaps and forces. Moderate and heavy electrostatic
383     damping reduce the agreement with {\sc spme} for both methods. From
384     these observations, the undamped {\sc sf} method is the best choice
385     for disordered systems of charges.
386 chrisfen 2654
387 chrisfen 2660 \section{\label{app:salt}NaCl Crystal}
388 chrisfen 2599
389 gezelter 2658 A 1000K NaCl crystal was used to investigate the accuracy of the
390     pairwise summation methods in an ordered system of charged
391     particles. The results for the energy gap comparisons and the force
392 chrisfen 2667 vector magnitude comparisons are shown in table \ref{tab:salt}. The
393     force vector directionality results are displayed separately in table
394     \ref{tab:saltAng}.
395 chrisfen 2652
396 chrisfen 2599 \begin{table}[htbp]
397     \centering
398 gezelter 2658 \caption{Regression results for the crystalline NaCl
399     system. Tabulated results include $\Delta E$ values (top set) and
400     force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted
401     Potential, and SF = Shifted Force.}
402 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
403     \\
404     \toprule
405     & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
406     \cmidrule(lr){3-4}
407     \cmidrule(lr){5-6}
408     \cmidrule(l){7-8}
409     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
410     \midrule
411     PC & & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\
412     SP & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\
413     & 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\
414     & 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\
415     & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\
416     SF & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\
417     & 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\
418     & 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\
419     & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\
420     \midrule
421     PC & & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\
422     SP & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\
423     & 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\
424     & 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\
425     & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
426     SF & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\
427     & 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\
428     & 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\
429     & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
430     \bottomrule
431     \end{tabular}
432 chrisfen 2652 \label{tab:salt}
433 chrisfen 2599 \end{table}
434    
435     \begin{table}[htbp]
436     \centering
437 gezelter 2658 \caption{Variance results from Gaussian fits to angular
438     distributions of the force vectors in the crystalline NaCl system. PC
439     = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
440     Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
441     \infty$).}
442 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
443     \\
444     \toprule
445     & & \multicolumn{3}{c}{Force $\sigma^2$} \\
446     \cmidrule(lr){3-5}
447     \cmidrule(l){6-8}
448     Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
449     \midrule
450     PC & & 111.945 & 111.824 & 111.866 \\
451     SP & 0.0 & 112.414 & 152.215 & 38.087 \\
452     & 0.1 & 52.361 & 42.574 & 2.819 \\
453     & 0.2 & 10.847 & 9.709 & 9.686 \\
454     & 0.3 & 31.128 & 31.104 & 31.029 \\
455     SF & 0.0 & 10.025 & 3.555 & 1.648 \\
456     & 0.1 & 9.462 & 3.303 & 1.721 \\
457     & 0.2 & 11.454 & 9.813 & 9.701 \\
458     & 0.3 & 31.120 & 31.105 & 31.029 \\
459     \bottomrule
460     \end{tabular}
461 chrisfen 2652 \label{tab:saltAng}
462 chrisfen 2599 \end{table}
463    
464 chrisfen 2660 The crystalline NaCl system is the most challenging test case for the
465     pairwise summation methods, as evidenced by the results in tables
466     \ref{tab:salt} and \ref{tab:saltAng}. The undamped and weakly damped
467     {\sc sf} methods with a 12 \AA\ cutoff radius seem to be the best
468     choices. These methods match well with {\sc spme} across the energy
469     gap, force magnitude, and force directionality tests. The {\sc sp}
470 chrisfen 2666 method struggles in all cases, with the exception of good dynamics
471 chrisfen 2660 reproduction when using weak electrostatic damping with a large cutoff
472     radius.
473 chrisfen 2599
474 chrisfen 2660 The moderate electrostatic damping case is not as good as we would
475 chrisfen 2667 expect given the long-time dynamics results observed for this
476     system. Since the data tabulated in tables \ref{tab:salt} and
477 chrisfen 2666 \ref{tab:saltAng} are a test of instantaneous dynamics, this indicates
478     that good long-time dynamics comes in part at the expense of
479 chrisfen 2667 short-time dynamics.
480 chrisfen 2660
481     \section{\label{app:solnWeak}Weak NaCl Solution}
482    
483 gezelter 2658 In an effort to bridge the charged atomic and neutral molecular
484     systems, Na$^+$ and Cl$^-$ ion charge defects were incorporated into
485     the liquid water system. This low ionic strength system consists of 4
486     ions in the 1000 SPC/E water solvent ($\approx$0.11 M). The results
487     for the energy gap comparisons and the force and torque vector
488     magnitude comparisons are shown in table \ref{tab:solnWeak}. The
489     force and torque vector directionality results are displayed
490     separately in table \ref{tab:solnWeakAng}, where the effect of
491     group-based cutoffs and switching functions on the {\sc sp} and {\sc
492     sf} potentials are investigated.
493 chrisfen 2652
494 chrisfen 2599 \begin{table}[htbp]
495     \centering
496 gezelter 2658 \caption{Regression results for the weak NaCl solution
497     system. Tabulated results include $\Delta E$ values (top set), force
498     vector magnitudes (middle set) and torque vector magnitudes (bottom
499     set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
500 chrisfen 2667 GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon
501     \approx \infty$).}
502 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
503     \\
504     \toprule
505     & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
506     \cmidrule(lr){3-4}
507     \cmidrule(lr){5-6}
508     \cmidrule(l){7-8}
509     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
510     \midrule
511     PC & & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\
512     SP & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\
513     & 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\
514     & 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\
515     & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
516     SF & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\
517     & 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\
518     & 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\
519     & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
520     GSC & & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\
521     RF & & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\
522     \midrule
523     PC & & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\
524     SP & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\
525     & 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\
526     & 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\
527     & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
528     SF & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\
529     & 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\
530     & 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\
531     & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
532     GSC & & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\
533     RF & & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\
534     \midrule
535     PC & & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\
536     SP & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\
537     & 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\
538     & 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\
539     & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
540     SF & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\
541     & 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\
542     & 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\
543     & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
544     GSC & & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\
545     RF & & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\
546     \bottomrule
547     \end{tabular}
548 chrisfen 2652 \label{tab:solnWeak}
549 chrisfen 2599 \end{table}
550    
551     \begin{table}[htbp]
552     \centering
553 gezelter 2658 \caption{Variance results from Gaussian fits to angular
554     distributions of the force and torque vectors in the weak NaCl
555     solution system. PC = Pure Cutoff, SP = Shifted Potential, SF =
556     Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where
557     $\varepsilon \approx \infty$), GSSP = Group Switched Shifted
558     Potential, and GSSF = Group Switched Shifted Force.}
559 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
560     \\
561     \toprule
562     & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
563     \cmidrule(lr){3-5}
564     \cmidrule(l){6-8}
565     Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
566     \midrule
567     PC & & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\
568     SP & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\
569     & 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\
570     & 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\
571     & 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\
572     SF & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\
573     & 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\
574     & 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\
575     & 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\
576     GSC & & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
577     RF & & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\
578     \midrule
579     GSSP & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
580     & 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\
581     & 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\
582     & 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\
583     GSSF & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\
584     & 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\
585     & 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\
586     & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\
587     \bottomrule
588     \end{tabular}
589 chrisfen 2652 \label{tab:solnWeakAng}
590 chrisfen 2599 \end{table}
591    
592 chrisfen 2666 Because this system is a perturbation of the pure liquid water system,
593     comparisons are best drawn between these two sets. The {\sc sp} and
594     {\sc sf} methods are not significantly affected by the inclusion of a
595     few ions. The aspect of cutoff sphere neutralization aids in the
596     smooth incorporation of these ions; thus, all of the observations
597     regarding these methods carry over from section \ref{app:water}. The
598     differences between these systems are more visible for the {\sc rf}
599     method. Though good force agreement is still maintained, the energy
600     gaps show a significant increase in the data scatter. This foreshadows
601     the breakdown of the method as we introduce charged inhomogeneities.
602 chrisfen 2599
603 chrisfen 2660 \section{\label{app:solnStr}Strong NaCl Solution}
604    
605 gezelter 2658 The bridging of the charged atomic and neutral molecular systems was
606 chrisfen 2660 further developed by considering a high ionic strength system
607     consisting of 40 ions in the 1000 SPC/E water solvent ($\approx$1.1
608     M). The results for the energy gap comparisons and the force and
609     torque vector magnitude comparisons are shown in table
610 chrisfen 2667 \ref{tab:solnStr}. The force and torque vector directionality
611     results are displayed separately in table \ref{tab:solnStrAng}, where
612 chrisfen 2660 the effect of group-based cutoffs and switching functions on the {\sc
613     sp} and {\sc sf} potentials are investigated.
614 chrisfen 2652
615 chrisfen 2599 \begin{table}[htbp]
616     \centering
617 gezelter 2658 \caption{Regression results for the strong NaCl solution
618     system. Tabulated results include $\Delta E$ values (top set), force
619     vector magnitudes (middle set) and torque vector magnitudes (bottom
620     set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
621     GSC = Group Switched Cutoff, and RF = Reaction Field (where
622     $\varepsilon \approx \infty$).}
623 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
624     \\
625     \toprule
626     & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
627     \cmidrule(lr){3-4}
628     \cmidrule(lr){5-6}
629     \cmidrule(l){7-8}
630     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
631     \midrule
632     PC & & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\
633     SP & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\
634     & 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\
635     & 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\
636     & 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\
637     SF & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\
638     & 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\
639     & 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\
640     & 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\
641     GSC & & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\
642     RF & & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\
643     \midrule
644     PC & & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\
645     SP & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\
646     & 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\
647     & 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\
648     & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
649     SF & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\
650     & 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\
651     & 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\
652     & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
653     GSC & & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\
654     RF & & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\
655     \midrule
656     PC & & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\
657     SP & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\
658     & 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\
659     & 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\
660     & 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\
661     SF & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\
662     & 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\
663     & 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\
664     & 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\
665     GSC & & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\
666     RF & & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\
667     \bottomrule
668     \end{tabular}
669 chrisfen 2652 \label{tab:solnStr}
670 chrisfen 2599 \end{table}
671    
672     \begin{table}[htbp]
673     \centering
674     \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the strong NaCl solution system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
675     \begin{tabular}{@{} ccrrrrrr @{}}
676     \\
677     \toprule
678     & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
679     \cmidrule(lr){3-5}
680     \cmidrule(l){6-8}
681     Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
682     \midrule
683     PC & & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\
684     SP & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\
685     & 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\
686     & 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\
687     & 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\
688     SF & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\
689     & 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\
690     & 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\
691     & 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\
692     GSC & & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\
693     RF & & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\
694     \midrule
695     GSSP & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\
696     & 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\
697     & 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\
698     & 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\
699     GSSF & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\
700     & 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\
701     & 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\
702     & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\
703     \bottomrule
704     \end{tabular}
705 chrisfen 2652 \label{tab:solnStrAng}
706 chrisfen 2599 \end{table}
707    
708 chrisfen 2660 The {\sc rf} method struggles with the jump in ionic strength. The
709 chrisfen 2667 configuration energy differences degrade to unusable levels while the
710 chrisfen 2666 forces and torques show a more modest reduction in the agreement with
711     {\sc spme}. The {\sc rf} method was designed for homogeneous systems,
712     and this attribute is apparent in these results.
713 chrisfen 2599
714 chrisfen 2660 The {\sc sp} and {\sc sf} methods require larger cutoffs to maintain
715     their agreement with {\sc spme}. With these results, we still
716     recommend no to moderate damping for the {\sc sf} method and moderate
717     damping for the {\sc sp} method, both with cutoffs greater than 12
718     \AA.
719    
720     \section{\label{app:argon}Argon Sphere in Water}
721    
722 chrisfen 2667 The final model system studied was a 6 \AA\ sphere of Argon solvated
723     by SPC/E water. The results for the energy gap comparisons and the
724     force and torque vector magnitude comparisons are shown in table
725     \ref{tab:argon}. The force and torque vector directionality
726     results are displayed separately in table \ref{tab:argonAng}, where
727 gezelter 2658 the effect of group-based cutoffs and switching functions on the {\sc
728     sp} and {\sc sf} potentials are investigated.
729 chrisfen 2652
730 chrisfen 2599 \begin{table}[htbp]
731     \centering
732 chrisfen 2667 \caption{Regression results for the 6 \AA\ Argon sphere in liquid
733 gezelter 2658 water system. Tabulated results include $\Delta E$ values (top set),
734     force vector magnitudes (middle set) and torque vector magnitudes
735     (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted
736     Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where
737     $\varepsilon \approx \infty$).}
738 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
739     \\
740     \toprule
741     & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
742     \cmidrule(lr){3-4}
743     \cmidrule(lr){5-6}
744     \cmidrule(l){7-8}
745     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
746     \midrule
747     PC & & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\
748     SP & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\
749     & 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\
750     & 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\
751     & 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\
752     SF & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\
753     & 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\
754     & 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\
755     & 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\
756     GSC & & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\
757     RF & & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\
758     \midrule
759     PC & & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\
760     SP & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\
761     & 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\
762     & 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\
763     & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
764     SF & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
765     & 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
766     & 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
767     & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
768     GSC & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
769     RF & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
770     \midrule
771     PC & & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\
772     SP & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\
773     & 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\
774     & 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\
775     & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
776     SF & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\
777     & 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\
778     & 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\
779     & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
780     GSC & & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\
781     RF & & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\
782     \bottomrule
783     \end{tabular}
784 chrisfen 2652 \label{tab:argon}
785 chrisfen 2599 \end{table}
786    
787     \begin{table}[htbp]
788     \centering
789 gezelter 2658 \caption{Variance results from Gaussian fits to angular
790     distributions of the force and torque vectors in the 6 \AA\ sphere of
791 chrisfen 2667 Argon in liquid water system. PC = Pure Cutoff, SP = Shifted
792 gezelter 2658 Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF =
793     Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group
794     Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
795 chrisfen 2599 \begin{tabular}{@{} ccrrrrrr @{}}
796     \\
797     \toprule
798     & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
799     \cmidrule(lr){3-5}
800     \cmidrule(l){6-8}
801     Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
802     \midrule
803     PC & & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\
804     SP & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\
805     & 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\
806     & 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\
807     & 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\
808     SF & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\
809     & 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\
810     & 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\
811     & 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\
812     GSC & & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
813     RF & & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\
814     \midrule
815     GSSP & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
816     & 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\
817     & 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\
818     & 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\
819     GSSF & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\
820     & 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\
821     & 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\
822     & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\
823     \bottomrule
824     \end{tabular}
825 chrisfen 2652 \label{tab:argonAng}
826 chrisfen 2599 \end{table}
827    
828 chrisfen 2667 This system does not appear to show any significant deviations from
829     the previously observed results. The {\sc sp} and {\sc sf} methods
830     have aggrements similar to those observed in section
831 chrisfen 2666 \ref{app:water}. The only significant difference is the improvement
832 chrisfen 2667 in the configuration energy differences for the {\sc rf} method. This
833 chrisfen 2666 is surprising in that we are introducing an inhomogeneity to the
834     system; however, this inhomogeneity is charge-neutral and does not
835     result in charged cutoff spheres. The charge-neutrality of the cutoff
836     spheres, which the {\sc sp} and {\sc sf} methods explicitly enforce,
837     seems to play a greater role in the stability of the {\sc rf} method
838     than the required homogeneity of the environment.
839 chrisfen 2660
840 chrisfen 2641 \newpage
841    
842     \bibliographystyle{jcp2}
843     \bibliography{electrostaticMethods}
844    
845 gezelter 2658 \end{document}