ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/electrostaticMethodsPaper/SupportingInfo.tex
Revision: 2652
Committed: Tue Mar 21 19:26:59 2006 UTC (19 years, 1 month ago) by chrisfen
Content type: application/x-tex
File size: 38143 byte(s)
Log Message:
more supporting stuff

File Contents

# Content
1 %\documentclass[prb,aps,twocolumn,tabularx]{revtex4}
2 \documentclass[12pt]{article}
3 \usepackage{endfloat}
4 \usepackage{amsmath}
5 \usepackage{amssymb}
6 \usepackage{epsf}
7 \usepackage{times}
8 \usepackage{mathptm}
9 \usepackage{setspace}
10 \usepackage{tabularx}
11 \usepackage{graphicx}
12 \usepackage{booktabs}
13 %\usepackage{berkeley}
14 \usepackage[ref]{overcite}
15 \pagestyle{plain}
16 \pagenumbering{arabic}
17 \oddsidemargin 0.0cm \evensidemargin 0.0cm
18 \topmargin -21pt \headsep 10pt
19 \textheight 9.0in \textwidth 6.5in
20 \brokenpenalty=10000
21 \renewcommand{\baselinestretch}{1.2}
22 \renewcommand\citemid{\ } % no comma in optional reference note
23
24 \begin{document}
25
26 This document includes system based comparisons of the studied methods with smooth particle-mesh Ewald. Each of the seven systems comprises it's own section and has it's own discussion and tabular listing of the results for the $\Delta E$, force and torque vector magnitude, and force and torque vector direction comparisons.
27
28 \section{\label{app-water}Liquid Water}
29
30 500 liquid state configurations were generated as described in the Methods section using the SPC/E model of water.\cite{Berendsen87} The results for the energy gap comparisons and the force and torque vector magnitude comparisons are shown in table \ref{tab:spce}. The force and torque vector directionality results are displayed separately in table \ref{tab:spceAng}, where the effect of group-based cutoffs and switching functions on the {\sc sp} and {\sc sf} potentials are investigated.
31 \begin{table}[htbp]
32 \centering
33 \caption{Regression results for the liquid water system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}
34 \begin{tabular}{@{} ccrrrrrr @{}}
35 \\
36 \toprule
37 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
38 \cmidrule(lr){3-4}
39 \cmidrule(lr){5-6}
40 \cmidrule(l){7-8}
41 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
42 \midrule
43 PC & & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\
44 SP & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\
45 & 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\
46 & 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\
47 & 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\
48 SF & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\
49 & 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\
50 & 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\
51 & 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\
52 GSC & & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\
53 RF & & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\
54
55 \midrule
56
57 PC & & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\
58 SP & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\
59 & 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\
60 & 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\
61 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
62 SF & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\
63 & 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
64 & 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\
65 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
66 GSC & & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
67 RF & & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
68
69 \midrule
70
71 PC & & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\
72 SP & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\
73 & 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\
74 & 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\
75 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
76 SF & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\
77 & 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\
78 & 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\
79 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
80 GSC & & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\
81 RF & & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\
82 \bottomrule
83 \end{tabular}
84 \label{tab:spce}
85 \end{table}
86
87 \begin{table}[htbp]
88 \centering
89 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the liquid water system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
90 \begin{tabular}{@{} ccrrrrrr @{}}
91 \\
92 \toprule
93 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
94 \cmidrule(lr){3-5}
95 \cmidrule(l){6-8}
96 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
97 \midrule
98 PC & & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\
99 SP & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\
100 & 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\
101 & 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\
102 & 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\
103 SF & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\
104 & 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\
105 & 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\
106 & 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\
107 GSC & & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
108 RF & & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\
109 \midrule
110 GSSP & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
111 & 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\
112 & 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\
113 & 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\
114 GSSF & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\
115 & 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\
116 & 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\
117 & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\
118 \bottomrule
119 \end{tabular}
120 \label{tab:spceAng}
121 \end{table}
122
123 For the most parts, the water results appear to parallel the combined results seen in the discussion in the main paper. There is good agreement with SPME in both energetic and dynamic behavior when using the {\sc sf} method with and without damping. The {\sc sp} method does well with an $\alpha$ around $0.2 \AA^{-1}$, particularly with cutoff radii greater than 12 \AA. The results for both of these methods also begin to decay as damping gets too large.
124
125 The pure cutoff (PC) method performs poorly, as seen in the main discussion section. In contrast to the combined values, however, the use of a switching function and group based cutoffs really improves the results for these neutral water molecules. The group switched cutoff (GSC) shows mimics the energetics of SPME more poorly than the {\sc sp} (with moderate damping) and {\sc sf} methods, but the dynamics are quite good. The switching functions corrects discontinuities in the potential and forces, leading to the improved results. Such improvements with the use of a switching function has been recognized in previous studies,\cite{Andrea83,Steinbach94} and it is a useful tactic for stably incorporating local area electrostatic effects.
126
127 The reaction field (RF) method simply extends the results observed in the GSC case. Both methods are similar in form (i.e. neutral groups, switching function), but RF incorporates an added effect from the external dielectric. This similarity translates into the same good dynamic results and improved energetic results. These still fall short of the moderately damped {\sc sp} and {\sc sf} methods, but they display how incorporating some implicit properties of the surroundings (i.e. $\epsilon_\textrm{S}$) can improve results.
128
129 A final note for the liquid water system, use of group cutoffs and a switching function also leads to noticeable improvements in the {\sc sp} and {\sc sf} methods, primarily in directionality of the force and torque vectors (table \ref{tab:spceAng}). {\sc sp} shows significant narrowing of the angle distribution in the cases with little to no damping and only modest improvement for the ideal conditions ($\alpha = 0.2 \AA{-1}$ and $R_\textrm{c} \geqslant 12 \AA$). The {\sc sf} method simply shows modest narrowing across all damping and cutoff ranges of interest. Group cutoffs and the switching function do nothing for cases were error is introduced by overdamping the potentials.
130
131 \section{\label{app-ice}Solid Water: Ice I$_\textrm{c}$}
132
133 In addition to the disordered molecular system above, the ordered molecular system of ice I$_\textrm{c}$ was also considered. The results for the energy gap comparisons and the force and torque vector magnitude comparisons are shown in table \ref{tab:ice}. The force and torque vector directionality results are displayed separately in table \ref{tab:iceAng}, where the effect of group-based cutoffs and switching functions on the {\sc sp} and {\sc sf} potentials are investigated.
134
135 \begin{table}[htbp]
136 \centering
137 \caption{Regression results for the ice I$_\textrm{c}$ system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}
138 \begin{tabular}{@{} ccrrrrrr @{}}
139 \\
140 \toprule
141 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
142 \cmidrule(lr){3-4}
143 \cmidrule(lr){5-6}
144 \cmidrule(l){7-8}
145 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
146 \midrule
147 PC & & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\
148 SP & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\
149 & 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\
150 & 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\
151 & 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\
152 SF & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\
153 & 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\
154 & 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\
155 & 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\
156 GSC & & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\
157 RF & & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\
158 \midrule
159 PC & & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\
160 SP & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\
161 & 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\
162 & 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\
163 & 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\
164 SF & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\
165 & 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\
166 & 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\
167 & 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\
168 GSC & & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\
169 RF & & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\
170 \midrule
171 PC & & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\
172 SP & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\
173 & 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\
174 & 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\
175 & 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\
176 SF & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\
177 & 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\
178 & 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\
179 & 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\
180 GSC & & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\
181 RF & & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\
182 \bottomrule
183 \end{tabular}
184 \label{tab:ice}
185 \end{table}
186
187 \begin{table}[htbp]
188 \centering
189 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the ice I$_\textrm{c}$ system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
190 \begin{tabular}{@{} ccrrrrrr @{}}
191 \\
192 \toprule
193 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
194 \cmidrule(lr){3-5}
195 \cmidrule(l){6-8}
196 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
197 \midrule
198 PC & & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\
199 SP & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\
200 & 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\
201 & 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\
202 & 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\
203 SF & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\
204 & 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\
205 & 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\
206 & 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\
207 GSC & & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
208 RF & & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\
209 \midrule
210 GSSP & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
211 & 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\
212 & 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\
213 & 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
214 GSSF & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\
215 & 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\
216 & 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\
217 & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
218 \bottomrule
219 \end{tabular}
220 \label{tab:iceAng}
221 \end{table}
222
223 Highly ordered systems are a difficult test for the pairwise systems in that they lack the periodicity inherent to the Ewald summation. As expected, the energy gap agreement with SPME reduces for the {\sc sp} and {\sc sf} with parameters that were perfectly acceptable for the disordered liquid system. Moving to higher $R_\textrm{c}$ remedies this degraded performance, though at increase in computational cost. However, the dynamics of this crystalline system (both in magnitude and direction) are little affected. Both methods still reproduce the Ewald behavior with the same parameter recommendations from the previous section.
224
225 It is also worth noting that RF exhibits a slightly improved energy gap results over the liquid water system. This can be rationalized by noting that the ice I$_\textrm{c}$ is
226
227 \section{\label{app-melt}NaCl Melt}
228
229 A high temperature NaCl melt was tested to gauge the accuracy of the pairwise summation methods in a highly charge disordered system. The results for the energy gap comparisons and the force and torque vector magnitude comparisons are shown in table \ref{tab:melt}. The force and torque vector directionality results are displayed separately in table \ref{tab:meltAng}, where the effect of group-based cutoffs and switching functions on the {\sc sp} and {\sc sf} potentials are investigated.
230
231 \begin{table}[htbp]
232 \centering
233 \caption{Regression results for the molten NaCl system. Tabulated results include $\Delta E$ values (top set) and force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
234 \begin{tabular}{@{} ccrrrrrr @{}}
235 \\
236 \toprule
237 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
238 \cmidrule(lr){3-4}
239 \cmidrule(lr){5-6}
240 \cmidrule(l){7-8}
241 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
242 \midrule
243 PC & & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\
244 SP & 0.0 & 0.937 & 0.996 & 0.880 & 0.995 & 0.971 & 0.999 \\
245 & 0.1 & 1.004 & 0.999 & 0.958 & 1.000 & 0.928 & 0.994 \\
246 & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
247 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
248 SF & 0.0 & 1.001 & 1.000 & 0.949 & 1.000 & 1.008 & 1.000 \\
249 & 0.1 & 1.025 & 1.000 & 0.960 & 1.000 & 0.929 & 0.994 \\
250 & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
251 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
252 \midrule
253 PC & & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\
254 SP & 0.0 & 0.976 & 0.983 & 1.001 & 0.991 & 0.985 & 0.995 \\
255 & 0.1 & 0.996 & 0.997 & 0.997 & 0.998 & 0.996 & 0.996 \\
256 & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
257 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
258 SF & 0.0 & 0.997 & 0.998 & 0.995 & 0.999 & 0.999 & 1.000 \\
259 & 0.1 & 1.001 & 0.997 & 0.997 & 0.999 & 0.996 & 0.996 \\
260 & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
261 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
262 \bottomrule
263 \end{tabular}
264 \label{tab:melt}
265 \end{table}
266
267 \begin{table}[htbp]
268 \centering
269 \caption{Variance results from Gaussian fits to angular distributions of the force vectors in the molten NaCl system. PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
270 \begin{tabular}{@{} ccrrrrrr @{}}
271 \\
272 \toprule
273 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
274 \cmidrule(lr){3-5}
275 \cmidrule(l){6-8}
276 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
277 \midrule
278 PC & & 13.294 & 8.035 & 5.366 \\
279 SP & 0.0 & 13.316 & 8.037 & 5.385 \\
280 & 0.1 & 5.705 & 1.391 & 0.360 \\
281 & 0.2 & 2.415 & 7.534 & 13.927 \\
282 & 0.3 & 23.769 & 67.306 & 57.252 \\
283 SF & 0.0 & 1.693 & 0.603 & 0.256 \\
284 & 0.1 & 1.687 & 0.653 & 0.272 \\
285 & 0.2 & 2.598 & 7.523 & 13.930 \\
286 & 0.3 & 23.734 & 67.305 & 57.252 \\
287 \bottomrule
288 \end{tabular}
289 \label{tab:meltAng}
290 \end{table}
291
292 \section{\label{app-salt}NaCl Crystal}
293
294 A 1000K NaCl crystal was used to investigate the accuracy of the pairwise summation methods in an ordered system of charged particles. The results for the energy gap comparisons and the force and torque vector magnitude comparisons are shown in table \ref{tab:salt}. The force and torque vector directionality results are displayed separately in table \ref{tab:saltAng}, where the effect of group-based cutoffs and switching functions on the {\sc sp} and {\sc sf} potentials are investigated.
295
296 \begin{table}[htbp]
297 \centering
298 \caption{Regression results for the crystalline NaCl system. Tabulated results include $\Delta E$ values (top set) and force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
299 \begin{tabular}{@{} ccrrrrrr @{}}
300 \\
301 \toprule
302 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
303 \cmidrule(lr){3-4}
304 \cmidrule(lr){5-6}
305 \cmidrule(l){7-8}
306 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
307 \midrule
308 PC & & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\
309 SP & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\
310 & 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\
311 & 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\
312 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\
313 SF & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\
314 & 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\
315 & 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\
316 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\
317 \midrule
318 PC & & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\
319 SP & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\
320 & 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\
321 & 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\
322 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
323 SF & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\
324 & 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\
325 & 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\
326 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
327 \bottomrule
328 \end{tabular}
329 \label{tab:salt}
330 \end{table}
331
332 \begin{table}[htbp]
333 \centering
334 \caption{Variance results from Gaussian fits to angular distributions of the force vectors in the crystalline NaCl system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}
335 \begin{tabular}{@{} ccrrrrrr @{}}
336 \\
337 \toprule
338 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
339 \cmidrule(lr){3-5}
340 \cmidrule(l){6-8}
341 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
342 \midrule
343 PC & & 111.945 & 111.824 & 111.866 \\
344 SP & 0.0 & 112.414 & 152.215 & 38.087 \\
345 & 0.1 & 52.361 & 42.574 & 2.819 \\
346 & 0.2 & 10.847 & 9.709 & 9.686 \\
347 & 0.3 & 31.128 & 31.104 & 31.029 \\
348 SF & 0.0 & 10.025 & 3.555 & 1.648 \\
349 & 0.1 & 9.462 & 3.303 & 1.721 \\
350 & 0.2 & 11.454 & 9.813 & 9.701 \\
351 & 0.3 & 31.120 & 31.105 & 31.029 \\
352 \bottomrule
353 \end{tabular}
354 \label{tab:saltAng}
355 \end{table}
356
357 \section{\label{app-sol1}Weak NaCl Solution}
358
359 In an effort to bridge the charged atomic and neutral molecular systems, Na$^+$ and Cl$^-$ ion charge defects were incorporated into the liquid water system. This low ionic strength system consists of 4 ions in the 1000 SPC/E water solvent ($\approx$0.11 M). The results for the energy gap comparisons and the force and torque vector magnitude comparisons are shown in table \ref{tab:solnWeak}. The force and torque vector directionality results are displayed separately in table \ref{tab:solnWeakAng}, where the effect of group-based cutoffs and switching functions on the {\sc sp} and {\sc sf} potentials are investigated.
360
361 \begin{table}[htbp]
362 \centering
363 \caption{Regression results for the weak NaCl solution system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
364 \begin{tabular}{@{} ccrrrrrr @{}}
365 \\
366 \toprule
367 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
368 \cmidrule(lr){3-4}
369 \cmidrule(lr){5-6}
370 \cmidrule(l){7-8}
371 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
372 \midrule
373 PC & & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\
374 SP & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\
375 & 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\
376 & 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\
377 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
378 SF & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\
379 & 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\
380 & 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\
381 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
382 GSC & & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\
383 RF & & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\
384 \midrule
385 PC & & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\
386 SP & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\
387 & 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\
388 & 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\
389 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
390 SF & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\
391 & 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\
392 & 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\
393 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
394 GSC & & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\
395 RF & & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\
396 \midrule
397 PC & & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\
398 SP & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\
399 & 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\
400 & 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\
401 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
402 SF & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\
403 & 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\
404 & 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\
405 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
406 GSC & & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\
407 RF & & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\
408 \bottomrule
409 \end{tabular}
410 \label{tab:solnWeak}
411 \end{table}
412
413 \begin{table}[htbp]
414 \centering
415 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the weak NaCl solution system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
416 \begin{tabular}{@{} ccrrrrrr @{}}
417 \\
418 \toprule
419 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
420 \cmidrule(lr){3-5}
421 \cmidrule(l){6-8}
422 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
423 \midrule
424 PC & & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\
425 SP & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\
426 & 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\
427 & 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\
428 & 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\
429 SF & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\
430 & 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\
431 & 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\
432 & 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\
433 GSC & & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
434 RF & & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\
435 \midrule
436 GSSP & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
437 & 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\
438 & 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\
439 & 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\
440 GSSF & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\
441 & 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\
442 & 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\
443 & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\
444 \bottomrule
445 \end{tabular}
446 \label{tab:solnWeakAng}
447 \end{table}
448
449 \section{\label{app-sol10}Strong NaCl Solution}
450
451 The bridging of the charged atomic and neutral molecular systems was furthered by considering a high ionic strength system consisting of 40 ions in the 1000 SPC/E water solvent ($\approx$1.1 M). The results for the energy gap comparisons and the force and torque vector magnitude comparisons are shown in table \ref{tab:solnWeak}. The force and torque vector directionality results are displayed separately in table \ref{tab:solnWeakAng}, where the effect of group-based cutoffs and switching functions on the {\sc sp} and {\sc sf} potentials are investigated.
452
453 \begin{table}[htbp]
454 \centering
455 \caption{Regression results for the strong NaCl solution system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}
456 \begin{tabular}{@{} ccrrrrrr @{}}
457 \\
458 \toprule
459 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
460 \cmidrule(lr){3-4}
461 \cmidrule(lr){5-6}
462 \cmidrule(l){7-8}
463 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
464 \midrule
465 PC & & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\
466 SP & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\
467 & 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\
468 & 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\
469 & 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\
470 SF & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\
471 & 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\
472 & 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\
473 & 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\
474 GSC & & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\
475 RF & & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\
476 \midrule
477 PC & & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\
478 SP & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\
479 & 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\
480 & 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\
481 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
482 SF & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\
483 & 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\
484 & 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\
485 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
486 GSC & & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\
487 RF & & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\
488 \midrule
489 PC & & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\
490 SP & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\
491 & 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\
492 & 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\
493 & 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\
494 SF & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\
495 & 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\
496 & 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\
497 & 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\
498 GSC & & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\
499 RF & & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\
500 \bottomrule
501 \end{tabular}
502 \label{tab:solnStr}
503 \end{table}
504
505 \begin{table}[htbp]
506 \centering
507 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the strong NaCl solution system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
508 \begin{tabular}{@{} ccrrrrrr @{}}
509 \\
510 \toprule
511 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
512 \cmidrule(lr){3-5}
513 \cmidrule(l){6-8}
514 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
515 \midrule
516 PC & & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\
517 SP & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\
518 & 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\
519 & 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\
520 & 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\
521 SF & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\
522 & 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\
523 & 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\
524 & 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\
525 GSC & & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\
526 RF & & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\
527 \midrule
528 GSSP & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\
529 & 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\
530 & 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\
531 & 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\
532 GSSF & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\
533 & 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\
534 & 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\
535 & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\
536 \bottomrule
537 \end{tabular}
538 \label{tab:solnStrAng}
539 \end{table}
540
541 \section{\label{app-argon}Argon Sphere in Water}
542
543 The final model system studied was 6 \AA\ sphere of Argon solvated by SPC/E water. The results for the energy gap comparisons and the force and torque vector magnitude comparisons are shown in table \ref{tab:solnWeak}. The force and torque vector directionality results are displayed separately in table \ref{tab:solnWeakAng}, where the effect of group-based cutoffs and switching functions on the {\sc sp} and {\sc sf} potentials are investigated.
544
545 \begin{table}[htbp]
546 \centering
547 \caption{Regression results for the 6 \AA\ argon sphere in liquid water system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}
548 \begin{tabular}{@{} ccrrrrrr @{}}
549 \\
550 \toprule
551 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
552 \cmidrule(lr){3-4}
553 \cmidrule(lr){5-6}
554 \cmidrule(l){7-8}
555 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
556 \midrule
557 PC & & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\
558 SP & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\
559 & 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\
560 & 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\
561 & 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\
562 SF & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\
563 & 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\
564 & 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\
565 & 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\
566 GSC & & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\
567 RF & & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\
568 \midrule
569 PC & & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\
570 SP & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\
571 & 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\
572 & 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\
573 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
574 SF & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
575 & 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
576 & 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
577 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
578 GSC & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
579 RF & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
580 \midrule
581 PC & & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\
582 SP & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\
583 & 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\
584 & 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\
585 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
586 SF & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\
587 & 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\
588 & 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\
589 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
590 GSC & & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\
591 RF & & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\
592 \bottomrule
593 \end{tabular}
594 \label{tab:argon}
595 \end{table}
596
597 \begin{table}[htbp]
598 \centering
599 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the 6 \AA\ sphere of argon in liquid water system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
600 \begin{tabular}{@{} ccrrrrrr @{}}
601 \\
602 \toprule
603 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
604 \cmidrule(lr){3-5}
605 \cmidrule(l){6-8}
606 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
607 \midrule
608 PC & & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\
609 SP & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\
610 & 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\
611 & 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\
612 & 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\
613 SF & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\
614 & 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\
615 & 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\
616 & 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\
617 GSC & & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
618 RF & & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\
619 \midrule
620 GSSP & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
621 & 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\
622 & 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\
623 & 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\
624 GSSF & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\
625 & 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\
626 & 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\
627 & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\
628 \bottomrule
629 \end{tabular}
630 \label{tab:argonAng}
631 \end{table}
632
633 \newpage
634
635 \bibliographystyle{jcp2}
636 \bibliography{electrostaticMethods}
637
638 \end{document}