ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/electrostaticMethodsPaper/SupportingInfo.tex
Revision: 2666
Committed: Thu Mar 23 15:46:45 2006 UTC (19 years, 1 month ago) by chrisfen
Content type: application/x-tex
File size: 42257 byte(s)
Log Message:
initial proof of supporting info.

File Contents

# Content
1 %\documentclass[prb,aps,twocolumn,tabularx]{revtex4}
2 \documentclass[11pt]{article}
3 %\usepackage{endfloat}
4 \usepackage{amsmath}
5 \usepackage{amssymb}
6 \usepackage{epsf}
7 \usepackage{times}
8 \usepackage{mathptm}
9 \usepackage{setspace}
10 \usepackage{tabularx}
11 \usepackage{graphicx}
12 \usepackage{booktabs}
13 %\usepackage{berkeley}
14 \usepackage[ref]{overcite}
15 \pagestyle{plain}
16 \pagenumbering{arabic}
17 \oddsidemargin 0.0cm \evensidemargin 0.0cm
18 \topmargin -21pt \headsep 10pt
19 \textheight 9.0in \textwidth 6.5in
20 \brokenpenalty=10000
21 \renewcommand{\baselinestretch}{1.2}
22 \renewcommand\citemid{\ } % no comma in optional reference note
23
24 \begin{document}
25
26 This document includes individual system-based comparisons of the
27 studied methods with smooth particle mesh Ewald {\sc spme}. Each of
28 the seven systems comprises its own section and has its own discussion
29 and tabular listing of the results for the $\Delta E$, force and
30 torque vector magnitude, and force and torque vector direction
31 comparisons.
32
33 \section{\label{app:water}Liquid Water}
34
35 The first system considered was liquid water at 300K using the SPC/E
36 model of water.\cite{Berendsen87} The results for the energy gap
37 comparisons and the force and torque vector magnitude comparisons are
38 shown in table \ref{tab:spce}. The force and torque vector
39 directionality results are displayed separately in table
40 \ref{tab:spceAng}, where the effect of group-based cutoffs and
41 switching functions on the {\sc sp} and {\sc sf} potentials are
42 investigated.
43 \begin{table}[htbp]
44 \centering
45 \caption{Regression results for the liquid water system. Tabulated
46 results include $\Delta E$ values (top set), force vector magnitudes
47 (middle set) and torque vector magnitudes (bottom set). PC = Pure
48 Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
49 Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
50 \infty$).}
51 \begin{tabular}{@{} ccrrrrrr @{}}
52 \\
53 \toprule
54 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
55 \cmidrule(lr){3-4}
56 \cmidrule(lr){5-6}
57 \cmidrule(l){7-8}
58 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
59 \midrule
60 PC & & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\
61 SP & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\
62 & 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\
63 & 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\
64 & 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\
65 SF & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\
66 & 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\
67 & 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\
68 & 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\
69 GSC & & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\
70 RF & & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\
71 \midrule
72 PC & & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\
73 SP & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\
74 & 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\
75 & 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\
76 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
77 SF & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\
78 & 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
79 & 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\
80 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
81 GSC & & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
82 RF & & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
83 \midrule
84 PC & & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\
85 SP & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\
86 & 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\
87 & 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\
88 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
89 SF & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\
90 & 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\
91 & 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\
92 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
93 GSC & & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\
94 RF & & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\
95 \bottomrule
96 \end{tabular}
97 \label{tab:spce}
98 \end{table}
99
100 \begin{table}[htbp]
101 \centering
102 \caption{Variance results from Gaussian fits to angular
103 distributions of the force and torque vectors in the liquid water
104 system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
105 GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon
106 \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF =
107 Group Switched Shifted Force.}
108 \begin{tabular}{@{} ccrrrrrr @{}}
109 \\
110 \toprule
111 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
112 \cmidrule(lr){3-5}
113 \cmidrule(l){6-8}
114 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
115 \midrule
116 PC & & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\
117 SP & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\
118 & 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\
119 & 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\
120 & 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\
121 SF & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\
122 & 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\
123 & 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\
124 & 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\
125 GSC & & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
126 RF & & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\
127 \midrule
128 GSSP & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
129 & 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\
130 & 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\
131 & 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\
132 GSSF & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\
133 & 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\
134 & 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\
135 & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\
136 \bottomrule
137 \end{tabular}
138 \label{tab:spceAng}
139 \end{table}
140
141 The water results appear to parallel the combined results seen in the
142 discussion section of the main paper. There is good agreement with
143 {\sc spme} in both energetic and dynamic behavior when using the {\sc sf}
144 method with and without damping. The {\sc sp} method does well with an
145 $\alpha$ around 0.2 \AA$^{-1}$, particularly with cutoff radii greater
146 than 12 \AA. Overdamping the electrostatics reduces the agreement between both these methods and {\sc spme}.
147
148 The pure cutoff ({\sc pc}) method performs poorly, again mirroring the
149 observations in the main portion of this paper. In contrast to the
150 combined values, however, the use of a switching function and group
151 based cutoffs really improves the results for these neutral water
152 molecules. The group switched cutoff ({\sc gsc}) does not mimic the
153 energetics of {\sc spme} as well as the {\sc sp} (with moderate
154 damping) and {\sc sf} methods, but the dynamics are quite good. The
155 switching functions corrects discontinuities in the potential and
156 forces, leading to these improved results. Such improvements with the
157 use of a switching function has been recognized in previous
158 studies,\cite{Andrea83,Steinbach94} and this proves to be a useful
159 tactic for stably incorporating local area electrostatic effects.
160
161 The reaction field ({\sc rf}) method simply extends upon the results
162 observed in the {\sc gsc} case. Both methods are similar in form
163 (i.e. neutral groups, switching function), but {\sc rf} incorporates
164 an added effect from the external dielectric. This similarity
165 translates into the same good dynamic results and improved energetic
166 agreement with {\sc spme}. Though this agreement is not to the level
167 of the moderately damped {\sc sp} and {\sc sf} methods, these results
168 show how incorporating some implicit properties of the surroundings
169 (i.e. $\epsilon_\textrm{S}$) can improve the solvent depiction.
170
171 A final note for the liquid water system, use of group cutoffs and a
172 switching function leads to noticeable improvements in the {\sc sp}
173 and {\sc sf} methods, primarily in directionality of the force and
174 torque vectors (table \ref{tab:spceAng}). The {\sc sp} method shows
175 significant narrowing of the angle distribution when using little to
176 no damping and only modest improvement for the recommended conditions
177 ($\alpha$ = 0.2 \AA${-1}$ and $R_\textrm{c} \geqslant 12$~\AA). The
178 {\sc sf} method shows modest narrowing across all damping and cutoff
179 ranges of interest. When overdamping these methods, group cutoffs and
180 the switching function do not improve the force and torque
181 directionalities.
182
183 \section{\label{app:ice}Solid Water: Ice I$_\textrm{c}$}
184
185 In addition to the disordered molecular system above, the ordered
186 molecular system of ice I$_\textrm{c}$ was also considered. The
187 results for the energy gap comparisons and the force and torque vector
188 magnitude comparisons are shown in table \ref{tab:ice}. The force and
189 torque vector directionality results are displayed separately in table
190 \ref{tab:iceAng}, where the effect of group-based cutoffs and
191 switching functions on the {\sc sp} and {\sc sf} potentials are
192 investigated.
193
194 \begin{table}[htbp]
195 \centering
196 \caption{Regression results for the ice I$_\textrm{c}$
197 system. Tabulated results include $\Delta E$ values (top set), force
198 vector magnitudes (middle set) and torque vector magnitudes (bottom
199 set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
200 GSC = Group Switched Cutoff, and RF = Reaction Field (where
201 $\varepsilon \approx \infty$).}
202 \begin{tabular}{@{} ccrrrrrr @{}}
203 \\
204 \toprule
205 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
206 \cmidrule(lr){3-4}
207 \cmidrule(lr){5-6}
208 \cmidrule(l){7-8}
209 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
210 \midrule
211 PC & & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\
212 SP & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\
213 & 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\
214 & 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\
215 & 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\
216 SF & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\
217 & 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\
218 & 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\
219 & 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\
220 GSC & & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\
221 RF & & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\
222 \midrule
223 PC & & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\
224 SP & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\
225 & 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\
226 & 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\
227 & 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\
228 SF & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\
229 & 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\
230 & 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\
231 & 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\
232 GSC & & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\
233 RF & & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\
234 \midrule
235 PC & & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\
236 SP & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\
237 & 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\
238 & 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\
239 & 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\
240 SF & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\
241 & 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\
242 & 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\
243 & 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\
244 GSC & & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\
245 RF & & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\
246 \bottomrule
247 \end{tabular}
248 \label{tab:ice}
249 \end{table}
250
251 \begin{table}[htbp]
252 \centering
253 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the ice I$_\textrm{c}$ system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
254 \begin{tabular}{@{} ccrrrrrr @{}}
255 \\
256 \toprule
257 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
258 \cmidrule(lr){3-5}
259 \cmidrule(l){6-8}
260 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
261 \midrule
262 PC & & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\
263 SP & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\
264 & 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\
265 & 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\
266 & 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\
267 SF & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\
268 & 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\
269 & 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\
270 & 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\
271 GSC & & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
272 RF & & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\
273 \midrule
274 GSSP & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
275 & 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\
276 & 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\
277 & 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
278 GSSF & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\
279 & 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\
280 & 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\
281 & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
282 \bottomrule
283 \end{tabular}
284 \label{tab:iceAng}
285 \end{table}
286
287 Highly ordered systems are a difficult test for the pairwise methods
288 in that they lack the periodicity term of the Ewald summation. As
289 expected, the energy gap agreement with {\sc spme} reduces for the
290 {\sc sp} and {\sc sf} methods with parameters that were acceptable for
291 the disordered liquid system. Moving to higher $R_\textrm{c}$ helps
292 improve the agreement, though at an increase in computational cost.
293 The dynamics of this crystalline system (both in magnitude and
294 direction) are little affected. Both methods still reproduce the Ewald
295 behavior with the same parameter recommendations from the previous
296 section.
297
298 It is also worth noting that {\sc rf} exhibits improved energy gap
299 results over the liquid water system. One possible explanation is
300 that the ice I$_\textrm{c}$ crystal is ordered such that the net
301 dipole moment of the crystal is zero. With $\epsilon_\textrm{S} =
302 \infty$, the reaction field incorporates this structural organization
303 by actively enforcing a zeroed dipole moment within each cutoff
304 sphere.
305
306 \section{\label{app:melt}NaCl Melt}
307
308 A high temperature NaCl melt was tested to gauge the accuracy of the
309 pairwise summation methods in a charged disordered system. The results
310 for the energy gap comparisons and the force and torque vector
311 magnitude comparisons are shown in table \ref{tab:melt}. The force
312 and torque vector directionality results are displayed separately in
313 table \ref{tab:meltAng}, where the effect of group-based cutoffs and
314 switching functions on the {\sc sp} and {\sc sf} potentials are
315 investigated.
316
317 \begin{table}[htbp]
318 \centering
319 \caption{Regression results for the molten NaCl system. Tabulated results include $\Delta E$ values (top set) and force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
320 \begin{tabular}{@{} ccrrrrrr @{}}
321 \\
322 \toprule
323 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
324 \cmidrule(lr){3-4}
325 \cmidrule(lr){5-6}
326 \cmidrule(l){7-8}
327 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
328 \midrule
329 PC & & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\
330 SP & 0.0 & 0.928 & 0.996 & 0.931 & 0.998 & 0.950 & 0.999 \\
331 & 0.1 & 0.977 & 0.998 & 0.998 & 1.000 & 0.997 & 1.000 \\
332 & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
333 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
334 SF & 0.0 & 0.996 & 1.000 & 0.995 & 1.000 & 0.997 & 1.000 \\
335 & 0.1 & 1.021 & 1.000 & 1.024 & 1.000 & 1.007 & 1.000 \\
336 & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
337 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
338 \midrule
339 PC & & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\
340 SP & 0.0 & 0.973 & 0.981 & 0.975 & 0.988 & 0.979 & 0.992 \\
341 & 0.1 & 0.987 & 0.992 & 0.993 & 0.998 & 0.997 & 0.999 \\
342 & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
343 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
344 SF & 0.0 & 0.996 & 0.997 & 0.997 & 0.999 & 0.998 & 1.000 \\
345 & 0.1 & 1.000 & 0.997 & 1.001 & 0.999 & 1.000 & 1.000 \\
346 & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
347 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
348 \bottomrule
349 \end{tabular}
350 \label{tab:melt}
351 \end{table}
352
353 \begin{table}[htbp]
354 \centering
355 \caption{Variance results from Gaussian fits to angular distributions of the force vectors in the molten NaCl system. PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
356 \begin{tabular}{@{} ccrrrrrr @{}}
357 \\
358 \toprule
359 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
360 \cmidrule(lr){3-5}
361 \cmidrule(l){6-8}
362 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
363 \midrule
364 PC & & 13.294 & 8.035 & 5.366 \\
365 SP & 0.0 & 13.316 & 8.037 & 5.385 \\
366 & 0.1 & 5.705 & 1.391 & 0.360 \\
367 & 0.2 & 2.415 & 7.534 & 13.927 \\
368 & 0.3 & 23.769 & 67.306 & 57.252 \\
369 SF & 0.0 & 1.693 & 0.603 & 0.256 \\
370 & 0.1 & 1.687 & 0.653 & 0.272 \\
371 & 0.2 & 2.598 & 7.523 & 13.930 \\
372 & 0.3 & 23.734 & 67.305 & 57.252 \\
373 \bottomrule
374 \end{tabular}
375 \label{tab:meltAng}
376 \end{table}
377
378 The molten NaCl system shows more sensitivity to the electrostatic
379 damping than the water systems. The most noticeable point is that the
380 undamped {\sc sf} method does very well at replicating the {\sc spme}
381 configurational energy differences and forces. Light damping appears
382 to minimally improve the dynamics, but this comes with a deterioration
383 of the energy gap results. In contrast, this light damping improves
384 the {\sc sp} energy gaps and forces. Moderate and heavy electrostatic
385 damping reduce the agreement with {\sc spme} for both methods. From
386 these observations, the undamped {\sc sf} method is the best choice
387 for disordered systems of charges.
388
389 \section{\label{app:salt}NaCl Crystal}
390
391 A 1000K NaCl crystal was used to investigate the accuracy of the
392 pairwise summation methods in an ordered system of charged
393 particles. The results for the energy gap comparisons and the force
394 and torque vector magnitude comparisons are shown in table
395 \ref{tab:salt}. The force and torque vector directionality results
396 are displayed separately in table \ref{tab:saltAng}, where the effect
397 of group-based cutoffs and switching functions on the {\sc sp} and
398 {\sc sf} potentials are investigated.
399
400 \begin{table}[htbp]
401 \centering
402 \caption{Regression results for the crystalline NaCl
403 system. Tabulated results include $\Delta E$ values (top set) and
404 force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted
405 Potential, and SF = Shifted Force.}
406 \begin{tabular}{@{} ccrrrrrr @{}}
407 \\
408 \toprule
409 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
410 \cmidrule(lr){3-4}
411 \cmidrule(lr){5-6}
412 \cmidrule(l){7-8}
413 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
414 \midrule
415 PC & & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\
416 SP & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\
417 & 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\
418 & 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\
419 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\
420 SF & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\
421 & 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\
422 & 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\
423 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\
424 \midrule
425 PC & & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\
426 SP & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\
427 & 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\
428 & 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\
429 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
430 SF & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\
431 & 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\
432 & 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\
433 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
434 \bottomrule
435 \end{tabular}
436 \label{tab:salt}
437 \end{table}
438
439 \begin{table}[htbp]
440 \centering
441 \caption{Variance results from Gaussian fits to angular
442 distributions of the force vectors in the crystalline NaCl system. PC
443 = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
444 Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
445 \infty$).}
446 \begin{tabular}{@{} ccrrrrrr @{}}
447 \\
448 \toprule
449 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
450 \cmidrule(lr){3-5}
451 \cmidrule(l){6-8}
452 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
453 \midrule
454 PC & & 111.945 & 111.824 & 111.866 \\
455 SP & 0.0 & 112.414 & 152.215 & 38.087 \\
456 & 0.1 & 52.361 & 42.574 & 2.819 \\
457 & 0.2 & 10.847 & 9.709 & 9.686 \\
458 & 0.3 & 31.128 & 31.104 & 31.029 \\
459 SF & 0.0 & 10.025 & 3.555 & 1.648 \\
460 & 0.1 & 9.462 & 3.303 & 1.721 \\
461 & 0.2 & 11.454 & 9.813 & 9.701 \\
462 & 0.3 & 31.120 & 31.105 & 31.029 \\
463 \bottomrule
464 \end{tabular}
465 \label{tab:saltAng}
466 \end{table}
467
468 The crystalline NaCl system is the most challenging test case for the
469 pairwise summation methods, as evidenced by the results in tables
470 \ref{tab:salt} and \ref{tab:saltAng}. The undamped and weakly damped
471 {\sc sf} methods with a 12 \AA\ cutoff radius seem to be the best
472 choices. These methods match well with {\sc spme} across the energy
473 gap, force magnitude, and force directionality tests. The {\sc sp}
474 method struggles in all cases, with the exception of good dynamics
475 reproduction when using weak electrostatic damping with a large cutoff
476 radius.
477
478 The moderate electrostatic damping case is not as good as we would
479 expect given the good long-time dynamics results observed for this
480 system. Since the data tabulated in table \ref{tab:salt} and
481 \ref{tab:saltAng} are a test of instantaneous dynamics, this indicates
482 that good long-time dynamics comes in part at the expense of
483 short-time dynamics. Further indication of this comes from the full
484 power spectra shown in the main text. It appears as though a
485 distortion is introduced between 200 to 350 cm$^{-1}$ with increased
486 $\alpha$.
487
488 \section{\label{app:solnWeak}Weak NaCl Solution}
489
490 In an effort to bridge the charged atomic and neutral molecular
491 systems, Na$^+$ and Cl$^-$ ion charge defects were incorporated into
492 the liquid water system. This low ionic strength system consists of 4
493 ions in the 1000 SPC/E water solvent ($\approx$0.11 M). The results
494 for the energy gap comparisons and the force and torque vector
495 magnitude comparisons are shown in table \ref{tab:solnWeak}. The
496 force and torque vector directionality results are displayed
497 separately in table \ref{tab:solnWeakAng}, where the effect of
498 group-based cutoffs and switching functions on the {\sc sp} and {\sc
499 sf} potentials are investigated.
500
501 \begin{table}[htbp]
502 \centering
503 \caption{Regression results for the weak NaCl solution
504 system. Tabulated results include $\Delta E$ values (top set), force
505 vector magnitudes (middle set) and torque vector magnitudes (bottom
506 set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
507 GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon
508 \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF =
509 Group Switched Shifted Force.}
510 \begin{tabular}{@{} ccrrrrrr @{}}
511 \\
512 \toprule
513 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
514 \cmidrule(lr){3-4}
515 \cmidrule(lr){5-6}
516 \cmidrule(l){7-8}
517 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
518 \midrule
519 PC & & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\
520 SP & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\
521 & 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\
522 & 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\
523 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
524 SF & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\
525 & 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\
526 & 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\
527 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
528 GSC & & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\
529 RF & & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\
530 \midrule
531 PC & & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\
532 SP & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\
533 & 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\
534 & 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\
535 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
536 SF & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\
537 & 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\
538 & 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\
539 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
540 GSC & & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\
541 RF & & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\
542 \midrule
543 PC & & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\
544 SP & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\
545 & 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\
546 & 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\
547 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
548 SF & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\
549 & 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\
550 & 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\
551 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
552 GSC & & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\
553 RF & & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\
554 \bottomrule
555 \end{tabular}
556 \label{tab:solnWeak}
557 \end{table}
558
559 \begin{table}[htbp]
560 \centering
561 \caption{Variance results from Gaussian fits to angular
562 distributions of the force and torque vectors in the weak NaCl
563 solution system. PC = Pure Cutoff, SP = Shifted Potential, SF =
564 Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where
565 $\varepsilon \approx \infty$), GSSP = Group Switched Shifted
566 Potential, and GSSF = Group Switched Shifted Force.}
567 \begin{tabular}{@{} ccrrrrrr @{}}
568 \\
569 \toprule
570 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
571 \cmidrule(lr){3-5}
572 \cmidrule(l){6-8}
573 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
574 \midrule
575 PC & & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\
576 SP & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\
577 & 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\
578 & 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\
579 & 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\
580 SF & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\
581 & 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\
582 & 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\
583 & 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\
584 GSC & & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
585 RF & & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\
586 \midrule
587 GSSP & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
588 & 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\
589 & 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\
590 & 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\
591 GSSF & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\
592 & 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\
593 & 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\
594 & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\
595 \bottomrule
596 \end{tabular}
597 \label{tab:solnWeakAng}
598 \end{table}
599
600 Because this system is a perturbation of the pure liquid water system,
601 comparisons are best drawn between these two sets. The {\sc sp} and
602 {\sc sf} methods are not significantly affected by the inclusion of a
603 few ions. The aspect of cutoff sphere neutralization aids in the
604 smooth incorporation of these ions; thus, all of the observations
605 regarding these methods carry over from section \ref{app:water}. The
606 differences between these systems are more visible for the {\sc rf}
607 method. Though good force agreement is still maintained, the energy
608 gaps show a significant increase in the data scatter. This foreshadows
609 the breakdown of the method as we introduce charged inhomogeneities.
610
611 \section{\label{app:solnStr}Strong NaCl Solution}
612
613 The bridging of the charged atomic and neutral molecular systems was
614 further developed by considering a high ionic strength system
615 consisting of 40 ions in the 1000 SPC/E water solvent ($\approx$1.1
616 M). The results for the energy gap comparisons and the force and
617 torque vector magnitude comparisons are shown in table
618 \ref{tab:solnWeak}. The force and torque vector directionality
619 results are displayed separately in table \ref{tab:solnWeakAng}, where
620 the effect of group-based cutoffs and switching functions on the {\sc
621 sp} and {\sc sf} potentials are investigated.
622
623 \begin{table}[htbp]
624 \centering
625 \caption{Regression results for the strong NaCl solution
626 system. Tabulated results include $\Delta E$ values (top set), force
627 vector magnitudes (middle set) and torque vector magnitudes (bottom
628 set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
629 GSC = Group Switched Cutoff, and RF = Reaction Field (where
630 $\varepsilon \approx \infty$).}
631 \begin{tabular}{@{} ccrrrrrr @{}}
632 \\
633 \toprule
634 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
635 \cmidrule(lr){3-4}
636 \cmidrule(lr){5-6}
637 \cmidrule(l){7-8}
638 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
639 \midrule
640 PC & & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\
641 SP & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\
642 & 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\
643 & 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\
644 & 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\
645 SF & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\
646 & 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\
647 & 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\
648 & 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\
649 GSC & & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\
650 RF & & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\
651 \midrule
652 PC & & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\
653 SP & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\
654 & 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\
655 & 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\
656 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
657 SF & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\
658 & 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\
659 & 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\
660 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
661 GSC & & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\
662 RF & & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\
663 \midrule
664 PC & & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\
665 SP & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\
666 & 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\
667 & 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\
668 & 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\
669 SF & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\
670 & 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\
671 & 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\
672 & 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\
673 GSC & & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\
674 RF & & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\
675 \bottomrule
676 \end{tabular}
677 \label{tab:solnStr}
678 \end{table}
679
680 \begin{table}[htbp]
681 \centering
682 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the strong NaCl solution system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
683 \begin{tabular}{@{} ccrrrrrr @{}}
684 \\
685 \toprule
686 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
687 \cmidrule(lr){3-5}
688 \cmidrule(l){6-8}
689 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
690 \midrule
691 PC & & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\
692 SP & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\
693 & 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\
694 & 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\
695 & 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\
696 SF & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\
697 & 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\
698 & 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\
699 & 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\
700 GSC & & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\
701 RF & & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\
702 \midrule
703 GSSP & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\
704 & 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\
705 & 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\
706 & 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\
707 GSSF & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\
708 & 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\
709 & 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\
710 & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\
711 \bottomrule
712 \end{tabular}
713 \label{tab:solnStrAng}
714 \end{table}
715
716 The {\sc rf} method struggles with the jump in ionic strength. The
717 configuration energy difference degrade to unusable levels while the
718 forces and torques show a more modest reduction in the agreement with
719 {\sc spme}. The {\sc rf} method was designed for homogeneous systems,
720 and this attribute is apparent in these results.
721
722 The {\sc sp} and {\sc sf} methods require larger cutoffs to maintain
723 their agreement with {\sc spme}. With these results, we still
724 recommend no to moderate damping for the {\sc sf} method and moderate
725 damping for the {\sc sp} method, both with cutoffs greater than 12
726 \AA.
727
728 \section{\label{app:argon}Argon Sphere in Water}
729
730 The final model system studied was 6 \AA\ sphere of Argon solvated by
731 SPC/E water. The results for the energy gap comparisons and the force
732 and torque vector magnitude comparisons are shown in table
733 \ref{tab:solnWeak}. The force and torque vector directionality
734 results are displayed separately in table \ref{tab:solnWeakAng}, where
735 the effect of group-based cutoffs and switching functions on the {\sc
736 sp} and {\sc sf} potentials are investigated.
737
738 \begin{table}[htbp]
739 \centering
740 \caption{Regression results for the 6 \AA\ argon sphere in liquid
741 water system. Tabulated results include $\Delta E$ values (top set),
742 force vector magnitudes (middle set) and torque vector magnitudes
743 (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted
744 Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where
745 $\varepsilon \approx \infty$).}
746 \begin{tabular}{@{} ccrrrrrr @{}}
747 \\
748 \toprule
749 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
750 \cmidrule(lr){3-4}
751 \cmidrule(lr){5-6}
752 \cmidrule(l){7-8}
753 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
754 \midrule
755 PC & & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\
756 SP & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\
757 & 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\
758 & 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\
759 & 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\
760 SF & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\
761 & 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\
762 & 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\
763 & 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\
764 GSC & & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\
765 RF & & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\
766 \midrule
767 PC & & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\
768 SP & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\
769 & 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\
770 & 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\
771 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
772 SF & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
773 & 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
774 & 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
775 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
776 GSC & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
777 RF & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
778 \midrule
779 PC & & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\
780 SP & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\
781 & 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\
782 & 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\
783 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
784 SF & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\
785 & 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\
786 & 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\
787 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
788 GSC & & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\
789 RF & & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\
790 \bottomrule
791 \end{tabular}
792 \label{tab:argon}
793 \end{table}
794
795 \begin{table}[htbp]
796 \centering
797 \caption{Variance results from Gaussian fits to angular
798 distributions of the force and torque vectors in the 6 \AA\ sphere of
799 argon in liquid water system. PC = Pure Cutoff, SP = Shifted
800 Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF =
801 Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group
802 Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
803 \begin{tabular}{@{} ccrrrrrr @{}}
804 \\
805 \toprule
806 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
807 \cmidrule(lr){3-5}
808 \cmidrule(l){6-8}
809 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
810 \midrule
811 PC & & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\
812 SP & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\
813 & 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\
814 & 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\
815 & 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\
816 SF & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\
817 & 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\
818 & 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\
819 & 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\
820 GSC & & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
821 RF & & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\
822 \midrule
823 GSSP & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
824 & 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\
825 & 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\
826 & 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\
827 GSSF & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\
828 & 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\
829 & 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\
830 & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\
831 \bottomrule
832 \end{tabular}
833 \label{tab:argonAng}
834 \end{table}
835
836 This system appears not to show in any significant deviation in the
837 previously observed results. The {\sc sp} and {\sc sf} methods give
838 result qualities similar to those observed in section
839 \ref{app:water}. The only significant difference is the improvement
840 for the configuration energy differences for the {\sc rf} method. This
841 is surprising in that we are introducing an inhomogeneity to the
842 system; however, this inhomogeneity is charge-neutral and does not
843 result in charged cutoff spheres. The charge-neutrality of the cutoff
844 spheres, which the {\sc sp} and {\sc sf} methods explicitly enforce,
845 seems to play a greater role in the stability of the {\sc rf} method
846 than the required homogeneity of the environment.
847
848 \newpage
849
850 \bibliographystyle{jcp2}
851 \bibliography{electrostaticMethods}
852
853 \end{document}