ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/electrostaticMethodsPaper/SupportingInfo.tex
(Generate patch)

Comparing trunk/electrostaticMethodsPaper/SupportingInfo.tex (file contents):
Revision 2599 by chrisfen, Tue Feb 28 14:09:55 2006 UTC vs.
Revision 2658 by gezelter, Wed Mar 22 21:00:07 2006 UTC

# Line 1 | Line 1
1   %\documentclass[prb,aps,twocolumn,tabularx]{revtex4}
2   \documentclass[12pt]{article}
3 < \usepackage{endfloat}
3 > %\usepackage{endfloat}
4   \usepackage{amsmath}
5   \usepackage{amssymb}
6   \usepackage{epsf}
# Line 23 | Line 23 | This document includes system based comparisons of the
23  
24   \begin{document}
25  
26 < This document includes system based comparisons of the studied methods with smooth particle-mesh Ewald.  Each of the seven systems comprises it's own section and has it's own discussion and tabular listing of the results for the $\Delta E$, force and torque vector magnitude, and force and torque vector direction comparisons.
26 > This document includes individual system-based comparisons of the
27 > studied methods with smooth particle-mesh Ewald.  Each of the seven
28 > systems comprises its own section and has its own discussion and
29 > tabular listing of the results for the $\Delta E$, force and torque
30 > vector magnitude, and force and torque vector direction comparisons.
31  
32   \section{\label{app-water}Liquid Water}
33  
34 + 500 liquid state configurations were generated as described in the
35 + Methods section using the SPC/E model of water.\cite{Berendsen87} The
36 + results for the energy gap comparisons and the force and torque vector
37 + magnitude comparisons are shown in table \ref{tab:spce}.  The force
38 + and torque vector directionality results are displayed separately in
39 + table \ref{tab:spceAng}, where the effect of group-based cutoffs and
40 + switching functions on the {\sc sp} and {\sc sf} potentials are
41 + investigated.
42   \begin{table}[htbp]
43     \centering
44 <   \caption{Regression results for the liquid water system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}  
44 >   \caption{Regression results for the liquid water system. Tabulated
45 > results include $\Delta E$ values (top set), force vector magnitudes
46 > (middle set) and torque vector magnitudes (bottom set).  PC = Pure
47 > Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
48 > Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
49 > \infty$).}      
50     \begin{tabular}{@{} ccrrrrrr @{}}
51        \\
52        \toprule
# Line 80 | Line 97 | RF  &     & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.
97   RF  &     & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\
98        \bottomrule
99     \end{tabular}
100 <   \label{spceTabTMag}
100 >   \label{tab:spce}
101   \end{table}
102  
103   \begin{table}[htbp]
104     \centering
105 <   \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the liquid water system.  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}  
105 >   \caption{Variance results from Gaussian fits to angular
106 > distributions of the force and torque vectors in the liquid water
107 > system.  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
108 > GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon
109 > \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF =
110 > Group Switched Shifted Force.}  
111     \begin{tabular}{@{} ccrrrrrr @{}}
112        \\
113        \toprule
# Line 116 | Line 138 | GSSF  & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 &
138        & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\
139        \bottomrule
140     \end{tabular}
141 <   \label{spceTabAng}
141 >   \label{tab:spceAng}
142   \end{table}
143  
144 + For the most parts, the water results appear to parallel the combined
145 + results seen in the discussion in the main paper.  There is good
146 + agreement with SPME in both energetic and dynamic behavior when using
147 + the {\sc sf} method with and without damping. The {\sc sp} method does
148 + well with an $\alpha$ around 0.2 \AA$^{-1}$, particularly with cutoff
149 + radii greater than 12 \AA. The results for both of these methods also
150 + begin to decay as damping gets too large.
151 +
152 + The pure cutoff (PC) method performs poorly, as seen in the main
153 + discussion section.  In contrast to the combined values, however, the
154 + use of a switching function and group based cutoffs really improves
155 + the results for these neutral water molecules.  The group switched
156 + cutoff (GSC) shows mimics the energetics of SPME more poorly than the
157 + {\sc sp} (with moderate damping) and {\sc sf} methods, but the
158 + dynamics are quite good.  The switching functions corrects
159 + discontinuities in the potential and forces, leading to the improved
160 + results.  Such improvements with the use of a switching function has
161 + been recognized in previous studies,\cite{Andrea83,Steinbach94} and it
162 + is a useful tactic for stably incorporating local area electrostatic
163 + effects.
164 +
165 + The reaction field (RF) method simply extends the results observed in
166 + the GSC case.  Both methods are similar in form (i.e. neutral groups,
167 + switching function), but RF incorporates an added effect from the
168 + external dielectric. This similarity translates into the same good
169 + dynamic results and improved energetic results.  These still fall
170 + short of the moderately damped {\sc sp} and {\sc sf} methods, but they
171 + display how incorporating some implicit properties of the surroundings
172 + (i.e. $\epsilon_\textrm{S}$) can improve results.
173 +
174 + A final note for the liquid water system, use of group cutoffs and a
175 + switching function also leads to noticeable improvements in the {\sc
176 + sp} and {\sc sf} methods, primarily in directionality of the force and
177 + torque vectors (table \ref{tab:spceAng}).  {\sc sp} shows significant
178 + narrowing of the angle distribution in the cases with little to no
179 + damping and only modest improvement for the ideal conditions ($\alpha$
180 + = 0.2 \AA${-1}$ and $R_\textrm{c} \geqslant 12$~\AA).  The {\sc sf}
181 + method simply shows modest narrowing across all damping and cutoff
182 + ranges of interest.  Group cutoffs and the switching function do
183 + nothing for cases were error is introduced by overdamping the
184 + potentials.
185 +
186   \section{\label{app-ice}Solid Water: Ice I$_\textrm{c}$}
187  
188 + In addition to the disordered molecular system above, the ordered
189 + molecular system of ice I$_\textrm{c}$ was also considered. The
190 + results for the energy gap comparisons and the force and torque vector
191 + magnitude comparisons are shown in table \ref{tab:ice}.  The force and
192 + torque vector directionality results are displayed separately in table
193 + \ref{tab:iceAng}, where the effect of group-based cutoffs and
194 + switching functions on the {\sc sp} and {\sc sf} potentials are
195 + investigated.
196 +
197   \begin{table}[htbp]
198     \centering
199 <   \caption{Regression results for the ice I$_\textrm{c}$ system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}    
199 >   \caption{Regression results for the ice I$_\textrm{c}$
200 > system. Tabulated results include $\Delta E$ values (top set), force
201 > vector magnitudes (middle set) and torque vector magnitudes (bottom
202 > set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
203 > GSC = Group Switched Cutoff, and RF = Reaction Field (where
204 > $\varepsilon \approx \infty$).}  
205     \begin{tabular}{@{} ccrrrrrr @{}}
206        \\
207        \toprule
# Line 170 | Line 248 | RF  &     & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.
248   RF  &     & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\
249        \bottomrule
250     \end{tabular}
251 <   \label{iceTab}
251 >   \label{tab:ice}
252   \end{table}
253  
254   \begin{table}[htbp]
# Line 206 | Line 284 | GSSF  & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 &
284        & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
285        \bottomrule
286     \end{tabular}
287 <   \label{iceTabAng}
287 >   \label{tab:iceAng}
288   \end{table}
289  
290 + Highly ordered systems are a difficult test for the pairwise systems
291 + in that they lack the periodicity inherent to the Ewald summation.  As
292 + expected, the energy gap agreement with SPME reduces for the {\sc sp}
293 + and {\sc sf} with parameters that were perfectly acceptable for the
294 + disordered liquid system.  Moving to higher $R_\textrm{c}$ remedies
295 + this degraded performance, though at increase in computational cost.
296 + However, the dynamics of this crystalline system (both in magnitude
297 + and direction) are little affected. Both methods still reproduce the
298 + Ewald behavior with the same parameter recommendations from the
299 + previous section.
300 +
301 + It is also worth noting that RF exhibits a slightly improved energy
302 + gap results over the liquid water system.  One possible explanation is
303 + that the ice I$_\textrm{c}$ crystal is ordered such that the net
304 + dipole moment of the crystal is zero.  With $\epsilon_\textrm{S} =
305 + \infty$, the reaction field incorporates this structural organization
306 + by actively enforcing a zeroed dipole moment within each cutoff
307 + sphere.  
308 +
309   \section{\label{app-melt}NaCl Melt}
310  
311 + A high temperature NaCl melt was tested to gauge the accuracy of the
312 + pairwise summation methods in a highly charge disordered system. The
313 + results for the energy gap comparisons and the force and torque vector
314 + magnitude comparisons are shown in table \ref{tab:melt}.  The force
315 + and torque vector directionality results are displayed separately in
316 + table \ref{tab:meltAng}, where the effect of group-based cutoffs and
317 + switching functions on the {\sc sp} and {\sc sf} potentials are
318 + investigated.
319 +
320   \begin{table}[htbp]
321     \centering
322     \caption{Regression results for the molten NaCl system. Tabulated results include $\Delta E$ values (top set) and force vector magnitudes (bottom set).  PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}  
# Line 224 | Line 330 | SP  & 0.0 & 0.937 & 0.996 & 0.880 & 0.995 & 0.971 & 0.
330              Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
331              \midrule
332   PC  &     & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\
333 < SP  & 0.0 & 0.937 & 0.996 & 0.880 & 0.995 & 0.971 & 0.999 \\
334 <    & 0.1 & 1.004 & 0.999 & 0.958 & 1.000 & 0.928 & 0.994 \\
333 > SP  & 0.0 & 0.928 & 0.996 & 0.931 & 0.998 & 0.950 & 0.999 \\
334 >    & 0.1 & 0.977 & 0.998 & 0.998 & 1.000 & 0.997 & 1.000 \\
335      & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
336      & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
337 < SF  & 0.0 & 1.001 & 1.000 & 0.949 & 1.000 & 1.008 & 1.000 \\
338 <    & 0.1 & 1.025 & 1.000 & 0.960 & 1.000 & 0.929 & 0.994 \\
337 > SF  & 0.0 & 0.996 & 1.000 & 0.995 & 1.000 & 0.997 & 1.000 \\
338 >    & 0.1 & 1.021 & 1.000 & 1.024 & 1.000 & 1.007 & 1.000 \\
339      & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
340      & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
341              \midrule
342   PC  &     & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\
343 < SP  & 0.0 & 0.976 & 0.983 & 1.001 & 0.991 & 0.985 & 0.995 \\
344 <    & 0.1 & 0.996 & 0.997 & 0.997 & 0.998 & 0.996 & 0.996 \\
343 > SP  & 0.0 & 0.973 & 0.981 & 0.975 & 0.988 & 0.979 & 0.992 \\
344 >    & 0.1 & 0.987 & 0.992 & 0.993 & 0.998 & 0.997 & 0.999 \\
345      & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
346      & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
347 < SF  & 0.0 & 0.997 & 0.998 & 0.995 & 0.999 & 0.999 & 1.000 \\
348 <    & 0.1 & 1.001 & 0.997 & 0.997 & 0.999 & 0.996 & 0.996 \\
347 > SF  & 0.0 & 0.996 & 0.997 & 0.997 & 0.999 & 0.998 & 1.000 \\
348 >    & 0.1 & 1.000 & 0.997 & 1.001 & 0.999 & 1.000 & 1.000 \\
349      & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
350      & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
351        \bottomrule
352     \end{tabular}
353 <   \label{meltTab}
353 >   \label{tab:melt}
354   \end{table}
355  
356   \begin{table}[htbp]
# Line 269 | Line 375 | SF  & 0.0 & 1.693 & 0.603 & 0.256 \\
375      & 0.3 & 23.734 & 67.305 & 57.252 \\
376        \bottomrule
377     \end{tabular}
378 <   \label{meltTabAng}
378 >   \label{tab:meltAng}
379   \end{table}
380  
381 + The molten NaCl system shows the a
382 +
383   \section{\label{app-salt}NaCl Crystal}
384  
385 + A 1000K NaCl crystal was used to investigate the accuracy of the
386 + pairwise summation methods in an ordered system of charged
387 + particles. The results for the energy gap comparisons and the force
388 + and torque vector magnitude comparisons are shown in table
389 + \ref{tab:salt}.  The force and torque vector directionality results
390 + are displayed separately in table \ref{tab:saltAng}, where the effect
391 + of group-based cutoffs and switching functions on the {\sc sp} and
392 + {\sc sf} potentials are investigated.
393 +
394   \begin{table}[htbp]
395     \centering
396 <   \caption{Regression results for the crystalline NaCl system. Tabulated results include $\Delta E$ values (top set) and force vector magnitudes (bottom set).  PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}    
396 >   \caption{Regression results for the crystalline NaCl
397 > system. Tabulated results include $\Delta E$ values (top set) and
398 > force vector magnitudes (bottom set).  PC = Pure Cutoff, SP = Shifted
399 > Potential, and SF = Shifted Force.}    
400     \begin{tabular}{@{} ccrrrrrr @{}}
401        \\
402        \toprule
# Line 307 | Line 427 | SF  & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.
427      & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
428        \bottomrule
429     \end{tabular}
430 <   \label{saltTab}
430 >   \label{tab:salt}
431   \end{table}
432  
433   \begin{table}[htbp]
434     \centering
435 <   \caption{Variance results from Gaussian fits to angular distributions of the force vectors in the crystalline NaCl system.  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}        
435 >   \caption{Variance results from Gaussian fits to angular
436 > distributions of the force vectors in the crystalline NaCl system.  PC
437 > = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
438 > Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
439 > \infty$).}      
440     \begin{tabular}{@{} ccrrrrrr @{}}
441        \\
442        \toprule
# Line 332 | Line 456 | SF  & 0.0 & 10.025 & 3.555 & 1.648 \\
456      & 0.3 & 31.120 & 31.105 & 31.029 \\
457        \bottomrule
458     \end{tabular}
459 <   \label{saltTabAng}
459 >   \label{tab:saltAng}
460   \end{table}
461  
462   \section{\label{app-sol1}Weak NaCl Solution}
463  
464 + In an effort to bridge the charged atomic and neutral molecular
465 + systems, Na$^+$ and Cl$^-$ ion charge defects were incorporated into
466 + the liquid water system. This low ionic strength system consists of 4
467 + ions in the 1000 SPC/E water solvent ($\approx$0.11 M). The results
468 + for the energy gap comparisons and the force and torque vector
469 + magnitude comparisons are shown in table \ref{tab:solnWeak}.  The
470 + force and torque vector directionality results are displayed
471 + separately in table \ref{tab:solnWeakAng}, where the effect of
472 + group-based cutoffs and switching functions on the {\sc sp} and {\sc
473 + sf} potentials are investigated.
474 +
475   \begin{table}[htbp]
476     \centering
477 <   \caption{Regression results for the weak NaCl solution system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}      
477 >   \caption{Regression results for the weak NaCl solution
478 > system. Tabulated results include $\Delta E$ values (top set), force
479 > vector magnitudes (middle set) and torque vector magnitudes (bottom
480 > set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
481 > GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon
482 > \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF =
483 > Group Switched Shifted Force.}  
484     \begin{tabular}{@{} ccrrrrrr @{}}
485        \\
486        \toprule
# Line 386 | Line 527 | RF  &     & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.
527   RF  &     & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\
528        \bottomrule
529     \end{tabular}
530 <   \label{sol1Tab}
530 >   \label{tab:solnWeak}
531   \end{table}
532  
533   \begin{table}[htbp]
534     \centering
535 <   \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the weak NaCl solution system.  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}    
535 >   \caption{Variance results from Gaussian fits to angular
536 > distributions of the force and torque vectors in the weak NaCl
537 > solution system.  PC = Pure Cutoff, SP = Shifted Potential, SF =
538 > Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where
539 > $\varepsilon \approx \infty$), GSSP = Group Switched Shifted
540 > Potential, and GSSF = Group Switched Shifted Force.}    
541     \begin{tabular}{@{} ccrrrrrr @{}}
542        \\
543        \toprule
# Line 422 | Line 568 | GSSF  & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 &
568        & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\
569        \bottomrule
570     \end{tabular}
571 <   \label{sol1TabAng}
571 >   \label{tab:solnWeakAng}
572   \end{table}
573  
574   \section{\label{app-sol10}Strong NaCl Solution}
575  
576 + The bridging of the charged atomic and neutral molecular systems was
577 + furthered by considering a high ionic strength system consisting of 40
578 + ions in the 1000 SPC/E water solvent ($\approx$1.1 M). The results for
579 + the energy gap comparisons and the force and torque vector magnitude
580 + comparisons are shown in table \ref{tab:solnWeak}.  The force and
581 + torque vector directionality results are displayed separately in table
582 + \ref{tab:solnWeakAng}, where the effect of group-based cutoffs and
583 + switching functions on the {\sc sp} and {\sc sf} potentials are
584 + investigated.
585 +
586   \begin{table}[htbp]
587     \centering
588 <   \caption{Regression results for the strong NaCl solution system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}  
588 >   \caption{Regression results for the strong NaCl solution
589 > system. Tabulated results include $\Delta E$ values (top set), force
590 > vector magnitudes (middle set) and torque vector magnitudes (bottom
591 > set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
592 > GSC = Group Switched Cutoff, and RF = Reaction Field (where
593 > $\varepsilon \approx \infty$).}        
594     \begin{tabular}{@{} ccrrrrrr @{}}
595        \\
596        \toprule
# Line 476 | Line 637 | RF  &     & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.
637   RF  &     & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\
638        \bottomrule
639     \end{tabular}
640 <   \label{sol10Tab}
640 >   \label{tab:solnStr}
641   \end{table}
642  
643   \begin{table}[htbp]
# Line 512 | Line 673 | GSSF  & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 &
673        & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\
674        \bottomrule
675     \end{tabular}
676 <   \label{sol10TabAng}
676 >   \label{tab:solnStrAng}
677   \end{table}
678  
679   \section{\label{app-argon}Argon Sphere in Water}
680  
681 + The final model system studied was 6 \AA\ sphere of Argon solvated by
682 + SPC/E water. The results for the energy gap comparisons and the force
683 + and torque vector magnitude comparisons are shown in table
684 + \ref{tab:solnWeak}.  The force and torque vector directionality
685 + results are displayed separately in table \ref{tab:solnWeakAng}, where
686 + the effect of group-based cutoffs and switching functions on the {\sc
687 + sp} and {\sc sf} potentials are investigated.
688 +
689   \begin{table}[htbp]
690     \centering
691 <   \caption{Regression results for the 6 \AA\ argon sphere in liquid water system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}    
691 >   \caption{Regression results for the 6 \AA\ argon sphere in liquid
692 > water system. Tabulated results include $\Delta E$ values (top set),
693 > force vector magnitudes (middle set) and torque vector magnitudes
694 > (bottom set).  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted
695 > Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where
696 > $\varepsilon \approx \infty$).}        
697     \begin{tabular}{@{} ccrrrrrr @{}}
698        \\
699        \toprule
# Line 566 | Line 740 | RF  &     & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.
740   RF  &     & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\
741        \bottomrule
742     \end{tabular}
743 <   \label{argonTab}
743 >   \label{tab:argon}
744   \end{table}
745  
746   \begin{table}[htbp]
747     \centering
748 <   \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the 6 \AA\ sphere of argon in liquid water system.  PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
748 >   \caption{Variance results from Gaussian fits to angular
749 > distributions of the force and torque vectors in the 6 \AA\ sphere of
750 > argon in liquid water system.  PC = Pure Cutoff, SP = Shifted
751 > Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF =
752 > Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group
753 > Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}  
754     \begin{tabular}{@{} ccrrrrrr @{}}
755        \\
756        \toprule
# Line 602 | Line 781 | GSSF  & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 &
781        & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\
782        \bottomrule
783     \end{tabular}
784 <   \label{argonTabAng}
784 >   \label{tab:argonAng}
785   \end{table}
786  
787 < \end{document}
787 > \newpage
788 >
789 > \bibliographystyle{jcp2}
790 > \bibliography{electrostaticMethods}
791 >
792 > \end{document}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines