ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/electrostaticMethodsPaper/SupportingInfo.tex
Revision: 2658
Committed: Wed Mar 22 21:00:07 2006 UTC (18 years, 3 months ago) by gezelter
Content type: application/x-tex
File size: 38448 byte(s)
Log Message:
readying for pubs

File Contents

# Content
1 %\documentclass[prb,aps,twocolumn,tabularx]{revtex4}
2 \documentclass[12pt]{article}
3 %\usepackage{endfloat}
4 \usepackage{amsmath}
5 \usepackage{amssymb}
6 \usepackage{epsf}
7 \usepackage{times}
8 \usepackage{mathptm}
9 \usepackage{setspace}
10 \usepackage{tabularx}
11 \usepackage{graphicx}
12 \usepackage{booktabs}
13 %\usepackage{berkeley}
14 \usepackage[ref]{overcite}
15 \pagestyle{plain}
16 \pagenumbering{arabic}
17 \oddsidemargin 0.0cm \evensidemargin 0.0cm
18 \topmargin -21pt \headsep 10pt
19 \textheight 9.0in \textwidth 6.5in
20 \brokenpenalty=10000
21 \renewcommand{\baselinestretch}{1.2}
22 \renewcommand\citemid{\ } % no comma in optional reference note
23
24 \begin{document}
25
26 This document includes individual system-based comparisons of the
27 studied methods with smooth particle-mesh Ewald. Each of the seven
28 systems comprises its own section and has its own discussion and
29 tabular listing of the results for the $\Delta E$, force and torque
30 vector magnitude, and force and torque vector direction comparisons.
31
32 \section{\label{app-water}Liquid Water}
33
34 500 liquid state configurations were generated as described in the
35 Methods section using the SPC/E model of water.\cite{Berendsen87} The
36 results for the energy gap comparisons and the force and torque vector
37 magnitude comparisons are shown in table \ref{tab:spce}. The force
38 and torque vector directionality results are displayed separately in
39 table \ref{tab:spceAng}, where the effect of group-based cutoffs and
40 switching functions on the {\sc sp} and {\sc sf} potentials are
41 investigated.
42 \begin{table}[htbp]
43 \centering
44 \caption{Regression results for the liquid water system. Tabulated
45 results include $\Delta E$ values (top set), force vector magnitudes
46 (middle set) and torque vector magnitudes (bottom set). PC = Pure
47 Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
48 Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
49 \infty$).}
50 \begin{tabular}{@{} ccrrrrrr @{}}
51 \\
52 \toprule
53 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
54 \cmidrule(lr){3-4}
55 \cmidrule(lr){5-6}
56 \cmidrule(l){7-8}
57 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
58 \midrule
59 PC & & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\
60 SP & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\
61 & 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\
62 & 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\
63 & 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\
64 SF & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\
65 & 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\
66 & 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\
67 & 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\
68 GSC & & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\
69 RF & & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\
70
71 \midrule
72
73 PC & & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\
74 SP & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\
75 & 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\
76 & 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\
77 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
78 SF & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\
79 & 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
80 & 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\
81 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
82 GSC & & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
83 RF & & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
84
85 \midrule
86
87 PC & & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\
88 SP & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\
89 & 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\
90 & 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\
91 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
92 SF & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\
93 & 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\
94 & 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\
95 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
96 GSC & & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\
97 RF & & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\
98 \bottomrule
99 \end{tabular}
100 \label{tab:spce}
101 \end{table}
102
103 \begin{table}[htbp]
104 \centering
105 \caption{Variance results from Gaussian fits to angular
106 distributions of the force and torque vectors in the liquid water
107 system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
108 GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon
109 \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF =
110 Group Switched Shifted Force.}
111 \begin{tabular}{@{} ccrrrrrr @{}}
112 \\
113 \toprule
114 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
115 \cmidrule(lr){3-5}
116 \cmidrule(l){6-8}
117 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
118 \midrule
119 PC & & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\
120 SP & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\
121 & 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\
122 & 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\
123 & 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\
124 SF & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\
125 & 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\
126 & 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\
127 & 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\
128 GSC & & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
129 RF & & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\
130 \midrule
131 GSSP & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
132 & 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\
133 & 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\
134 & 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\
135 GSSF & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\
136 & 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\
137 & 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\
138 & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\
139 \bottomrule
140 \end{tabular}
141 \label{tab:spceAng}
142 \end{table}
143
144 For the most parts, the water results appear to parallel the combined
145 results seen in the discussion in the main paper. There is good
146 agreement with SPME in both energetic and dynamic behavior when using
147 the {\sc sf} method with and without damping. The {\sc sp} method does
148 well with an $\alpha$ around 0.2 \AA$^{-1}$, particularly with cutoff
149 radii greater than 12 \AA. The results for both of these methods also
150 begin to decay as damping gets too large.
151
152 The pure cutoff (PC) method performs poorly, as seen in the main
153 discussion section. In contrast to the combined values, however, the
154 use of a switching function and group based cutoffs really improves
155 the results for these neutral water molecules. The group switched
156 cutoff (GSC) shows mimics the energetics of SPME more poorly than the
157 {\sc sp} (with moderate damping) and {\sc sf} methods, but the
158 dynamics are quite good. The switching functions corrects
159 discontinuities in the potential and forces, leading to the improved
160 results. Such improvements with the use of a switching function has
161 been recognized in previous studies,\cite{Andrea83,Steinbach94} and it
162 is a useful tactic for stably incorporating local area electrostatic
163 effects.
164
165 The reaction field (RF) method simply extends the results observed in
166 the GSC case. Both methods are similar in form (i.e. neutral groups,
167 switching function), but RF incorporates an added effect from the
168 external dielectric. This similarity translates into the same good
169 dynamic results and improved energetic results. These still fall
170 short of the moderately damped {\sc sp} and {\sc sf} methods, but they
171 display how incorporating some implicit properties of the surroundings
172 (i.e. $\epsilon_\textrm{S}$) can improve results.
173
174 A final note for the liquid water system, use of group cutoffs and a
175 switching function also leads to noticeable improvements in the {\sc
176 sp} and {\sc sf} methods, primarily in directionality of the force and
177 torque vectors (table \ref{tab:spceAng}). {\sc sp} shows significant
178 narrowing of the angle distribution in the cases with little to no
179 damping and only modest improvement for the ideal conditions ($\alpha$
180 = 0.2 \AA${-1}$ and $R_\textrm{c} \geqslant 12$~\AA). The {\sc sf}
181 method simply shows modest narrowing across all damping and cutoff
182 ranges of interest. Group cutoffs and the switching function do
183 nothing for cases were error is introduced by overdamping the
184 potentials.
185
186 \section{\label{app-ice}Solid Water: Ice I$_\textrm{c}$}
187
188 In addition to the disordered molecular system above, the ordered
189 molecular system of ice I$_\textrm{c}$ was also considered. The
190 results for the energy gap comparisons and the force and torque vector
191 magnitude comparisons are shown in table \ref{tab:ice}. The force and
192 torque vector directionality results are displayed separately in table
193 \ref{tab:iceAng}, where the effect of group-based cutoffs and
194 switching functions on the {\sc sp} and {\sc sf} potentials are
195 investigated.
196
197 \begin{table}[htbp]
198 \centering
199 \caption{Regression results for the ice I$_\textrm{c}$
200 system. Tabulated results include $\Delta E$ values (top set), force
201 vector magnitudes (middle set) and torque vector magnitudes (bottom
202 set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
203 GSC = Group Switched Cutoff, and RF = Reaction Field (where
204 $\varepsilon \approx \infty$).}
205 \begin{tabular}{@{} ccrrrrrr @{}}
206 \\
207 \toprule
208 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
209 \cmidrule(lr){3-4}
210 \cmidrule(lr){5-6}
211 \cmidrule(l){7-8}
212 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
213 \midrule
214 PC & & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\
215 SP & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\
216 & 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\
217 & 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\
218 & 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\
219 SF & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\
220 & 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\
221 & 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\
222 & 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\
223 GSC & & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\
224 RF & & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\
225 \midrule
226 PC & & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\
227 SP & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\
228 & 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\
229 & 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\
230 & 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\
231 SF & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\
232 & 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\
233 & 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\
234 & 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\
235 GSC & & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\
236 RF & & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\
237 \midrule
238 PC & & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\
239 SP & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\
240 & 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\
241 & 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\
242 & 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\
243 SF & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\
244 & 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\
245 & 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\
246 & 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\
247 GSC & & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\
248 RF & & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\
249 \bottomrule
250 \end{tabular}
251 \label{tab:ice}
252 \end{table}
253
254 \begin{table}[htbp]
255 \centering
256 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the ice I$_\textrm{c}$ system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
257 \begin{tabular}{@{} ccrrrrrr @{}}
258 \\
259 \toprule
260 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
261 \cmidrule(lr){3-5}
262 \cmidrule(l){6-8}
263 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
264 \midrule
265 PC & & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\
266 SP & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\
267 & 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\
268 & 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\
269 & 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\
270 SF & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\
271 & 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\
272 & 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\
273 & 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\
274 GSC & & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
275 RF & & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\
276 \midrule
277 GSSP & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
278 & 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\
279 & 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\
280 & 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
281 GSSF & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\
282 & 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\
283 & 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\
284 & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
285 \bottomrule
286 \end{tabular}
287 \label{tab:iceAng}
288 \end{table}
289
290 Highly ordered systems are a difficult test for the pairwise systems
291 in that they lack the periodicity inherent to the Ewald summation. As
292 expected, the energy gap agreement with SPME reduces for the {\sc sp}
293 and {\sc sf} with parameters that were perfectly acceptable for the
294 disordered liquid system. Moving to higher $R_\textrm{c}$ remedies
295 this degraded performance, though at increase in computational cost.
296 However, the dynamics of this crystalline system (both in magnitude
297 and direction) are little affected. Both methods still reproduce the
298 Ewald behavior with the same parameter recommendations from the
299 previous section.
300
301 It is also worth noting that RF exhibits a slightly improved energy
302 gap results over the liquid water system. One possible explanation is
303 that the ice I$_\textrm{c}$ crystal is ordered such that the net
304 dipole moment of the crystal is zero. With $\epsilon_\textrm{S} =
305 \infty$, the reaction field incorporates this structural organization
306 by actively enforcing a zeroed dipole moment within each cutoff
307 sphere.
308
309 \section{\label{app-melt}NaCl Melt}
310
311 A high temperature NaCl melt was tested to gauge the accuracy of the
312 pairwise summation methods in a highly charge disordered system. The
313 results for the energy gap comparisons and the force and torque vector
314 magnitude comparisons are shown in table \ref{tab:melt}. The force
315 and torque vector directionality results are displayed separately in
316 table \ref{tab:meltAng}, where the effect of group-based cutoffs and
317 switching functions on the {\sc sp} and {\sc sf} potentials are
318 investigated.
319
320 \begin{table}[htbp]
321 \centering
322 \caption{Regression results for the molten NaCl system. Tabulated results include $\Delta E$ values (top set) and force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
323 \begin{tabular}{@{} ccrrrrrr @{}}
324 \\
325 \toprule
326 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
327 \cmidrule(lr){3-4}
328 \cmidrule(lr){5-6}
329 \cmidrule(l){7-8}
330 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
331 \midrule
332 PC & & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\
333 SP & 0.0 & 0.928 & 0.996 & 0.931 & 0.998 & 0.950 & 0.999 \\
334 & 0.1 & 0.977 & 0.998 & 0.998 & 1.000 & 0.997 & 1.000 \\
335 & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
336 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
337 SF & 0.0 & 0.996 & 1.000 & 0.995 & 1.000 & 0.997 & 1.000 \\
338 & 0.1 & 1.021 & 1.000 & 1.024 & 1.000 & 1.007 & 1.000 \\
339 & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
340 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
341 \midrule
342 PC & & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\
343 SP & 0.0 & 0.973 & 0.981 & 0.975 & 0.988 & 0.979 & 0.992 \\
344 & 0.1 & 0.987 & 0.992 & 0.993 & 0.998 & 0.997 & 0.999 \\
345 & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
346 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
347 SF & 0.0 & 0.996 & 0.997 & 0.997 & 0.999 & 0.998 & 1.000 \\
348 & 0.1 & 1.000 & 0.997 & 1.001 & 0.999 & 1.000 & 1.000 \\
349 & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
350 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
351 \bottomrule
352 \end{tabular}
353 \label{tab:melt}
354 \end{table}
355
356 \begin{table}[htbp]
357 \centering
358 \caption{Variance results from Gaussian fits to angular distributions of the force vectors in the molten NaCl system. PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
359 \begin{tabular}{@{} ccrrrrrr @{}}
360 \\
361 \toprule
362 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
363 \cmidrule(lr){3-5}
364 \cmidrule(l){6-8}
365 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
366 \midrule
367 PC & & 13.294 & 8.035 & 5.366 \\
368 SP & 0.0 & 13.316 & 8.037 & 5.385 \\
369 & 0.1 & 5.705 & 1.391 & 0.360 \\
370 & 0.2 & 2.415 & 7.534 & 13.927 \\
371 & 0.3 & 23.769 & 67.306 & 57.252 \\
372 SF & 0.0 & 1.693 & 0.603 & 0.256 \\
373 & 0.1 & 1.687 & 0.653 & 0.272 \\
374 & 0.2 & 2.598 & 7.523 & 13.930 \\
375 & 0.3 & 23.734 & 67.305 & 57.252 \\
376 \bottomrule
377 \end{tabular}
378 \label{tab:meltAng}
379 \end{table}
380
381 The molten NaCl system shows the a
382
383 \section{\label{app-salt}NaCl Crystal}
384
385 A 1000K NaCl crystal was used to investigate the accuracy of the
386 pairwise summation methods in an ordered system of charged
387 particles. The results for the energy gap comparisons and the force
388 and torque vector magnitude comparisons are shown in table
389 \ref{tab:salt}. The force and torque vector directionality results
390 are displayed separately in table \ref{tab:saltAng}, where the effect
391 of group-based cutoffs and switching functions on the {\sc sp} and
392 {\sc sf} potentials are investigated.
393
394 \begin{table}[htbp]
395 \centering
396 \caption{Regression results for the crystalline NaCl
397 system. Tabulated results include $\Delta E$ values (top set) and
398 force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted
399 Potential, and SF = Shifted Force.}
400 \begin{tabular}{@{} ccrrrrrr @{}}
401 \\
402 \toprule
403 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
404 \cmidrule(lr){3-4}
405 \cmidrule(lr){5-6}
406 \cmidrule(l){7-8}
407 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
408 \midrule
409 PC & & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\
410 SP & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\
411 & 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\
412 & 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\
413 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\
414 SF & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\
415 & 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\
416 & 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\
417 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\
418 \midrule
419 PC & & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\
420 SP & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\
421 & 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\
422 & 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\
423 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
424 SF & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\
425 & 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\
426 & 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\
427 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
428 \bottomrule
429 \end{tabular}
430 \label{tab:salt}
431 \end{table}
432
433 \begin{table}[htbp]
434 \centering
435 \caption{Variance results from Gaussian fits to angular
436 distributions of the force vectors in the crystalline NaCl system. PC
437 = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
438 Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
439 \infty$).}
440 \begin{tabular}{@{} ccrrrrrr @{}}
441 \\
442 \toprule
443 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
444 \cmidrule(lr){3-5}
445 \cmidrule(l){6-8}
446 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
447 \midrule
448 PC & & 111.945 & 111.824 & 111.866 \\
449 SP & 0.0 & 112.414 & 152.215 & 38.087 \\
450 & 0.1 & 52.361 & 42.574 & 2.819 \\
451 & 0.2 & 10.847 & 9.709 & 9.686 \\
452 & 0.3 & 31.128 & 31.104 & 31.029 \\
453 SF & 0.0 & 10.025 & 3.555 & 1.648 \\
454 & 0.1 & 9.462 & 3.303 & 1.721 \\
455 & 0.2 & 11.454 & 9.813 & 9.701 \\
456 & 0.3 & 31.120 & 31.105 & 31.029 \\
457 \bottomrule
458 \end{tabular}
459 \label{tab:saltAng}
460 \end{table}
461
462 \section{\label{app-sol1}Weak NaCl Solution}
463
464 In an effort to bridge the charged atomic and neutral molecular
465 systems, Na$^+$ and Cl$^-$ ion charge defects were incorporated into
466 the liquid water system. This low ionic strength system consists of 4
467 ions in the 1000 SPC/E water solvent ($\approx$0.11 M). The results
468 for the energy gap comparisons and the force and torque vector
469 magnitude comparisons are shown in table \ref{tab:solnWeak}. The
470 force and torque vector directionality results are displayed
471 separately in table \ref{tab:solnWeakAng}, where the effect of
472 group-based cutoffs and switching functions on the {\sc sp} and {\sc
473 sf} potentials are investigated.
474
475 \begin{table}[htbp]
476 \centering
477 \caption{Regression results for the weak NaCl solution
478 system. Tabulated results include $\Delta E$ values (top set), force
479 vector magnitudes (middle set) and torque vector magnitudes (bottom
480 set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
481 GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon
482 \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF =
483 Group Switched Shifted Force.}
484 \begin{tabular}{@{} ccrrrrrr @{}}
485 \\
486 \toprule
487 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
488 \cmidrule(lr){3-4}
489 \cmidrule(lr){5-6}
490 \cmidrule(l){7-8}
491 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
492 \midrule
493 PC & & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\
494 SP & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\
495 & 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\
496 & 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\
497 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
498 SF & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\
499 & 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\
500 & 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\
501 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
502 GSC & & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\
503 RF & & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\
504 \midrule
505 PC & & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\
506 SP & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\
507 & 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\
508 & 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\
509 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
510 SF & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\
511 & 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\
512 & 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\
513 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
514 GSC & & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\
515 RF & & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\
516 \midrule
517 PC & & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\
518 SP & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\
519 & 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\
520 & 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\
521 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
522 SF & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\
523 & 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\
524 & 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\
525 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
526 GSC & & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\
527 RF & & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\
528 \bottomrule
529 \end{tabular}
530 \label{tab:solnWeak}
531 \end{table}
532
533 \begin{table}[htbp]
534 \centering
535 \caption{Variance results from Gaussian fits to angular
536 distributions of the force and torque vectors in the weak NaCl
537 solution system. PC = Pure Cutoff, SP = Shifted Potential, SF =
538 Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where
539 $\varepsilon \approx \infty$), GSSP = Group Switched Shifted
540 Potential, and GSSF = Group Switched Shifted Force.}
541 \begin{tabular}{@{} ccrrrrrr @{}}
542 \\
543 \toprule
544 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
545 \cmidrule(lr){3-5}
546 \cmidrule(l){6-8}
547 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
548 \midrule
549 PC & & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\
550 SP & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\
551 & 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\
552 & 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\
553 & 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\
554 SF & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\
555 & 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\
556 & 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\
557 & 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\
558 GSC & & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
559 RF & & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\
560 \midrule
561 GSSP & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
562 & 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\
563 & 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\
564 & 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\
565 GSSF & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\
566 & 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\
567 & 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\
568 & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\
569 \bottomrule
570 \end{tabular}
571 \label{tab:solnWeakAng}
572 \end{table}
573
574 \section{\label{app-sol10}Strong NaCl Solution}
575
576 The bridging of the charged atomic and neutral molecular systems was
577 furthered by considering a high ionic strength system consisting of 40
578 ions in the 1000 SPC/E water solvent ($\approx$1.1 M). The results for
579 the energy gap comparisons and the force and torque vector magnitude
580 comparisons are shown in table \ref{tab:solnWeak}. The force and
581 torque vector directionality results are displayed separately in table
582 \ref{tab:solnWeakAng}, where the effect of group-based cutoffs and
583 switching functions on the {\sc sp} and {\sc sf} potentials are
584 investigated.
585
586 \begin{table}[htbp]
587 \centering
588 \caption{Regression results for the strong NaCl solution
589 system. Tabulated results include $\Delta E$ values (top set), force
590 vector magnitudes (middle set) and torque vector magnitudes (bottom
591 set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
592 GSC = Group Switched Cutoff, and RF = Reaction Field (where
593 $\varepsilon \approx \infty$).}
594 \begin{tabular}{@{} ccrrrrrr @{}}
595 \\
596 \toprule
597 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
598 \cmidrule(lr){3-4}
599 \cmidrule(lr){5-6}
600 \cmidrule(l){7-8}
601 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
602 \midrule
603 PC & & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\
604 SP & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\
605 & 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\
606 & 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\
607 & 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\
608 SF & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\
609 & 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\
610 & 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\
611 & 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\
612 GSC & & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\
613 RF & & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\
614 \midrule
615 PC & & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\
616 SP & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\
617 & 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\
618 & 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\
619 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
620 SF & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\
621 & 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\
622 & 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\
623 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
624 GSC & & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\
625 RF & & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\
626 \midrule
627 PC & & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\
628 SP & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\
629 & 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\
630 & 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\
631 & 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\
632 SF & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\
633 & 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\
634 & 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\
635 & 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\
636 GSC & & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\
637 RF & & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\
638 \bottomrule
639 \end{tabular}
640 \label{tab:solnStr}
641 \end{table}
642
643 \begin{table}[htbp]
644 \centering
645 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the strong NaCl solution system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
646 \begin{tabular}{@{} ccrrrrrr @{}}
647 \\
648 \toprule
649 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
650 \cmidrule(lr){3-5}
651 \cmidrule(l){6-8}
652 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
653 \midrule
654 PC & & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\
655 SP & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\
656 & 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\
657 & 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\
658 & 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\
659 SF & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\
660 & 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\
661 & 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\
662 & 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\
663 GSC & & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\
664 RF & & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\
665 \midrule
666 GSSP & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\
667 & 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\
668 & 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\
669 & 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\
670 GSSF & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\
671 & 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\
672 & 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\
673 & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\
674 \bottomrule
675 \end{tabular}
676 \label{tab:solnStrAng}
677 \end{table}
678
679 \section{\label{app-argon}Argon Sphere in Water}
680
681 The final model system studied was 6 \AA\ sphere of Argon solvated by
682 SPC/E water. The results for the energy gap comparisons and the force
683 and torque vector magnitude comparisons are shown in table
684 \ref{tab:solnWeak}. The force and torque vector directionality
685 results are displayed separately in table \ref{tab:solnWeakAng}, where
686 the effect of group-based cutoffs and switching functions on the {\sc
687 sp} and {\sc sf} potentials are investigated.
688
689 \begin{table}[htbp]
690 \centering
691 \caption{Regression results for the 6 \AA\ argon sphere in liquid
692 water system. Tabulated results include $\Delta E$ values (top set),
693 force vector magnitudes (middle set) and torque vector magnitudes
694 (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted
695 Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where
696 $\varepsilon \approx \infty$).}
697 \begin{tabular}{@{} ccrrrrrr @{}}
698 \\
699 \toprule
700 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
701 \cmidrule(lr){3-4}
702 \cmidrule(lr){5-6}
703 \cmidrule(l){7-8}
704 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
705 \midrule
706 PC & & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\
707 SP & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\
708 & 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\
709 & 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\
710 & 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\
711 SF & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\
712 & 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\
713 & 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\
714 & 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\
715 GSC & & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\
716 RF & & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\
717 \midrule
718 PC & & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\
719 SP & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\
720 & 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\
721 & 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\
722 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
723 SF & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
724 & 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
725 & 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
726 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
727 GSC & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
728 RF & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
729 \midrule
730 PC & & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\
731 SP & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\
732 & 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\
733 & 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\
734 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
735 SF & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\
736 & 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\
737 & 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\
738 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
739 GSC & & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\
740 RF & & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\
741 \bottomrule
742 \end{tabular}
743 \label{tab:argon}
744 \end{table}
745
746 \begin{table}[htbp]
747 \centering
748 \caption{Variance results from Gaussian fits to angular
749 distributions of the force and torque vectors in the 6 \AA\ sphere of
750 argon in liquid water system. PC = Pure Cutoff, SP = Shifted
751 Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF =
752 Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group
753 Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
754 \begin{tabular}{@{} ccrrrrrr @{}}
755 \\
756 \toprule
757 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
758 \cmidrule(lr){3-5}
759 \cmidrule(l){6-8}
760 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
761 \midrule
762 PC & & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\
763 SP & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\
764 & 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\
765 & 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\
766 & 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\
767 SF & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\
768 & 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\
769 & 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\
770 & 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\
771 GSC & & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
772 RF & & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\
773 \midrule
774 GSSP & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
775 & 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\
776 & 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\
777 & 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\
778 GSSF & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\
779 & 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\
780 & 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\
781 & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\
782 \bottomrule
783 \end{tabular}
784 \label{tab:argonAng}
785 \end{table}
786
787 \newpage
788
789 \bibliographystyle{jcp2}
790 \bibliography{electrostaticMethods}
791
792 \end{document}