ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/electrostaticMethodsPaper/SupportingInfo.tex
Revision: 2660
Committed: Thu Mar 23 05:59:41 2006 UTC (18 years, 3 months ago) by chrisfen
Content type: application/x-tex
File size: 42033 byte(s)
Log Message:
updated plot and supporting information

File Contents

# Content
1 %\documentclass[prb,aps,twocolumn,tabularx]{revtex4}
2 \documentclass[12pt]{article}
3 %\usepackage{endfloat}
4 \usepackage{amsmath}
5 \usepackage{amssymb}
6 \usepackage{epsf}
7 \usepackage{times}
8 \usepackage{mathptm}
9 \usepackage{setspace}
10 \usepackage{tabularx}
11 \usepackage{graphicx}
12 \usepackage{booktabs}
13 %\usepackage{berkeley}
14 \usepackage[ref]{overcite}
15 \pagestyle{plain}
16 \pagenumbering{arabic}
17 \oddsidemargin 0.0cm \evensidemargin 0.0cm
18 \topmargin -21pt \headsep 10pt
19 \textheight 9.0in \textwidth 6.5in
20 \brokenpenalty=10000
21 \renewcommand{\baselinestretch}{1.2}
22 \renewcommand\citemid{\ } % no comma in optional reference note
23
24 \begin{document}
25
26 This document includes individual system-based comparisons of the
27 studied methods with smooth particle-mesh Ewald. Each of the seven
28 systems comprises its own section and has its own discussion and
29 tabular listing of the results for the $\Delta E$, force and torque
30 vector magnitude, and force and torque vector direction comparisons.
31
32 \section{\label{app:water}Liquid Water}
33
34 500 liquid state configurations were generated as described in the
35 Methods section using the SPC/E model of water.\cite{Berendsen87} The
36 results for the energy gap comparisons and the force and torque vector
37 magnitude comparisons are shown in table \ref{tab:spce}. The force
38 and torque vector directionality results are displayed separately in
39 table \ref{tab:spceAng}, where the effect of group-based cutoffs and
40 switching functions on the {\sc sp} and {\sc sf} potentials are
41 investigated.
42 \begin{table}[htbp]
43 \centering
44 \caption{Regression results for the liquid water system. Tabulated
45 results include $\Delta E$ values (top set), force vector magnitudes
46 (middle set) and torque vector magnitudes (bottom set). PC = Pure
47 Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
48 Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
49 \infty$).}
50 \begin{tabular}{@{} ccrrrrrr @{}}
51 \\
52 \toprule
53 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
54 \cmidrule(lr){3-4}
55 \cmidrule(lr){5-6}
56 \cmidrule(l){7-8}
57 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
58 \midrule
59 PC & & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\
60 SP & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\
61 & 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\
62 & 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\
63 & 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\
64 SF & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\
65 & 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\
66 & 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\
67 & 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\
68 GSC & & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\
69 RF & & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\
70 \midrule
71 PC & & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\
72 SP & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\
73 & 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\
74 & 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\
75 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
76 SF & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\
77 & 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
78 & 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\
79 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
80 GSC & & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
81 RF & & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
82 \midrule
83 PC & & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\
84 SP & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\
85 & 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\
86 & 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\
87 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
88 SF & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\
89 & 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\
90 & 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\
91 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
92 GSC & & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\
93 RF & & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\
94 \bottomrule
95 \end{tabular}
96 \label{tab:spce}
97 \end{table}
98
99 \begin{table}[htbp]
100 \centering
101 \caption{Variance results from Gaussian fits to angular
102 distributions of the force and torque vectors in the liquid water
103 system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
104 GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon
105 \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF =
106 Group Switched Shifted Force.}
107 \begin{tabular}{@{} ccrrrrrr @{}}
108 \\
109 \toprule
110 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
111 \cmidrule(lr){3-5}
112 \cmidrule(l){6-8}
113 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
114 \midrule
115 PC & & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\
116 SP & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\
117 & 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\
118 & 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\
119 & 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\
120 SF & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\
121 & 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\
122 & 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\
123 & 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\
124 GSC & & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
125 RF & & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\
126 \midrule
127 GSSP & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
128 & 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\
129 & 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\
130 & 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\
131 GSSF & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\
132 & 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\
133 & 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\
134 & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\
135 \bottomrule
136 \end{tabular}
137 \label{tab:spceAng}
138 \end{table}
139
140 For the most parts, the water results appear to parallel the combined
141 results seen in the discussion in the main paper. There is good
142 agreement with SPME in both energetic and dynamic behavior when using
143 the {\sc sf} method with and without damping. The {\sc sp} method does
144 well with an $\alpha$ around 0.2 \AA$^{-1}$, particularly with cutoff
145 radii greater than 12 \AA. The results for both of these methods also
146 begin to decay as damping gets too large.
147
148 The pure cutoff (PC) method performs poorly, as seen in the main
149 discussion section. In contrast to the combined values, however, the
150 use of a switching function and group based cutoffs really improves
151 the results for these neutral water molecules. The group switched
152 cutoff (GSC) shows mimics the energetics of SPME more poorly than the
153 {\sc sp} (with moderate damping) and {\sc sf} methods, but the
154 dynamics are quite good. The switching functions corrects
155 discontinuities in the potential and forces, leading to the improved
156 results. Such improvements with the use of a switching function has
157 been recognized in previous studies,\cite{Andrea83,Steinbach94} and it
158 is a useful tactic for stably incorporating local area electrostatic
159 effects.
160
161 The reaction field (RF) method simply extends the results observed in
162 the GSC case. Both methods are similar in form (i.e. neutral groups,
163 switching function), but RF incorporates an added effect from the
164 external dielectric. This similarity translates into the same good
165 dynamic results and improved energetic results. These still fall
166 short of the moderately damped {\sc sp} and {\sc sf} methods, but they
167 display how incorporating some implicit properties of the surroundings
168 (i.e. $\epsilon_\textrm{S}$) can improve results.
169
170 A final note for the liquid water system, use of group cutoffs and a
171 switching function also leads to noticeable improvements in the {\sc
172 sp} and {\sc sf} methods, primarily in directionality of the force and
173 torque vectors (table \ref{tab:spceAng}). {\sc sp} shows significant
174 narrowing of the angle distribution in the cases with little to no
175 damping and only modest improvement for the ideal conditions ($\alpha$
176 = 0.2 \AA${-1}$ and $R_\textrm{c} \geqslant 12$~\AA). The {\sc sf}
177 method simply shows modest narrowing across all damping and cutoff
178 ranges of interest. Group cutoffs and the switching function do
179 nothing for cases were error is introduced by overdamping the
180 potentials.
181
182 \section{\label{app:ice}Solid Water: Ice I$_\textrm{c}$}
183
184 In addition to the disordered molecular system above, the ordered
185 molecular system of ice I$_\textrm{c}$ was also considered. The
186 results for the energy gap comparisons and the force and torque vector
187 magnitude comparisons are shown in table \ref{tab:ice}. The force and
188 torque vector directionality results are displayed separately in table
189 \ref{tab:iceAng}, where the effect of group-based cutoffs and
190 switching functions on the {\sc sp} and {\sc sf} potentials are
191 investigated.
192
193 \begin{table}[htbp]
194 \centering
195 \caption{Regression results for the ice I$_\textrm{c}$
196 system. Tabulated results include $\Delta E$ values (top set), force
197 vector magnitudes (middle set) and torque vector magnitudes (bottom
198 set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
199 GSC = Group Switched Cutoff, and RF = Reaction Field (where
200 $\varepsilon \approx \infty$).}
201 \begin{tabular}{@{} ccrrrrrr @{}}
202 \\
203 \toprule
204 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
205 \cmidrule(lr){3-4}
206 \cmidrule(lr){5-6}
207 \cmidrule(l){7-8}
208 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
209 \midrule
210 PC & & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\
211 SP & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\
212 & 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\
213 & 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\
214 & 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\
215 SF & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\
216 & 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\
217 & 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\
218 & 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\
219 GSC & & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\
220 RF & & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\
221 \midrule
222 PC & & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\
223 SP & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\
224 & 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\
225 & 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\
226 & 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\
227 SF & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\
228 & 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\
229 & 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\
230 & 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\
231 GSC & & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\
232 RF & & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\
233 \midrule
234 PC & & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\
235 SP & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\
236 & 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\
237 & 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\
238 & 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\
239 SF & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\
240 & 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\
241 & 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\
242 & 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\
243 GSC & & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\
244 RF & & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\
245 \bottomrule
246 \end{tabular}
247 \label{tab:ice}
248 \end{table}
249
250 \begin{table}[htbp]
251 \centering
252 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the ice I$_\textrm{c}$ system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
253 \begin{tabular}{@{} ccrrrrrr @{}}
254 \\
255 \toprule
256 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
257 \cmidrule(lr){3-5}
258 \cmidrule(l){6-8}
259 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
260 \midrule
261 PC & & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\
262 SP & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\
263 & 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\
264 & 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\
265 & 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\
266 SF & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\
267 & 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\
268 & 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\
269 & 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\
270 GSC & & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
271 RF & & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\
272 \midrule
273 GSSP & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
274 & 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\
275 & 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\
276 & 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
277 GSSF & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\
278 & 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\
279 & 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\
280 & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
281 \bottomrule
282 \end{tabular}
283 \label{tab:iceAng}
284 \end{table}
285
286 Highly ordered systems are a difficult test for the pairwise systems
287 in that they lack the periodicity inherent to the Ewald summation. As
288 expected, the energy gap agreement with SPME reduces for the {\sc sp}
289 and {\sc sf} with parameters that were perfectly acceptable for the
290 disordered liquid system. Moving to higher $R_\textrm{c}$ remedies
291 this degraded performance, though at increase in computational cost.
292 However, the dynamics of this crystalline system (both in magnitude
293 and direction) are little affected. Both methods still reproduce the
294 Ewald behavior with the same parameter recommendations from the
295 previous section.
296
297 It is also worth noting that RF exhibits a slightly improved energy
298 gap results over the liquid water system. One possible explanation is
299 that the ice I$_\textrm{c}$ crystal is ordered such that the net
300 dipole moment of the crystal is zero. With $\epsilon_\textrm{S} =
301 \infty$, the reaction field incorporates this structural organization
302 by actively enforcing a zeroed dipole moment within each cutoff
303 sphere.
304
305 \section{\label{app:melt}NaCl Melt}
306
307 A high temperature NaCl melt was tested to gauge the accuracy of the
308 pairwise summation methods in a highly charge disordered system. The
309 results for the energy gap comparisons and the force and torque vector
310 magnitude comparisons are shown in table \ref{tab:melt}. The force
311 and torque vector directionality results are displayed separately in
312 table \ref{tab:meltAng}, where the effect of group-based cutoffs and
313 switching functions on the {\sc sp} and {\sc sf} potentials are
314 investigated.
315
316 \begin{table}[htbp]
317 \centering
318 \caption{Regression results for the molten NaCl system. Tabulated results include $\Delta E$ values (top set) and force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
319 \begin{tabular}{@{} ccrrrrrr @{}}
320 \\
321 \toprule
322 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
323 \cmidrule(lr){3-4}
324 \cmidrule(lr){5-6}
325 \cmidrule(l){7-8}
326 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
327 \midrule
328 PC & & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\
329 SP & 0.0 & 0.928 & 0.996 & 0.931 & 0.998 & 0.950 & 0.999 \\
330 & 0.1 & 0.977 & 0.998 & 0.998 & 1.000 & 0.997 & 1.000 \\
331 & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
332 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
333 SF & 0.0 & 0.996 & 1.000 & 0.995 & 1.000 & 0.997 & 1.000 \\
334 & 0.1 & 1.021 & 1.000 & 1.024 & 1.000 & 1.007 & 1.000 \\
335 & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
336 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
337 \midrule
338 PC & & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\
339 SP & 0.0 & 0.973 & 0.981 & 0.975 & 0.988 & 0.979 & 0.992 \\
340 & 0.1 & 0.987 & 0.992 & 0.993 & 0.998 & 0.997 & 0.999 \\
341 & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
342 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
343 SF & 0.0 & 0.996 & 0.997 & 0.997 & 0.999 & 0.998 & 1.000 \\
344 & 0.1 & 1.000 & 0.997 & 1.001 & 0.999 & 1.000 & 1.000 \\
345 & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
346 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
347 \bottomrule
348 \end{tabular}
349 \label{tab:melt}
350 \end{table}
351
352 \begin{table}[htbp]
353 \centering
354 \caption{Variance results from Gaussian fits to angular distributions of the force vectors in the molten NaCl system. PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
355 \begin{tabular}{@{} ccrrrrrr @{}}
356 \\
357 \toprule
358 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
359 \cmidrule(lr){3-5}
360 \cmidrule(l){6-8}
361 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
362 \midrule
363 PC & & 13.294 & 8.035 & 5.366 \\
364 SP & 0.0 & 13.316 & 8.037 & 5.385 \\
365 & 0.1 & 5.705 & 1.391 & 0.360 \\
366 & 0.2 & 2.415 & 7.534 & 13.927 \\
367 & 0.3 & 23.769 & 67.306 & 57.252 \\
368 SF & 0.0 & 1.693 & 0.603 & 0.256 \\
369 & 0.1 & 1.687 & 0.653 & 0.272 \\
370 & 0.2 & 2.598 & 7.523 & 13.930 \\
371 & 0.3 & 23.734 & 67.305 & 57.252 \\
372 \bottomrule
373 \end{tabular}
374 \label{tab:meltAng}
375 \end{table}
376
377 The molten NaCl system shows more sensitivity to the electrostatic
378 damping than the water systems. The most noticeable point is that the
379 undamped {\sc sf} method does very well at replicating the {\sc spme}
380 configurational energy differences and forces. Light damping appears
381 to minimally improve the dynamics, but this comes with a deterioration
382 of the energy gap results. In contrast, this light damping improves
383 the {\sc sp} energy gaps and forces. Moderate and heavy electrostatic
384 damping reduce the agreement with {\sc spme} for both methods. From
385 these observations, the undamped {\sc sf} method is the best choice
386 for disordered systems of charges.
387
388 \section{\label{app:salt}NaCl Crystal}
389
390 A 1000K NaCl crystal was used to investigate the accuracy of the
391 pairwise summation methods in an ordered system of charged
392 particles. The results for the energy gap comparisons and the force
393 and torque vector magnitude comparisons are shown in table
394 \ref{tab:salt}. The force and torque vector directionality results
395 are displayed separately in table \ref{tab:saltAng}, where the effect
396 of group-based cutoffs and switching functions on the {\sc sp} and
397 {\sc sf} potentials are investigated.
398
399 \begin{table}[htbp]
400 \centering
401 \caption{Regression results for the crystalline NaCl
402 system. Tabulated results include $\Delta E$ values (top set) and
403 force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted
404 Potential, and SF = Shifted Force.}
405 \begin{tabular}{@{} ccrrrrrr @{}}
406 \\
407 \toprule
408 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
409 \cmidrule(lr){3-4}
410 \cmidrule(lr){5-6}
411 \cmidrule(l){7-8}
412 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
413 \midrule
414 PC & & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\
415 SP & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\
416 & 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\
417 & 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\
418 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\
419 SF & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\
420 & 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\
421 & 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\
422 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\
423 \midrule
424 PC & & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\
425 SP & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\
426 & 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\
427 & 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\
428 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
429 SF & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\
430 & 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\
431 & 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\
432 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
433 \bottomrule
434 \end{tabular}
435 \label{tab:salt}
436 \end{table}
437
438 \begin{table}[htbp]
439 \centering
440 \caption{Variance results from Gaussian fits to angular
441 distributions of the force vectors in the crystalline NaCl system. PC
442 = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
443 Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
444 \infty$).}
445 \begin{tabular}{@{} ccrrrrrr @{}}
446 \\
447 \toprule
448 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
449 \cmidrule(lr){3-5}
450 \cmidrule(l){6-8}
451 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
452 \midrule
453 PC & & 111.945 & 111.824 & 111.866 \\
454 SP & 0.0 & 112.414 & 152.215 & 38.087 \\
455 & 0.1 & 52.361 & 42.574 & 2.819 \\
456 & 0.2 & 10.847 & 9.709 & 9.686 \\
457 & 0.3 & 31.128 & 31.104 & 31.029 \\
458 SF & 0.0 & 10.025 & 3.555 & 1.648 \\
459 & 0.1 & 9.462 & 3.303 & 1.721 \\
460 & 0.2 & 11.454 & 9.813 & 9.701 \\
461 & 0.3 & 31.120 & 31.105 & 31.029 \\
462 \bottomrule
463 \end{tabular}
464 \label{tab:saltAng}
465 \end{table}
466
467 The crystalline NaCl system is the most challenging test case for the
468 pairwise summation methods, as evidenced by the results in tables
469 \ref{tab:salt} and \ref{tab:saltAng}. The undamped and weakly damped
470 {\sc sf} methods with a 12 \AA\ cutoff radius seem to be the best
471 choices. These methods match well with {\sc spme} across the energy
472 gap, force magnitude, and force directionality tests. The {\sc sp}
473 method struggles in all cases with the exception of good dynamics
474 reproduction when using weak electrostatic damping with a large cutoff
475 radius.
476
477 The moderate electrostatic damping case is not as good as we would
478 expect given the good long-time dynamics results observed for this
479 system. Since these results are a test of instantaneous dynamics, this
480 indicates that good long-time dynamics comes in part at the expense of
481 short-time dynamics. Further indication of this comes from the full
482 power spectra shown in the main text. It appears as though a
483 distortion is introduced between 200 to 300 cm$^{-1}$ with increased
484 $\alpha$.
485
486 \section{\label{app:solnWeak}Weak NaCl Solution}
487
488 In an effort to bridge the charged atomic and neutral molecular
489 systems, Na$^+$ and Cl$^-$ ion charge defects were incorporated into
490 the liquid water system. This low ionic strength system consists of 4
491 ions in the 1000 SPC/E water solvent ($\approx$0.11 M). The results
492 for the energy gap comparisons and the force and torque vector
493 magnitude comparisons are shown in table \ref{tab:solnWeak}. The
494 force and torque vector directionality results are displayed
495 separately in table \ref{tab:solnWeakAng}, where the effect of
496 group-based cutoffs and switching functions on the {\sc sp} and {\sc
497 sf} potentials are investigated.
498
499 \begin{table}[htbp]
500 \centering
501 \caption{Regression results for the weak NaCl solution
502 system. Tabulated results include $\Delta E$ values (top set), force
503 vector magnitudes (middle set) and torque vector magnitudes (bottom
504 set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
505 GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon
506 \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF =
507 Group Switched Shifted Force.}
508 \begin{tabular}{@{} ccrrrrrr @{}}
509 \\
510 \toprule
511 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
512 \cmidrule(lr){3-4}
513 \cmidrule(lr){5-6}
514 \cmidrule(l){7-8}
515 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
516 \midrule
517 PC & & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\
518 SP & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\
519 & 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\
520 & 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\
521 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
522 SF & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\
523 & 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\
524 & 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\
525 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
526 GSC & & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\
527 RF & & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\
528 \midrule
529 PC & & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\
530 SP & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\
531 & 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\
532 & 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\
533 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
534 SF & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\
535 & 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\
536 & 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\
537 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
538 GSC & & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\
539 RF & & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\
540 \midrule
541 PC & & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\
542 SP & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\
543 & 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\
544 & 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\
545 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
546 SF & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\
547 & 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\
548 & 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\
549 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
550 GSC & & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\
551 RF & & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\
552 \bottomrule
553 \end{tabular}
554 \label{tab:solnWeak}
555 \end{table}
556
557 \begin{table}[htbp]
558 \centering
559 \caption{Variance results from Gaussian fits to angular
560 distributions of the force and torque vectors in the weak NaCl
561 solution system. PC = Pure Cutoff, SP = Shifted Potential, SF =
562 Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where
563 $\varepsilon \approx \infty$), GSSP = Group Switched Shifted
564 Potential, and GSSF = Group Switched Shifted Force.}
565 \begin{tabular}{@{} ccrrrrrr @{}}
566 \\
567 \toprule
568 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
569 \cmidrule(lr){3-5}
570 \cmidrule(l){6-8}
571 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
572 \midrule
573 PC & & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\
574 SP & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\
575 & 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\
576 & 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\
577 & 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\
578 SF & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\
579 & 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\
580 & 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\
581 & 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\
582 GSC & & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
583 RF & & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\
584 \midrule
585 GSSP & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
586 & 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\
587 & 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\
588 & 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\
589 GSSF & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\
590 & 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\
591 & 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\
592 & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\
593 \bottomrule
594 \end{tabular}
595 \label{tab:solnWeakAng}
596 \end{table}
597
598 This weak ionic strength system can be considered as a perturbation of
599 the pure liquid water system. The {\sc sp} and {\sc sf} methods are
600 not significantly affected by the inclusion of a few ions. The aspect
601 of cutoff sphere neutralization aids in the smooth incorporation of
602 these ions; thus, all of the observations regarding these methods
603 carry over from section \ref{app:water}. The differences between these
604 systems are visible for the {\sc rf} method. Though good force
605 reproduction is still maintained, the energy gaps show a significant
606 increase in the data scatter. This foreshadows the breakdown of the
607 method as we introduce system inhomogeneities.
608
609 \section{\label{app:solnStr}Strong NaCl Solution}
610
611 The bridging of the charged atomic and neutral molecular systems was
612 further developed by considering a high ionic strength system
613 consisting of 40 ions in the 1000 SPC/E water solvent ($\approx$1.1
614 M). The results for the energy gap comparisons and the force and
615 torque vector magnitude comparisons are shown in table
616 \ref{tab:solnWeak}. The force and torque vector directionality
617 results are displayed separately in table\ref{tab:solnWeakAng}, where
618 the effect of group-based cutoffs and switching functions on the {\sc
619 sp} and {\sc sf} potentials are investigated.
620
621 \begin{table}[htbp]
622 \centering
623 \caption{Regression results for the strong NaCl solution
624 system. Tabulated results include $\Delta E$ values (top set), force
625 vector magnitudes (middle set) and torque vector magnitudes (bottom
626 set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
627 GSC = Group Switched Cutoff, and RF = Reaction Field (where
628 $\varepsilon \approx \infty$).}
629 \begin{tabular}{@{} ccrrrrrr @{}}
630 \\
631 \toprule
632 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
633 \cmidrule(lr){3-4}
634 \cmidrule(lr){5-6}
635 \cmidrule(l){7-8}
636 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
637 \midrule
638 PC & & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\
639 SP & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\
640 & 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\
641 & 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\
642 & 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\
643 SF & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\
644 & 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\
645 & 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\
646 & 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\
647 GSC & & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\
648 RF & & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\
649 \midrule
650 PC & & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\
651 SP & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\
652 & 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\
653 & 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\
654 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
655 SF & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\
656 & 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\
657 & 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\
658 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
659 GSC & & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\
660 RF & & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\
661 \midrule
662 PC & & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\
663 SP & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\
664 & 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\
665 & 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\
666 & 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\
667 SF & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\
668 & 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\
669 & 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\
670 & 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\
671 GSC & & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\
672 RF & & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\
673 \bottomrule
674 \end{tabular}
675 \label{tab:solnStr}
676 \end{table}
677
678 \begin{table}[htbp]
679 \centering
680 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the strong NaCl solution system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
681 \begin{tabular}{@{} ccrrrrrr @{}}
682 \\
683 \toprule
684 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
685 \cmidrule(lr){3-5}
686 \cmidrule(l){6-8}
687 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
688 \midrule
689 PC & & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\
690 SP & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\
691 & 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\
692 & 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\
693 & 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\
694 SF & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\
695 & 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\
696 & 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\
697 & 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\
698 GSC & & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\
699 RF & & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\
700 \midrule
701 GSSP & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\
702 & 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\
703 & 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\
704 & 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\
705 GSSF & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\
706 & 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\
707 & 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\
708 & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\
709 \bottomrule
710 \end{tabular}
711 \label{tab:solnStrAng}
712 \end{table}
713
714 The {\sc rf} method struggles with the jump in ionic strength. The
715 configuration energy difference degrade to unuseable levels while the
716 forces and torques degrade in a more modest fashion. The {\sc rf}
717 method was designed for homogeneous systems, and this restriction is
718 apparent in these results.
719
720 The {\sc sp} and {\sc sf} methods require larger cutoffs to maintain
721 their agreement with {\sc spme}. With these results, we still
722 recommend no to moderate damping for the {\sc sf} method and moderate
723 damping for the {\sc sp} method, both with cutoffs greater than 12
724 \AA.
725
726 \section{\label{app:argon}Argon Sphere in Water}
727
728 The final model system studied was 6 \AA\ sphere of Argon solvated by
729 SPC/E water. The results for the energy gap comparisons and the force
730 and torque vector magnitude comparisons are shown in table
731 \ref{tab:solnWeak}. The force and torque vector directionality
732 results are displayed separately in table \ref{tab:solnWeakAng}, where
733 the effect of group-based cutoffs and switching functions on the {\sc
734 sp} and {\sc sf} potentials are investigated.
735
736 \begin{table}[htbp]
737 \centering
738 \caption{Regression results for the 6 \AA\ argon sphere in liquid
739 water system. Tabulated results include $\Delta E$ values (top set),
740 force vector magnitudes (middle set) and torque vector magnitudes
741 (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted
742 Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where
743 $\varepsilon \approx \infty$).}
744 \begin{tabular}{@{} ccrrrrrr @{}}
745 \\
746 \toprule
747 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
748 \cmidrule(lr){3-4}
749 \cmidrule(lr){5-6}
750 \cmidrule(l){7-8}
751 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
752 \midrule
753 PC & & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\
754 SP & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\
755 & 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\
756 & 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\
757 & 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\
758 SF & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\
759 & 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\
760 & 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\
761 & 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\
762 GSC & & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\
763 RF & & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\
764 \midrule
765 PC & & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\
766 SP & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\
767 & 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\
768 & 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\
769 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
770 SF & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
771 & 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
772 & 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
773 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
774 GSC & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
775 RF & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
776 \midrule
777 PC & & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\
778 SP & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\
779 & 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\
780 & 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\
781 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
782 SF & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\
783 & 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\
784 & 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\
785 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
786 GSC & & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\
787 RF & & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\
788 \bottomrule
789 \end{tabular}
790 \label{tab:argon}
791 \end{table}
792
793 \begin{table}[htbp]
794 \centering
795 \caption{Variance results from Gaussian fits to angular
796 distributions of the force and torque vectors in the 6 \AA\ sphere of
797 argon in liquid water system. PC = Pure Cutoff, SP = Shifted
798 Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF =
799 Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group
800 Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
801 \begin{tabular}{@{} ccrrrrrr @{}}
802 \\
803 \toprule
804 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
805 \cmidrule(lr){3-5}
806 \cmidrule(l){6-8}
807 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
808 \midrule
809 PC & & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\
810 SP & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\
811 & 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\
812 & 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\
813 & 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\
814 SF & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\
815 & 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\
816 & 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\
817 & 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\
818 GSC & & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
819 RF & & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\
820 \midrule
821 GSSP & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
822 & 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\
823 & 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\
824 & 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\
825 GSSF & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\
826 & 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\
827 & 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\
828 & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\
829 \bottomrule
830 \end{tabular}
831 \label{tab:argonAng}
832 \end{table}
833
834 This system appears not to show in any significant deviation in the previously observed results. The {\sc sp} and {\sc sf} methods give result qualities similar to those observed in section \ref{app:water}. The only significant difference is the improvement for the configuration energy differences for the {\sc rf} method. This is surprising in that we are introducing an inhomogeneity to the system; however, this inhomogeneity is charge-neutral and does not result in charged cutoff spheres. The charge-neutrality, which the {\sc sp} and {\sc sf} methods explicity enforce, seems to play a greater role in the stability of the {\sc rf} method than the necessity of a homogeneous environment.
835
836 \newpage
837
838 \bibliographystyle{jcp2}
839 \bibliography{electrostaticMethods}
840
841 \end{document}