ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/electrostaticMethodsPaper/SupportingInfo.tex
Revision: 2667
Committed: Fri Mar 24 02:39:59 2006 UTC (18 years, 3 months ago) by chrisfen
Content type: application/x-tex
File size: 41698 byte(s)
Log Message:
Figure adjusted and Steve's recommendations incorporated

File Contents

# Content
1 %\documentclass[prb,aps,twocolumn,tabularx]{revtex4}
2 \documentclass[11pt]{article}
3 %\usepackage{endfloat}
4 \usepackage{amsmath}
5 \usepackage{amssymb}
6 \usepackage{epsf}
7 \usepackage{times}
8 \usepackage{mathptm}
9 \usepackage{setspace}
10 \usepackage{tabularx}
11 \usepackage{graphicx}
12 \usepackage{booktabs}
13 %\usepackage{berkeley}
14 \usepackage[ref]{overcite}
15 \pagestyle{plain}
16 \pagenumbering{arabic}
17 \oddsidemargin 0.0cm \evensidemargin 0.0cm
18 \topmargin -21pt \headsep 10pt
19 \textheight 9.0in \textwidth 6.5in
20 \brokenpenalty=10000
21 \renewcommand{\baselinestretch}{1.2}
22 \renewcommand\citemid{\ } % no comma in optional reference note
23
24 \begin{document}
25
26 This document includes individual system-based comparisons of the
27 studied methods with smooth particle mesh Ewald {\sc spme}. Each of
28 the seven systems comprises its own section and has its own discussion
29 and tabular listing of the results for the $\Delta E$, force and
30 torque vector magnitude, and force and torque vector direction
31 comparisons.
32
33 \section{\label{app:water}Liquid Water}
34
35 The first system considered was liquid water at 300K using the SPC/E
36 model of water.\cite{Berendsen87} The results for the energy gap
37 comparisons and the force and torque vector magnitude comparisons are
38 shown in table \ref{tab:spce}. The force and torque vector
39 directionality results are displayed separately in table
40 \ref{tab:spceAng}, where the effect of group-based cutoffs and
41 switching functions on the {\sc sp} and {\sc sf} potentials are
42 investigated.
43 \begin{table}[htbp]
44 \centering
45 \caption{Regression results for the liquid water system. Tabulated
46 results include $\Delta E$ values (top set), force vector magnitudes
47 (middle set) and torque vector magnitudes (bottom set). PC = Pure
48 Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
49 Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
50 \infty$).}
51 \begin{tabular}{@{} ccrrrrrr @{}}
52 \\
53 \toprule
54 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
55 \cmidrule(lr){3-4}
56 \cmidrule(lr){5-6}
57 \cmidrule(l){7-8}
58 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
59 \midrule
60 PC & & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\
61 SP & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\
62 & 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\
63 & 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\
64 & 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\
65 SF & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\
66 & 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\
67 & 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\
68 & 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\
69 GSC & & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\
70 RF & & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\
71 \midrule
72 PC & & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\
73 SP & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\
74 & 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\
75 & 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\
76 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
77 SF & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\
78 & 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
79 & 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\
80 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
81 GSC & & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
82 RF & & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
83 \midrule
84 PC & & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\
85 SP & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\
86 & 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\
87 & 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\
88 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
89 SF & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\
90 & 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\
91 & 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\
92 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
93 GSC & & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\
94 RF & & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\
95 \bottomrule
96 \end{tabular}
97 \label{tab:spce}
98 \end{table}
99
100 \begin{table}[htbp]
101 \centering
102 \caption{Variance results from Gaussian fits to angular
103 distributions of the force and torque vectors in the liquid water
104 system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
105 GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon
106 \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF =
107 Group Switched Shifted Force.}
108 \begin{tabular}{@{} ccrrrrrr @{}}
109 \\
110 \toprule
111 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
112 \cmidrule(lr){3-5}
113 \cmidrule(l){6-8}
114 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
115 \midrule
116 PC & & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\
117 SP & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\
118 & 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\
119 & 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\
120 & 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\
121 SF & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\
122 & 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\
123 & 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\
124 & 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\
125 GSC & & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
126 RF & & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\
127 \midrule
128 GSSP & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
129 & 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\
130 & 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\
131 & 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\
132 GSSF & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\
133 & 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\
134 & 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\
135 & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\
136 \bottomrule
137 \end{tabular}
138 \label{tab:spceAng}
139 \end{table}
140
141 The water results appear to parallel the combined results seen in the
142 discussion section of the main paper. There is good agreement with
143 {\sc spme} in both energetic and dynamic behavior when using the {\sc sf}
144 method with and without damping. The {\sc sp} method does well with an
145 $\alpha$ around 0.2 \AA$^{-1}$, particularly with cutoff radii greater
146 than 12 \AA. Overdamping the electrostatics reduces the agreement between both these methods and {\sc spme}.
147
148 The pure cutoff ({\sc pc}) method performs poorly, again mirroring the
149 observations in the main portion of this paper. In contrast to the
150 combined values, however, the use of a switching function and group
151 based cutoffs greatly improves the results for these neutral water
152 molecules. The group switched cutoff ({\sc gsc}) does not mimic the
153 energetics of {\sc spme} as well as the {\sc sp} (with moderate
154 damping) and {\sc sf} methods, but the dynamics are quite good. The
155 switching functions correct discontinuities in the potential and
156 forces, leading to these improved results. Such improvements with the
157 use of a switching function have been recognized in previous
158 studies,\cite{Andrea83,Steinbach94} and this proves to be a useful
159 tactic for stably incorporating local area electrostatic effects.
160
161 The reaction field ({\sc rf}) method simply extends upon the results
162 observed in the {\sc gsc} case. Both methods are similar in form
163 (i.e. neutral groups, switching function), but {\sc rf} incorporates
164 an added effect from the external dielectric. This similarity
165 translates into the same good dynamic results and improved energetic
166 agreement with {\sc spme}. Though this agreement is not to the level
167 of the moderately damped {\sc sp} and {\sc sf} methods, these results
168 show how incorporating some implicit properties of the surroundings
169 (i.e. $\epsilon_\textrm{S}$) can improve the solvent depiction.
170
171 As a final note for the liquid water system, use of group cutoffs and a
172 switching function leads to noticeable improvements in the {\sc sp}
173 and {\sc sf} methods, primarily in directionality of the force and
174 torque vectors (table \ref{tab:spceAng}). The {\sc sp} method shows
175 significant narrowing of the angle distribution when using little to
176 no damping and only modest improvement for the recommended conditions
177 ($\alpha$ = 0.2 \AA${-1}$ and $R_\textrm{c} \geqslant 12$~\AA). The
178 {\sc sf} method shows modest narrowing across all damping and cutoff
179 ranges of interest. When overdamping these methods, group cutoffs and
180 the switching function do not improve the force and torque
181 directionalities.
182
183 \section{\label{app:ice}Solid Water: Ice I$_\textrm{c}$}
184
185 In addition to the disordered molecular system above, the ordered
186 molecular system of ice I$_\textrm{c}$ was also considered. The
187 results for the energy gap comparisons and the force and torque vector
188 magnitude comparisons are shown in table \ref{tab:ice}. The force and
189 torque vector directionality results are displayed separately in table
190 \ref{tab:iceAng}, where the effect of group-based cutoffs and
191 switching functions on the {\sc sp} and {\sc sf} potentials are
192 investigated.
193
194 \begin{table}[htbp]
195 \centering
196 \caption{Regression results for the ice I$_\textrm{c}$
197 system. Tabulated results include $\Delta E$ values (top set), force
198 vector magnitudes (middle set) and torque vector magnitudes (bottom
199 set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
200 GSC = Group Switched Cutoff, and RF = Reaction Field (where
201 $\varepsilon \approx \infty$).}
202 \begin{tabular}{@{} ccrrrrrr @{}}
203 \\
204 \toprule
205 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
206 \cmidrule(lr){3-4}
207 \cmidrule(lr){5-6}
208 \cmidrule(l){7-8}
209 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
210 \midrule
211 PC & & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\
212 SP & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\
213 & 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\
214 & 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\
215 & 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\
216 SF & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\
217 & 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\
218 & 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\
219 & 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\
220 GSC & & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\
221 RF & & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\
222 \midrule
223 PC & & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\
224 SP & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\
225 & 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\
226 & 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\
227 & 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\
228 SF & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\
229 & 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\
230 & 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\
231 & 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\
232 GSC & & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\
233 RF & & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\
234 \midrule
235 PC & & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\
236 SP & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\
237 & 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\
238 & 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\
239 & 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\
240 SF & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\
241 & 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\
242 & 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\
243 & 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\
244 GSC & & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\
245 RF & & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\
246 \bottomrule
247 \end{tabular}
248 \label{tab:ice}
249 \end{table}
250
251 \begin{table}[htbp]
252 \centering
253 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the ice I$_\textrm{c}$ system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
254 \begin{tabular}{@{} ccrrrrrr @{}}
255 \\
256 \toprule
257 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
258 \cmidrule(lr){3-5}
259 \cmidrule(l){6-8}
260 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
261 \midrule
262 PC & & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\
263 SP & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\
264 & 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\
265 & 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\
266 & 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\
267 SF & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\
268 & 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\
269 & 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\
270 & 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\
271 GSC & & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
272 RF & & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\
273 \midrule
274 GSSP & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
275 & 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\
276 & 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\
277 & 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
278 GSSF & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\
279 & 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\
280 & 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\
281 & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
282 \bottomrule
283 \end{tabular}
284 \label{tab:iceAng}
285 \end{table}
286
287 Highly ordered systems are a difficult test for the pairwise methods
288 in that they lack the periodicity term of the Ewald summation. As
289 expected, the energy gap agreement with {\sc spme} is reduced for the
290 {\sc sp} and {\sc sf} methods with parameters that were acceptable for
291 the disordered liquid system. Moving to higher $R_\textrm{c}$ helps
292 improve the agreement, though at an increase in computational cost.
293 The dynamics of this crystalline system (both in magnitude and
294 direction) are little affected. Both methods still reproduce the Ewald
295 behavior with the same parameter recommendations from the previous
296 section.
297
298 It is also worth noting that {\sc rf} exhibits improved energy gap
299 results over the liquid water system. One possible explanation is
300 that the ice I$_\textrm{c}$ crystal is ordered such that the net
301 dipole moment of the crystal is zero. With $\epsilon_\textrm{S} =
302 \infty$, the reaction field incorporates this structural organization
303 by actively enforcing a zeroed dipole moment within each cutoff
304 sphere.
305
306 \section{\label{app:melt}NaCl Melt}
307
308 A high temperature NaCl melt was tested to gauge the accuracy of the
309 pairwise summation methods in a charged disordered system. The results
310 for the energy gap comparisons and the force vector magnitude
311 comparisons are shown in table \ref{tab:melt}. The force vector
312 directionality results are displayed separately in table
313 \ref{tab:meltAng}.
314
315 \begin{table}[htbp]
316 \centering
317 \caption{Regression results for the molten NaCl system. Tabulated results include $\Delta E$ values (top set) and force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
318 \begin{tabular}{@{} ccrrrrrr @{}}
319 \\
320 \toprule
321 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
322 \cmidrule(lr){3-4}
323 \cmidrule(lr){5-6}
324 \cmidrule(l){7-8}
325 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
326 \midrule
327 PC & & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\
328 SP & 0.0 & 0.928 & 0.996 & 0.931 & 0.998 & 0.950 & 0.999 \\
329 & 0.1 & 0.977 & 0.998 & 0.998 & 1.000 & 0.997 & 1.000 \\
330 & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
331 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
332 SF & 0.0 & 0.996 & 1.000 & 0.995 & 1.000 & 0.997 & 1.000 \\
333 & 0.1 & 1.021 & 1.000 & 1.024 & 1.000 & 1.007 & 1.000 \\
334 & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
335 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
336 \midrule
337 PC & & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\
338 SP & 0.0 & 0.973 & 0.981 & 0.975 & 0.988 & 0.979 & 0.992 \\
339 & 0.1 & 0.987 & 0.992 & 0.993 & 0.998 & 0.997 & 0.999 \\
340 & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
341 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
342 SF & 0.0 & 0.996 & 0.997 & 0.997 & 0.999 & 0.998 & 1.000 \\
343 & 0.1 & 1.000 & 0.997 & 1.001 & 0.999 & 1.000 & 1.000 \\
344 & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
345 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
346 \bottomrule
347 \end{tabular}
348 \label{tab:melt}
349 \end{table}
350
351 \begin{table}[htbp]
352 \centering
353 \caption{Variance results from Gaussian fits to angular distributions of the force vectors in the molten NaCl system. PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
354 \begin{tabular}{@{} ccrrrrrr @{}}
355 \\
356 \toprule
357 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
358 \cmidrule(lr){3-5}
359 \cmidrule(l){6-8}
360 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
361 \midrule
362 PC & & 13.294 & 8.035 & 5.366 \\
363 SP & 0.0 & 13.316 & 8.037 & 5.385 \\
364 & 0.1 & 5.705 & 1.391 & 0.360 \\
365 & 0.2 & 2.415 & 7.534 & 13.927 \\
366 & 0.3 & 23.769 & 67.306 & 57.252 \\
367 SF & 0.0 & 1.693 & 0.603 & 0.256 \\
368 & 0.1 & 1.687 & 0.653 & 0.272 \\
369 & 0.2 & 2.598 & 7.523 & 13.930 \\
370 & 0.3 & 23.734 & 67.305 & 57.252 \\
371 \bottomrule
372 \end{tabular}
373 \label{tab:meltAng}
374 \end{table}
375
376 The molten NaCl system shows more sensitivity to the electrostatic
377 damping than the water systems. The most noticeable point is that the
378 undamped {\sc sf} method does very well at replicating the {\sc spme}
379 configurational energy differences and forces. Light damping appears
380 to minimally improve the dynamics, but this comes with a deterioration
381 of the energy gap results. In contrast, this light damping improves
382 the {\sc sp} energy gaps and forces. Moderate and heavy electrostatic
383 damping reduce the agreement with {\sc spme} for both methods. From
384 these observations, the undamped {\sc sf} method is the best choice
385 for disordered systems of charges.
386
387 \section{\label{app:salt}NaCl Crystal}
388
389 A 1000K NaCl crystal was used to investigate the accuracy of the
390 pairwise summation methods in an ordered system of charged
391 particles. The results for the energy gap comparisons and the force
392 vector magnitude comparisons are shown in table \ref{tab:salt}. The
393 force vector directionality results are displayed separately in table
394 \ref{tab:saltAng}.
395
396 \begin{table}[htbp]
397 \centering
398 \caption{Regression results for the crystalline NaCl
399 system. Tabulated results include $\Delta E$ values (top set) and
400 force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted
401 Potential, and SF = Shifted Force.}
402 \begin{tabular}{@{} ccrrrrrr @{}}
403 \\
404 \toprule
405 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
406 \cmidrule(lr){3-4}
407 \cmidrule(lr){5-6}
408 \cmidrule(l){7-8}
409 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
410 \midrule
411 PC & & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\
412 SP & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\
413 & 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\
414 & 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\
415 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\
416 SF & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\
417 & 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\
418 & 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\
419 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\
420 \midrule
421 PC & & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\
422 SP & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\
423 & 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\
424 & 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\
425 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
426 SF & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\
427 & 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\
428 & 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\
429 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
430 \bottomrule
431 \end{tabular}
432 \label{tab:salt}
433 \end{table}
434
435 \begin{table}[htbp]
436 \centering
437 \caption{Variance results from Gaussian fits to angular
438 distributions of the force vectors in the crystalline NaCl system. PC
439 = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
440 Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
441 \infty$).}
442 \begin{tabular}{@{} ccrrrrrr @{}}
443 \\
444 \toprule
445 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
446 \cmidrule(lr){3-5}
447 \cmidrule(l){6-8}
448 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
449 \midrule
450 PC & & 111.945 & 111.824 & 111.866 \\
451 SP & 0.0 & 112.414 & 152.215 & 38.087 \\
452 & 0.1 & 52.361 & 42.574 & 2.819 \\
453 & 0.2 & 10.847 & 9.709 & 9.686 \\
454 & 0.3 & 31.128 & 31.104 & 31.029 \\
455 SF & 0.0 & 10.025 & 3.555 & 1.648 \\
456 & 0.1 & 9.462 & 3.303 & 1.721 \\
457 & 0.2 & 11.454 & 9.813 & 9.701 \\
458 & 0.3 & 31.120 & 31.105 & 31.029 \\
459 \bottomrule
460 \end{tabular}
461 \label{tab:saltAng}
462 \end{table}
463
464 The crystalline NaCl system is the most challenging test case for the
465 pairwise summation methods, as evidenced by the results in tables
466 \ref{tab:salt} and \ref{tab:saltAng}. The undamped and weakly damped
467 {\sc sf} methods with a 12 \AA\ cutoff radius seem to be the best
468 choices. These methods match well with {\sc spme} across the energy
469 gap, force magnitude, and force directionality tests. The {\sc sp}
470 method struggles in all cases, with the exception of good dynamics
471 reproduction when using weak electrostatic damping with a large cutoff
472 radius.
473
474 The moderate electrostatic damping case is not as good as we would
475 expect given the long-time dynamics results observed for this
476 system. Since the data tabulated in tables \ref{tab:salt} and
477 \ref{tab:saltAng} are a test of instantaneous dynamics, this indicates
478 that good long-time dynamics comes in part at the expense of
479 short-time dynamics.
480
481 \section{\label{app:solnWeak}Weak NaCl Solution}
482
483 In an effort to bridge the charged atomic and neutral molecular
484 systems, Na$^+$ and Cl$^-$ ion charge defects were incorporated into
485 the liquid water system. This low ionic strength system consists of 4
486 ions in the 1000 SPC/E water solvent ($\approx$0.11 M). The results
487 for the energy gap comparisons and the force and torque vector
488 magnitude comparisons are shown in table \ref{tab:solnWeak}. The
489 force and torque vector directionality results are displayed
490 separately in table \ref{tab:solnWeakAng}, where the effect of
491 group-based cutoffs and switching functions on the {\sc sp} and {\sc
492 sf} potentials are investigated.
493
494 \begin{table}[htbp]
495 \centering
496 \caption{Regression results for the weak NaCl solution
497 system. Tabulated results include $\Delta E$ values (top set), force
498 vector magnitudes (middle set) and torque vector magnitudes (bottom
499 set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
500 GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon
501 \approx \infty$).}
502 \begin{tabular}{@{} ccrrrrrr @{}}
503 \\
504 \toprule
505 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
506 \cmidrule(lr){3-4}
507 \cmidrule(lr){5-6}
508 \cmidrule(l){7-8}
509 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
510 \midrule
511 PC & & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\
512 SP & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\
513 & 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\
514 & 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\
515 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
516 SF & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\
517 & 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\
518 & 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\
519 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
520 GSC & & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\
521 RF & & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\
522 \midrule
523 PC & & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\
524 SP & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\
525 & 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\
526 & 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\
527 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
528 SF & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\
529 & 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\
530 & 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\
531 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
532 GSC & & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\
533 RF & & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\
534 \midrule
535 PC & & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\
536 SP & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\
537 & 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\
538 & 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\
539 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
540 SF & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\
541 & 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\
542 & 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\
543 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
544 GSC & & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\
545 RF & & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\
546 \bottomrule
547 \end{tabular}
548 \label{tab:solnWeak}
549 \end{table}
550
551 \begin{table}[htbp]
552 \centering
553 \caption{Variance results from Gaussian fits to angular
554 distributions of the force and torque vectors in the weak NaCl
555 solution system. PC = Pure Cutoff, SP = Shifted Potential, SF =
556 Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where
557 $\varepsilon \approx \infty$), GSSP = Group Switched Shifted
558 Potential, and GSSF = Group Switched Shifted Force.}
559 \begin{tabular}{@{} ccrrrrrr @{}}
560 \\
561 \toprule
562 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
563 \cmidrule(lr){3-5}
564 \cmidrule(l){6-8}
565 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
566 \midrule
567 PC & & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\
568 SP & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\
569 & 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\
570 & 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\
571 & 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\
572 SF & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\
573 & 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\
574 & 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\
575 & 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\
576 GSC & & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
577 RF & & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\
578 \midrule
579 GSSP & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
580 & 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\
581 & 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\
582 & 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\
583 GSSF & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\
584 & 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\
585 & 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\
586 & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\
587 \bottomrule
588 \end{tabular}
589 \label{tab:solnWeakAng}
590 \end{table}
591
592 Because this system is a perturbation of the pure liquid water system,
593 comparisons are best drawn between these two sets. The {\sc sp} and
594 {\sc sf} methods are not significantly affected by the inclusion of a
595 few ions. The aspect of cutoff sphere neutralization aids in the
596 smooth incorporation of these ions; thus, all of the observations
597 regarding these methods carry over from section \ref{app:water}. The
598 differences between these systems are more visible for the {\sc rf}
599 method. Though good force agreement is still maintained, the energy
600 gaps show a significant increase in the data scatter. This foreshadows
601 the breakdown of the method as we introduce charged inhomogeneities.
602
603 \section{\label{app:solnStr}Strong NaCl Solution}
604
605 The bridging of the charged atomic and neutral molecular systems was
606 further developed by considering a high ionic strength system
607 consisting of 40 ions in the 1000 SPC/E water solvent ($\approx$1.1
608 M). The results for the energy gap comparisons and the force and
609 torque vector magnitude comparisons are shown in table
610 \ref{tab:solnStr}. The force and torque vector directionality
611 results are displayed separately in table \ref{tab:solnStrAng}, where
612 the effect of group-based cutoffs and switching functions on the {\sc
613 sp} and {\sc sf} potentials are investigated.
614
615 \begin{table}[htbp]
616 \centering
617 \caption{Regression results for the strong NaCl solution
618 system. Tabulated results include $\Delta E$ values (top set), force
619 vector magnitudes (middle set) and torque vector magnitudes (bottom
620 set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
621 GSC = Group Switched Cutoff, and RF = Reaction Field (where
622 $\varepsilon \approx \infty$).}
623 \begin{tabular}{@{} ccrrrrrr @{}}
624 \\
625 \toprule
626 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
627 \cmidrule(lr){3-4}
628 \cmidrule(lr){5-6}
629 \cmidrule(l){7-8}
630 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
631 \midrule
632 PC & & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\
633 SP & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\
634 & 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\
635 & 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\
636 & 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\
637 SF & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\
638 & 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\
639 & 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\
640 & 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\
641 GSC & & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\
642 RF & & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\
643 \midrule
644 PC & & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\
645 SP & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\
646 & 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\
647 & 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\
648 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
649 SF & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\
650 & 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\
651 & 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\
652 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
653 GSC & & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\
654 RF & & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\
655 \midrule
656 PC & & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\
657 SP & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\
658 & 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\
659 & 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\
660 & 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\
661 SF & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\
662 & 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\
663 & 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\
664 & 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\
665 GSC & & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\
666 RF & & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\
667 \bottomrule
668 \end{tabular}
669 \label{tab:solnStr}
670 \end{table}
671
672 \begin{table}[htbp]
673 \centering
674 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the strong NaCl solution system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
675 \begin{tabular}{@{} ccrrrrrr @{}}
676 \\
677 \toprule
678 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
679 \cmidrule(lr){3-5}
680 \cmidrule(l){6-8}
681 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
682 \midrule
683 PC & & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\
684 SP & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\
685 & 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\
686 & 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\
687 & 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\
688 SF & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\
689 & 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\
690 & 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\
691 & 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\
692 GSC & & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\
693 RF & & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\
694 \midrule
695 GSSP & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\
696 & 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\
697 & 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\
698 & 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\
699 GSSF & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\
700 & 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\
701 & 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\
702 & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\
703 \bottomrule
704 \end{tabular}
705 \label{tab:solnStrAng}
706 \end{table}
707
708 The {\sc rf} method struggles with the jump in ionic strength. The
709 configuration energy differences degrade to unusable levels while the
710 forces and torques show a more modest reduction in the agreement with
711 {\sc spme}. The {\sc rf} method was designed for homogeneous systems,
712 and this attribute is apparent in these results.
713
714 The {\sc sp} and {\sc sf} methods require larger cutoffs to maintain
715 their agreement with {\sc spme}. With these results, we still
716 recommend no to moderate damping for the {\sc sf} method and moderate
717 damping for the {\sc sp} method, both with cutoffs greater than 12
718 \AA.
719
720 \section{\label{app:argon}Argon Sphere in Water}
721
722 The final model system studied was a 6 \AA\ sphere of Argon solvated
723 by SPC/E water. The results for the energy gap comparisons and the
724 force and torque vector magnitude comparisons are shown in table
725 \ref{tab:argon}. The force and torque vector directionality
726 results are displayed separately in table \ref{tab:argonAng}, where
727 the effect of group-based cutoffs and switching functions on the {\sc
728 sp} and {\sc sf} potentials are investigated.
729
730 \begin{table}[htbp]
731 \centering
732 \caption{Regression results for the 6 \AA\ Argon sphere in liquid
733 water system. Tabulated results include $\Delta E$ values (top set),
734 force vector magnitudes (middle set) and torque vector magnitudes
735 (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted
736 Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where
737 $\varepsilon \approx \infty$).}
738 \begin{tabular}{@{} ccrrrrrr @{}}
739 \\
740 \toprule
741 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
742 \cmidrule(lr){3-4}
743 \cmidrule(lr){5-6}
744 \cmidrule(l){7-8}
745 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
746 \midrule
747 PC & & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\
748 SP & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\
749 & 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\
750 & 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\
751 & 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\
752 SF & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\
753 & 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\
754 & 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\
755 & 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\
756 GSC & & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\
757 RF & & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\
758 \midrule
759 PC & & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\
760 SP & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\
761 & 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\
762 & 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\
763 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
764 SF & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
765 & 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
766 & 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
767 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
768 GSC & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
769 RF & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
770 \midrule
771 PC & & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\
772 SP & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\
773 & 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\
774 & 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\
775 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
776 SF & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\
777 & 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\
778 & 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\
779 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
780 GSC & & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\
781 RF & & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\
782 \bottomrule
783 \end{tabular}
784 \label{tab:argon}
785 \end{table}
786
787 \begin{table}[htbp]
788 \centering
789 \caption{Variance results from Gaussian fits to angular
790 distributions of the force and torque vectors in the 6 \AA\ sphere of
791 Argon in liquid water system. PC = Pure Cutoff, SP = Shifted
792 Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF =
793 Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group
794 Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
795 \begin{tabular}{@{} ccrrrrrr @{}}
796 \\
797 \toprule
798 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
799 \cmidrule(lr){3-5}
800 \cmidrule(l){6-8}
801 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
802 \midrule
803 PC & & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\
804 SP & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\
805 & 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\
806 & 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\
807 & 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\
808 SF & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\
809 & 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\
810 & 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\
811 & 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\
812 GSC & & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
813 RF & & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\
814 \midrule
815 GSSP & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
816 & 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\
817 & 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\
818 & 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\
819 GSSF & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\
820 & 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\
821 & 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\
822 & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\
823 \bottomrule
824 \end{tabular}
825 \label{tab:argonAng}
826 \end{table}
827
828 This system does not appear to show any significant deviations from
829 the previously observed results. The {\sc sp} and {\sc sf} methods
830 have aggrements similar to those observed in section
831 \ref{app:water}. The only significant difference is the improvement
832 in the configuration energy differences for the {\sc rf} method. This
833 is surprising in that we are introducing an inhomogeneity to the
834 system; however, this inhomogeneity is charge-neutral and does not
835 result in charged cutoff spheres. The charge-neutrality of the cutoff
836 spheres, which the {\sc sp} and {\sc sf} methods explicitly enforce,
837 seems to play a greater role in the stability of the {\sc rf} method
838 than the required homogeneity of the environment.
839
840 \newpage
841
842 \bibliographystyle{jcp2}
843 \bibliography{electrostaticMethods}
844
845 \end{document}