ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/electrostaticMethodsPaper/SupportingInfo.tex
Revision: 2654
Committed: Tue Mar 21 22:34:01 2006 UTC (18 years, 3 months ago) by chrisfen
Content type: application/x-tex
File size: 38382 byte(s)
Log Message:
more with the supporting

File Contents

# Content
1 %\documentclass[prb,aps,twocolumn,tabularx]{revtex4}
2 \documentclass[12pt]{article}
3 \usepackage{endfloat}
4 \usepackage{amsmath}
5 \usepackage{amssymb}
6 \usepackage{epsf}
7 \usepackage{times}
8 \usepackage{mathptm}
9 \usepackage{setspace}
10 \usepackage{tabularx}
11 \usepackage{graphicx}
12 \usepackage{booktabs}
13 %\usepackage{berkeley}
14 \usepackage[ref]{overcite}
15 \pagestyle{plain}
16 \pagenumbering{arabic}
17 \oddsidemargin 0.0cm \evensidemargin 0.0cm
18 \topmargin -21pt \headsep 10pt
19 \textheight 9.0in \textwidth 6.5in
20 \brokenpenalty=10000
21 \renewcommand{\baselinestretch}{1.2}
22 \renewcommand\citemid{\ } % no comma in optional reference note
23
24 \begin{document}
25
26 This document includes system based comparisons of the studied methods with smooth particle-mesh Ewald. Each of the seven systems comprises it's own section and has it's own discussion and tabular listing of the results for the $\Delta E$, force and torque vector magnitude, and force and torque vector direction comparisons.
27
28 \section{\label{app-water}Liquid Water}
29
30 500 liquid state configurations were generated as described in the Methods section using the SPC/E model of water.\cite{Berendsen87} The results for the energy gap comparisons and the force and torque vector magnitude comparisons are shown in table \ref{tab:spce}. The force and torque vector directionality results are displayed separately in table \ref{tab:spceAng}, where the effect of group-based cutoffs and switching functions on the {\sc sp} and {\sc sf} potentials are investigated.
31 \begin{table}[htbp]
32 \centering
33 \caption{Regression results for the liquid water system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}
34 \begin{tabular}{@{} ccrrrrrr @{}}
35 \\
36 \toprule
37 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
38 \cmidrule(lr){3-4}
39 \cmidrule(lr){5-6}
40 \cmidrule(l){7-8}
41 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
42 \midrule
43 PC & & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\
44 SP & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\
45 & 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\
46 & 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\
47 & 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\
48 SF & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\
49 & 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\
50 & 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\
51 & 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\
52 GSC & & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\
53 RF & & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\
54
55 \midrule
56
57 PC & & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\
58 SP & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\
59 & 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\
60 & 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\
61 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
62 SF & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\
63 & 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
64 & 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\
65 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
66 GSC & & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
67 RF & & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
68
69 \midrule
70
71 PC & & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\
72 SP & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\
73 & 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\
74 & 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\
75 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
76 SF & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\
77 & 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\
78 & 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\
79 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
80 GSC & & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\
81 RF & & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\
82 \bottomrule
83 \end{tabular}
84 \label{tab:spce}
85 \end{table}
86
87 \begin{table}[htbp]
88 \centering
89 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the liquid water system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
90 \begin{tabular}{@{} ccrrrrrr @{}}
91 \\
92 \toprule
93 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
94 \cmidrule(lr){3-5}
95 \cmidrule(l){6-8}
96 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
97 \midrule
98 PC & & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\
99 SP & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\
100 & 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\
101 & 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\
102 & 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\
103 SF & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\
104 & 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\
105 & 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\
106 & 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\
107 GSC & & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
108 RF & & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\
109 \midrule
110 GSSP & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
111 & 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\
112 & 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\
113 & 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\
114 GSSF & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\
115 & 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\
116 & 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\
117 & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\
118 \bottomrule
119 \end{tabular}
120 \label{tab:spceAng}
121 \end{table}
122
123 For the most parts, the water results appear to parallel the combined results seen in the discussion in the main paper. There is good agreement with SPME in both energetic and dynamic behavior when using the {\sc sf} method with and without damping. The {\sc sp} method does well with an $\alpha$ around $0.2 \AA^{-1}$, particularly with cutoff radii greater than 12 \AA. The results for both of these methods also begin to decay as damping gets too large.
124
125 The pure cutoff (PC) method performs poorly, as seen in the main discussion section. In contrast to the combined values, however, the use of a switching function and group based cutoffs really improves the results for these neutral water molecules. The group switched cutoff (GSC) shows mimics the energetics of SPME more poorly than the {\sc sp} (with moderate damping) and {\sc sf} methods, but the dynamics are quite good. The switching functions corrects discontinuities in the potential and forces, leading to the improved results. Such improvements with the use of a switching function has been recognized in previous studies,\cite{Andrea83,Steinbach94} and it is a useful tactic for stably incorporating local area electrostatic effects.
126
127 The reaction field (RF) method simply extends the results observed in the GSC case. Both methods are similar in form (i.e. neutral groups, switching function), but RF incorporates an added effect from the external dielectric. This similarity translates into the same good dynamic results and improved energetic results. These still fall short of the moderately damped {\sc sp} and {\sc sf} methods, but they display how incorporating some implicit properties of the surroundings (i.e. $\epsilon_\textrm{S}$) can improve results.
128
129 A final note for the liquid water system, use of group cutoffs and a switching function also leads to noticeable improvements in the {\sc sp} and {\sc sf} methods, primarily in directionality of the force and torque vectors (table \ref{tab:spceAng}). {\sc sp} shows significant narrowing of the angle distribution in the cases with little to no damping and only modest improvement for the ideal conditions ($\alpha = 0.2 \AA{-1}$ and $R_\textrm{c} \geqslant 12 \AA$). The {\sc sf} method simply shows modest narrowing across all damping and cutoff ranges of interest. Group cutoffs and the switching function do nothing for cases were error is introduced by overdamping the potentials.
130
131 \section{\label{app-ice}Solid Water: Ice I$_\textrm{c}$}
132
133 In addition to the disordered molecular system above, the ordered molecular system of ice I$_\textrm{c}$ was also considered. The results for the energy gap comparisons and the force and torque vector magnitude comparisons are shown in table \ref{tab:ice}. The force and torque vector directionality results are displayed separately in table \ref{tab:iceAng}, where the effect of group-based cutoffs and switching functions on the {\sc sp} and {\sc sf} potentials are investigated.
134
135 \begin{table}[htbp]
136 \centering
137 \caption{Regression results for the ice I$_\textrm{c}$ system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}
138 \begin{tabular}{@{} ccrrrrrr @{}}
139 \\
140 \toprule
141 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
142 \cmidrule(lr){3-4}
143 \cmidrule(lr){5-6}
144 \cmidrule(l){7-8}
145 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
146 \midrule
147 PC & & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\
148 SP & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\
149 & 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\
150 & 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\
151 & 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\
152 SF & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\
153 & 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\
154 & 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\
155 & 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\
156 GSC & & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\
157 RF & & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\
158 \midrule
159 PC & & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\
160 SP & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\
161 & 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\
162 & 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\
163 & 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\
164 SF & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\
165 & 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\
166 & 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\
167 & 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\
168 GSC & & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\
169 RF & & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\
170 \midrule
171 PC & & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\
172 SP & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\
173 & 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\
174 & 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\
175 & 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\
176 SF & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\
177 & 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\
178 & 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\
179 & 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\
180 GSC & & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\
181 RF & & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\
182 \bottomrule
183 \end{tabular}
184 \label{tab:ice}
185 \end{table}
186
187 \begin{table}[htbp]
188 \centering
189 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the ice I$_\textrm{c}$ system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
190 \begin{tabular}{@{} ccrrrrrr @{}}
191 \\
192 \toprule
193 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
194 \cmidrule(lr){3-5}
195 \cmidrule(l){6-8}
196 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
197 \midrule
198 PC & & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\
199 SP & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\
200 & 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\
201 & 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\
202 & 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\
203 SF & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\
204 & 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\
205 & 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\
206 & 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\
207 GSC & & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
208 RF & & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\
209 \midrule
210 GSSP & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
211 & 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\
212 & 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\
213 & 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
214 GSSF & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\
215 & 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\
216 & 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\
217 & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
218 \bottomrule
219 \end{tabular}
220 \label{tab:iceAng}
221 \end{table}
222
223 Highly ordered systems are a difficult test for the pairwise systems in that they lack the periodicity inherent to the Ewald summation. As expected, the energy gap agreement with SPME reduces for the {\sc sp} and {\sc sf} with parameters that were perfectly acceptable for the disordered liquid system. Moving to higher $R_\textrm{c}$ remedies this degraded performance, though at increase in computational cost. However, the dynamics of this crystalline system (both in magnitude and direction) are little affected. Both methods still reproduce the Ewald behavior with the same parameter recommendations from the previous section.
224
225 It is also worth noting that RF exhibits a slightly improved energy gap results over the liquid water system. One possible explanation is that the ice I$_\textrm{c}$ crystal is ordered such that the net dipole moment of the crystal is zero. With $\epsilon_\textrm{S} = \infty$, the reaction field incorporates this structural organization by actively enforcing a zeroed dipole moment within each cutoff sphere.
226
227 \section{\label{app-melt}NaCl Melt}
228
229 A high temperature NaCl melt was tested to gauge the accuracy of the pairwise summation methods in a highly charge disordered system. The results for the energy gap comparisons and the force and torque vector magnitude comparisons are shown in table \ref{tab:melt}. The force and torque vector directionality results are displayed separately in table \ref{tab:meltAng}, where the effect of group-based cutoffs and switching functions on the {\sc sp} and {\sc sf} potentials are investigated.
230
231 \begin{table}[htbp]
232 \centering
233 \caption{Regression results for the molten NaCl system. Tabulated results include $\Delta E$ values (top set) and force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
234 \begin{tabular}{@{} ccrrrrrr @{}}
235 \\
236 \toprule
237 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
238 \cmidrule(lr){3-4}
239 \cmidrule(lr){5-6}
240 \cmidrule(l){7-8}
241 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
242 \midrule
243 PC & & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\
244 SP & 0.0 & 0.937 & 0.996 & 0.880 & 0.995 & 0.971 & 0.999 \\
245 & 0.1 & 1.004 & 0.999 & 0.958 & 1.000 & 0.928 & 0.994 \\
246 & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
247 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
248 SF & 0.0 & 1.001 & 1.000 & 0.949 & 1.000 & 1.008 & 1.000 \\
249 & 0.1 & 1.025 & 1.000 & 0.960 & 1.000 & 0.929 & 0.994 \\
250 & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
251 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
252 \midrule
253 PC & & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\
254 SP & 0.0 & 0.976 & 0.983 & 1.001 & 0.991 & 0.985 & 0.995 \\
255 & 0.1 & 0.996 & 0.997 & 0.997 & 0.998 & 0.996 & 0.996 \\
256 & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
257 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
258 SF & 0.0 & 0.997 & 0.998 & 0.995 & 0.999 & 0.999 & 1.000 \\
259 & 0.1 & 1.001 & 0.997 & 0.997 & 0.999 & 0.996 & 0.996 \\
260 & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
261 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
262 \bottomrule
263 \end{tabular}
264 \label{tab:melt}
265 \end{table}
266
267 \begin{table}[htbp]
268 \centering
269 \caption{Variance results from Gaussian fits to angular distributions of the force vectors in the molten NaCl system. PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
270 \begin{tabular}{@{} ccrrrrrr @{}}
271 \\
272 \toprule
273 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
274 \cmidrule(lr){3-5}
275 \cmidrule(l){6-8}
276 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
277 \midrule
278 PC & & 13.294 & 8.035 & 5.366 \\
279 SP & 0.0 & 13.316 & 8.037 & 5.385 \\
280 & 0.1 & 5.705 & 1.391 & 0.360 \\
281 & 0.2 & 2.415 & 7.534 & 13.927 \\
282 & 0.3 & 23.769 & 67.306 & 57.252 \\
283 SF & 0.0 & 1.693 & 0.603 & 0.256 \\
284 & 0.1 & 1.687 & 0.653 & 0.272 \\
285 & 0.2 & 2.598 & 7.523 & 13.930 \\
286 & 0.3 & 23.734 & 67.305 & 57.252 \\
287 \bottomrule
288 \end{tabular}
289 \label{tab:meltAng}
290 \end{table}
291
292
293
294 \section{\label{app-salt}NaCl Crystal}
295
296 A 1000K NaCl crystal was used to investigate the accuracy of the pairwise summation methods in an ordered system of charged particles. The results for the energy gap comparisons and the force and torque vector magnitude comparisons are shown in table \ref{tab:salt}. The force and torque vector directionality results are displayed separately in table \ref{tab:saltAng}, where the effect of group-based cutoffs and switching functions on the {\sc sp} and {\sc sf} potentials are investigated.
297
298 \begin{table}[htbp]
299 \centering
300 \caption{Regression results for the crystalline NaCl system. Tabulated results include $\Delta E$ values (top set) and force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
301 \begin{tabular}{@{} ccrrrrrr @{}}
302 \\
303 \toprule
304 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
305 \cmidrule(lr){3-4}
306 \cmidrule(lr){5-6}
307 \cmidrule(l){7-8}
308 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
309 \midrule
310 PC & & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\
311 SP & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\
312 & 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\
313 & 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\
314 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\
315 SF & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\
316 & 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\
317 & 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\
318 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\
319 \midrule
320 PC & & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\
321 SP & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\
322 & 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\
323 & 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\
324 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
325 SF & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\
326 & 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\
327 & 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\
328 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
329 \bottomrule
330 \end{tabular}
331 \label{tab:salt}
332 \end{table}
333
334 \begin{table}[htbp]
335 \centering
336 \caption{Variance results from Gaussian fits to angular distributions of the force vectors in the crystalline NaCl system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}
337 \begin{tabular}{@{} ccrrrrrr @{}}
338 \\
339 \toprule
340 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
341 \cmidrule(lr){3-5}
342 \cmidrule(l){6-8}
343 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
344 \midrule
345 PC & & 111.945 & 111.824 & 111.866 \\
346 SP & 0.0 & 112.414 & 152.215 & 38.087 \\
347 & 0.1 & 52.361 & 42.574 & 2.819 \\
348 & 0.2 & 10.847 & 9.709 & 9.686 \\
349 & 0.3 & 31.128 & 31.104 & 31.029 \\
350 SF & 0.0 & 10.025 & 3.555 & 1.648 \\
351 & 0.1 & 9.462 & 3.303 & 1.721 \\
352 & 0.2 & 11.454 & 9.813 & 9.701 \\
353 & 0.3 & 31.120 & 31.105 & 31.029 \\
354 \bottomrule
355 \end{tabular}
356 \label{tab:saltAng}
357 \end{table}
358
359 \section{\label{app-sol1}Weak NaCl Solution}
360
361 In an effort to bridge the charged atomic and neutral molecular systems, Na$^+$ and Cl$^-$ ion charge defects were incorporated into the liquid water system. This low ionic strength system consists of 4 ions in the 1000 SPC/E water solvent ($\approx$0.11 M). The results for the energy gap comparisons and the force and torque vector magnitude comparisons are shown in table \ref{tab:solnWeak}. The force and torque vector directionality results are displayed separately in table \ref{tab:solnWeakAng}, where the effect of group-based cutoffs and switching functions on the {\sc sp} and {\sc sf} potentials are investigated.
362
363 \begin{table}[htbp]
364 \centering
365 \caption{Regression results for the weak NaCl solution system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
366 \begin{tabular}{@{} ccrrrrrr @{}}
367 \\
368 \toprule
369 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
370 \cmidrule(lr){3-4}
371 \cmidrule(lr){5-6}
372 \cmidrule(l){7-8}
373 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
374 \midrule
375 PC & & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\
376 SP & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\
377 & 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\
378 & 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\
379 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
380 SF & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\
381 & 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\
382 & 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\
383 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
384 GSC & & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\
385 RF & & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\
386 \midrule
387 PC & & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\
388 SP & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\
389 & 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\
390 & 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\
391 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
392 SF & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\
393 & 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\
394 & 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\
395 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
396 GSC & & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\
397 RF & & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\
398 \midrule
399 PC & & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\
400 SP & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\
401 & 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\
402 & 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\
403 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
404 SF & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\
405 & 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\
406 & 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\
407 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
408 GSC & & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\
409 RF & & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\
410 \bottomrule
411 \end{tabular}
412 \label{tab:solnWeak}
413 \end{table}
414
415 \begin{table}[htbp]
416 \centering
417 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the weak NaCl solution system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
418 \begin{tabular}{@{} ccrrrrrr @{}}
419 \\
420 \toprule
421 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
422 \cmidrule(lr){3-5}
423 \cmidrule(l){6-8}
424 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
425 \midrule
426 PC & & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\
427 SP & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\
428 & 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\
429 & 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\
430 & 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\
431 SF & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\
432 & 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\
433 & 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\
434 & 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\
435 GSC & & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
436 RF & & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\
437 \midrule
438 GSSP & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
439 & 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\
440 & 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\
441 & 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\
442 GSSF & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\
443 & 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\
444 & 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\
445 & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\
446 \bottomrule
447 \end{tabular}
448 \label{tab:solnWeakAng}
449 \end{table}
450
451 \section{\label{app-sol10}Strong NaCl Solution}
452
453 The bridging of the charged atomic and neutral molecular systems was furthered by considering a high ionic strength system consisting of 40 ions in the 1000 SPC/E water solvent ($\approx$1.1 M). The results for the energy gap comparisons and the force and torque vector magnitude comparisons are shown in table \ref{tab:solnWeak}. The force and torque vector directionality results are displayed separately in table \ref{tab:solnWeakAng}, where the effect of group-based cutoffs and switching functions on the {\sc sp} and {\sc sf} potentials are investigated.
454
455 \begin{table}[htbp]
456 \centering
457 \caption{Regression results for the strong NaCl solution system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}
458 \begin{tabular}{@{} ccrrrrrr @{}}
459 \\
460 \toprule
461 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
462 \cmidrule(lr){3-4}
463 \cmidrule(lr){5-6}
464 \cmidrule(l){7-8}
465 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
466 \midrule
467 PC & & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\
468 SP & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\
469 & 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\
470 & 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\
471 & 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\
472 SF & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\
473 & 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\
474 & 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\
475 & 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\
476 GSC & & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\
477 RF & & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\
478 \midrule
479 PC & & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\
480 SP & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\
481 & 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\
482 & 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\
483 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
484 SF & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\
485 & 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\
486 & 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\
487 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
488 GSC & & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\
489 RF & & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\
490 \midrule
491 PC & & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\
492 SP & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\
493 & 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\
494 & 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\
495 & 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\
496 SF & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\
497 & 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\
498 & 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\
499 & 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\
500 GSC & & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\
501 RF & & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\
502 \bottomrule
503 \end{tabular}
504 \label{tab:solnStr}
505 \end{table}
506
507 \begin{table}[htbp]
508 \centering
509 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the strong NaCl solution system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
510 \begin{tabular}{@{} ccrrrrrr @{}}
511 \\
512 \toprule
513 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
514 \cmidrule(lr){3-5}
515 \cmidrule(l){6-8}
516 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
517 \midrule
518 PC & & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\
519 SP & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\
520 & 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\
521 & 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\
522 & 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\
523 SF & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\
524 & 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\
525 & 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\
526 & 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\
527 GSC & & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\
528 RF & & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\
529 \midrule
530 GSSP & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\
531 & 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\
532 & 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\
533 & 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\
534 GSSF & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\
535 & 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\
536 & 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\
537 & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\
538 \bottomrule
539 \end{tabular}
540 \label{tab:solnStrAng}
541 \end{table}
542
543 \section{\label{app-argon}Argon Sphere in Water}
544
545 The final model system studied was 6 \AA\ sphere of Argon solvated by SPC/E water. The results for the energy gap comparisons and the force and torque vector magnitude comparisons are shown in table \ref{tab:solnWeak}. The force and torque vector directionality results are displayed separately in table \ref{tab:solnWeakAng}, where the effect of group-based cutoffs and switching functions on the {\sc sp} and {\sc sf} potentials are investigated.
546
547 \begin{table}[htbp]
548 \centering
549 \caption{Regression results for the 6 \AA\ argon sphere in liquid water system. Tabulated results include $\Delta E$ values (top set), force vector magnitudes (middle set) and torque vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx \infty$).}
550 \begin{tabular}{@{} ccrrrrrr @{}}
551 \\
552 \toprule
553 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
554 \cmidrule(lr){3-4}
555 \cmidrule(lr){5-6}
556 \cmidrule(l){7-8}
557 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
558 \midrule
559 PC & & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\
560 SP & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\
561 & 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\
562 & 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\
563 & 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\
564 SF & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\
565 & 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\
566 & 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\
567 & 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\
568 GSC & & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\
569 RF & & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\
570 \midrule
571 PC & & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\
572 SP & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\
573 & 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\
574 & 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\
575 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
576 SF & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
577 & 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
578 & 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
579 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
580 GSC & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
581 RF & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
582 \midrule
583 PC & & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\
584 SP & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\
585 & 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\
586 & 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\
587 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
588 SF & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\
589 & 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\
590 & 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\
591 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
592 GSC & & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\
593 RF & & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\
594 \bottomrule
595 \end{tabular}
596 \label{tab:argon}
597 \end{table}
598
599 \begin{table}[htbp]
600 \centering
601 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the 6 \AA\ sphere of argon in liquid water system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
602 \begin{tabular}{@{} ccrrrrrr @{}}
603 \\
604 \toprule
605 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
606 \cmidrule(lr){3-5}
607 \cmidrule(l){6-8}
608 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
609 \midrule
610 PC & & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\
611 SP & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\
612 & 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\
613 & 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\
614 & 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\
615 SF & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\
616 & 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\
617 & 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\
618 & 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\
619 GSC & & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
620 RF & & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\
621 \midrule
622 GSSP & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
623 & 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\
624 & 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\
625 & 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\
626 GSSF & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\
627 & 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\
628 & 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\
629 & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\
630 \bottomrule
631 \end{tabular}
632 \label{tab:argonAng}
633 \end{table}
634
635 \newpage
636
637 \bibliographystyle{jcp2}
638 \bibliography{electrostaticMethods}
639
640 \end{document}