ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/electrostaticMethodsPaper/SupportingInfo.tex
Revision: 2670
Committed: Fri Mar 24 17:28:09 2006 UTC (18 years, 3 months ago) by gezelter
Content type: application/x-tex
File size: 41683 byte(s)
Log Message:
some changes

File Contents

# Content
1 %\documentclass[prb,aps,twocolumn,tabularx]{revtex4}
2 \documentclass[11pt]{article}
3 %\usepackage{endfloat}
4 \usepackage{amsmath}
5 \usepackage{amssymb}
6 \usepackage{epsf}
7 \usepackage{times}
8 \usepackage{mathptm}
9 \usepackage{setspace}
10 \usepackage{tabularx}
11 \usepackage{graphicx}
12 \usepackage{booktabs}
13 %\usepackage{berkeley}
14 \usepackage[ref]{overcite}
15 \pagestyle{plain}
16 \pagenumbering{arabic}
17 \oddsidemargin 0.0cm \evensidemargin 0.0cm
18 \topmargin -21pt \headsep 10pt
19 \textheight 9.0in \textwidth 6.5in
20 \brokenpenalty=10000
21 \renewcommand{\baselinestretch}{1.2}
22 \renewcommand\citemid{\ } % no comma in optional reference note
23
24 \begin{document}
25
26 This document includes comparisons of the new pairwise electrostatic
27 methods with {\sc spme} for each of the individual systems mentioned
28 in paper. Each of the seven sections contains information about a
29 single system type and has its own discussion and tabular listing of
30 the results for the comparisons of $\Delta E$, the magnitudes of the
31 forces and torques, and directionality of the force and torque
32 vectors.
33
34 \section{\label{app:water}Liquid Water}
35
36 The first system considered was liquid water at 300K using the SPC/E
37 model of water.\cite{Berendsen87} The results for the energy gap
38 comparisons and the force and torque vector magnitude comparisons are
39 shown in table \ref{tab:spce}. The force and torque vector
40 directionality results are displayed separately in table
41 \ref{tab:spceAng}, where the effect of group-based cutoffs and
42 switching functions on the {\sc sp} and {\sc sf} potentials are
43 investigated.
44 \begin{table}[htbp]
45 \centering
46 \caption{Regression results for the liquid water system. Tabulated
47 results include $\Delta E$ values (top set), force vector magnitudes
48 (middle set) and torque vector magnitudes (bottom set). PC = Pure
49 Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
50 Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
51 \infty$).}
52 \begin{tabular}{@{} ccrrrrrr @{}}
53 \\
54 \toprule
55 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
56 \cmidrule(lr){3-4}
57 \cmidrule(lr){5-6}
58 \cmidrule(l){7-8}
59 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
60 \midrule
61 PC & & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\
62 SP & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\
63 & 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\
64 & 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\
65 & 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\
66 SF & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\
67 & 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\
68 & 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\
69 & 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\
70 GSC & & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\
71 RF & & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\
72 \midrule
73 PC & & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\
74 SP & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\
75 & 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\
76 & 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\
77 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
78 SF & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\
79 & 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
80 & 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\
81 & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
82 GSC & & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
83 RF & & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
84 \midrule
85 PC & & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\
86 SP & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\
87 & 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\
88 & 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\
89 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
90 SF & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\
91 & 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\
92 & 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\
93 & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
94 GSC & & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\
95 RF & & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\
96 \bottomrule
97 \end{tabular}
98 \label{tab:spce}
99 \end{table}
100
101 \begin{table}[htbp]
102 \centering
103 \caption{Variance results from Gaussian fits to angular
104 distributions of the force and torque vectors in the liquid water
105 system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
106 GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon
107 \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF =
108 Group Switched Shifted Force.}
109 \begin{tabular}{@{} ccrrrrrr @{}}
110 \\
111 \toprule
112 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
113 \cmidrule(lr){3-5}
114 \cmidrule(l){6-8}
115 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
116 \midrule
117 PC & & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\
118 SP & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\
119 & 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\
120 & 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\
121 & 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\
122 SF & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\
123 & 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\
124 & 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\
125 & 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\
126 GSC & & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
127 RF & & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\
128 \midrule
129 GSSP & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
130 & 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\
131 & 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\
132 & 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\
133 GSSF & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\
134 & 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\
135 & 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\
136 & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\
137 \bottomrule
138 \end{tabular}
139 \label{tab:spceAng}
140 \end{table}
141
142 The water results parallel the combined results seen in the discussion
143 section of the main paper. There is good agreement with {\sc spme} in
144 both energetic and dynamic behavior when using the {\sc sf} method
145 with and without damping. The {\sc sp} method does well with an
146 $\alpha$ around 0.2 \AA$^{-1}$, particularly with cutoff radii greater
147 than 12 \AA. Overdamping the electrostatics reduces the agreement
148 between both these methods and {\sc spme}.
149
150 The pure cutoff ({\sc pc}) method performs poorly, again mirroring the
151 observations in the main portion of this paper. In contrast to the
152 combined values, however, the use of a switching function and group
153 based cutoffs greatly improves the results for these neutral water
154 molecules. The group switched cutoff ({\sc gsc}) does not mimic the
155 energetics of {\sc spme} as well as the {\sc sp} (with moderate
156 damping) and {\sc sf} methods, but the dynamics are quite good. The
157 switching functions correct discontinuities in the potential and
158 forces, leading to these improved results. Such improvements with the
159 use of a switching function have been recognized in previous
160 studies,\cite{Andrea83,Steinbach94} and this proves to be a useful
161 tactic for stably incorporating local area electrostatic effects.
162
163 The reaction field ({\sc rf}) method simply extends upon the results
164 observed in the {\sc gsc} case. Both methods are similar in form
165 (i.e. neutral groups, switching function), but {\sc rf} incorporates
166 an added effect from the external dielectric. This similarity
167 translates into the same good dynamic results and improved energetic
168 agreement with {\sc spme}. Though this agreement is not to the level
169 of the moderately damped {\sc sp} and {\sc sf} methods, these results
170 show how incorporating some implicit properties of the surroundings
171 (i.e. $\epsilon_\textrm{S}$) can improve the solvent depiction.
172
173 As a final note for the liquid water system, use of group cutoffs and a
174 switching function leads to noticeable improvements in the {\sc sp}
175 and {\sc sf} methods, primarily in directionality of the force and
176 torque vectors (table \ref{tab:spceAng}). The {\sc sp} method shows
177 significant narrowing of the angle distribution when using little to
178 no damping and only modest improvement for the recommended conditions
179 ($\alpha$ = 0.2 \AA${-1}$ and $R_\textrm{c} \geqslant 12$~\AA). The
180 {\sc sf} method shows modest narrowing across all damping and cutoff
181 ranges of interest. When overdamping these methods, group cutoffs and
182 the switching function do not improve the force and torque
183 directionalities.
184
185 \section{\label{app:ice}Solid Water: Ice I$_\textrm{c}$}
186
187 In addition to the disordered molecular system above, the ordered
188 molecular system of ice I$_\textrm{c}$ was also considered. The
189 results for the energy gap comparisons and the force and torque vector
190 magnitude comparisons are shown in table \ref{tab:ice}. The force and
191 torque vector directionality results are displayed separately in table
192 \ref{tab:iceAng}, where the effect of group-based cutoffs and
193 switching functions on the {\sc sp} and {\sc sf} potentials are
194 investigated.
195
196 \begin{table}[htbp]
197 \centering
198 \caption{Regression results for the ice I$_\textrm{c}$
199 system. Tabulated results include $\Delta E$ values (top set), force
200 vector magnitudes (middle set) and torque vector magnitudes (bottom
201 set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
202 GSC = Group Switched Cutoff, and RF = Reaction Field (where
203 $\varepsilon \approx \infty$).}
204 \begin{tabular}{@{} ccrrrrrr @{}}
205 \\
206 \toprule
207 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
208 \cmidrule(lr){3-4}
209 \cmidrule(lr){5-6}
210 \cmidrule(l){7-8}
211 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
212 \midrule
213 PC & & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\
214 SP & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\
215 & 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\
216 & 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\
217 & 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\
218 SF & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\
219 & 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\
220 & 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\
221 & 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\
222 GSC & & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\
223 RF & & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\
224 \midrule
225 PC & & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\
226 SP & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\
227 & 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\
228 & 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\
229 & 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\
230 SF & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\
231 & 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\
232 & 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\
233 & 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\
234 GSC & & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\
235 RF & & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\
236 \midrule
237 PC & & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\
238 SP & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\
239 & 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\
240 & 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\
241 & 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\
242 SF & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\
243 & 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\
244 & 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\
245 & 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\
246 GSC & & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\
247 RF & & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\
248 \bottomrule
249 \end{tabular}
250 \label{tab:ice}
251 \end{table}
252
253 \begin{table}[htbp]
254 \centering
255 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the ice I$_\textrm{c}$ system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
256 \begin{tabular}{@{} ccrrrrrr @{}}
257 \\
258 \toprule
259 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
260 \cmidrule(lr){3-5}
261 \cmidrule(l){6-8}
262 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
263 \midrule
264 PC & & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\
265 SP & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\
266 & 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\
267 & 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\
268 & 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\
269 SF & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\
270 & 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\
271 & 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\
272 & 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\
273 GSC & & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
274 RF & & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\
275 \midrule
276 GSSP & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
277 & 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\
278 & 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\
279 & 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
280 GSSF & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\
281 & 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\
282 & 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\
283 & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
284 \bottomrule
285 \end{tabular}
286 \label{tab:iceAng}
287 \end{table}
288
289 Highly ordered systems are a difficult test for the pairwise methods
290 in that they lack the implicit periodicity of the Ewald summation. As
291 expected, the energy gap agreement with {\sc spme} is reduced for the
292 {\sc sp} and {\sc sf} methods with parameters that were acceptable for
293 the disordered liquid system. Moving to higher $R_\textrm{c}$ helps
294 improve the agreement, though at an increase in computational cost.
295 The dynamics of this crystalline system (both in magnitude and
296 direction) are little affected. Both methods still reproduce the Ewald
297 behavior with the same parameter recommendations from the previous
298 section.
299
300 It is also worth noting that {\sc rf} exhibits improved energy gap
301 results over the liquid water system. One possible explanation is
302 that the ice I$_\textrm{c}$ crystal is ordered such that the net
303 dipole moment of the crystal is zero. With $\epsilon_\textrm{S} =
304 \infty$, the reaction field incorporates this structural organization
305 by actively enforcing a zeroed dipole moment within each cutoff
306 sphere.
307
308 \section{\label{app:melt}NaCl Melt}
309
310 A high temperature NaCl melt was tested to gauge the accuracy of the
311 pairwise summation methods in a disordered system of charges. The
312 results for the energy gap comparisons and the force vector magnitude
313 comparisons are shown in table \ref{tab:melt}. The force vector
314 directionality results are displayed separately in table
315 \ref{tab:meltAng}.
316
317 \begin{table}[htbp]
318 \centering
319 \caption{Regression results for the molten NaCl system. Tabulated results include $\Delta E$ values (top set) and force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
320 \begin{tabular}{@{} ccrrrrrr @{}}
321 \\
322 \toprule
323 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
324 \cmidrule(lr){3-4}
325 \cmidrule(lr){5-6}
326 \cmidrule(l){7-8}
327 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
328 \midrule
329 PC & & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\
330 SP & 0.0 & 0.928 & 0.996 & 0.931 & 0.998 & 0.950 & 0.999 \\
331 & 0.1 & 0.977 & 0.998 & 0.998 & 1.000 & 0.997 & 1.000 \\
332 & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
333 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
334 SF & 0.0 & 0.996 & 1.000 & 0.995 & 1.000 & 0.997 & 1.000 \\
335 & 0.1 & 1.021 & 1.000 & 1.024 & 1.000 & 1.007 & 1.000 \\
336 & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
337 & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
338 \midrule
339 PC & & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\
340 SP & 0.0 & 0.973 & 0.981 & 0.975 & 0.988 & 0.979 & 0.992 \\
341 & 0.1 & 0.987 & 0.992 & 0.993 & 0.998 & 0.997 & 0.999 \\
342 & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
343 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
344 SF & 0.0 & 0.996 & 0.997 & 0.997 & 0.999 & 0.998 & 1.000 \\
345 & 0.1 & 1.000 & 0.997 & 1.001 & 0.999 & 1.000 & 1.000 \\
346 & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
347 & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
348 \bottomrule
349 \end{tabular}
350 \label{tab:melt}
351 \end{table}
352
353 \begin{table}[htbp]
354 \centering
355 \caption{Variance results from Gaussian fits to angular distributions of the force vectors in the molten NaCl system. PC = Pure Cutoff, SP = Shifted Potential, and SF = Shifted Force.}
356 \begin{tabular}{@{} ccrrrrrr @{}}
357 \\
358 \toprule
359 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
360 \cmidrule(lr){3-5}
361 \cmidrule(l){6-8}
362 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
363 \midrule
364 PC & & 13.294 & 8.035 & 5.366 \\
365 SP & 0.0 & 13.316 & 8.037 & 5.385 \\
366 & 0.1 & 5.705 & 1.391 & 0.360 \\
367 & 0.2 & 2.415 & 7.534 & 13.927 \\
368 & 0.3 & 23.769 & 67.306 & 57.252 \\
369 SF & 0.0 & 1.693 & 0.603 & 0.256 \\
370 & 0.1 & 1.687 & 0.653 & 0.272 \\
371 & 0.2 & 2.598 & 7.523 & 13.930 \\
372 & 0.3 & 23.734 & 67.305 & 57.252 \\
373 \bottomrule
374 \end{tabular}
375 \label{tab:meltAng}
376 \end{table}
377
378 The molten NaCl system shows more sensitivity to the electrostatic
379 damping than the water systems. The most noticeable point is that the
380 undamped {\sc sf} method does very well at replicating the {\sc spme}
381 configurational energy differences and forces. Light damping appears
382 to minimally improve the dynamics, but this comes with a deterioration
383 of the energy gap results. In contrast, this light damping improves
384 the {\sc sp} energy gaps and forces. Moderate and heavy electrostatic
385 damping reduce the agreement with {\sc spme} for both methods. From
386 these observations, the undamped {\sc sf} method is the best choice
387 for disordered systems of charges.
388
389 \section{\label{app:salt}NaCl Crystal}
390
391 A 1000K NaCl crystal was used to investigate the accuracy of the
392 pairwise summation methods in an ordered system of charged
393 particles. The results for the energy gap comparisons and the force
394 vector magnitude comparisons are shown in table \ref{tab:salt}. The
395 force vector directionality results are displayed separately in table
396 \ref{tab:saltAng}.
397
398 \begin{table}[htbp]
399 \centering
400 \caption{Regression results for the crystalline NaCl
401 system. Tabulated results include $\Delta E$ values (top set) and
402 force vector magnitudes (bottom set). PC = Pure Cutoff, SP = Shifted
403 Potential, and SF = Shifted Force.}
404 \begin{tabular}{@{} ccrrrrrr @{}}
405 \\
406 \toprule
407 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
408 \cmidrule(lr){3-4}
409 \cmidrule(lr){5-6}
410 \cmidrule(l){7-8}
411 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
412 \midrule
413 PC & & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\
414 SP & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\
415 & 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\
416 & 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\
417 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\
418 SF & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\
419 & 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\
420 & 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\
421 & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\
422 \midrule
423 PC & & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\
424 SP & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\
425 & 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\
426 & 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\
427 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
428 SF & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\
429 & 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\
430 & 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\
431 & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
432 \bottomrule
433 \end{tabular}
434 \label{tab:salt}
435 \end{table}
436
437 \begin{table}[htbp]
438 \centering
439 \caption{Variance results from Gaussian fits to angular
440 distributions of the force vectors in the crystalline NaCl system. PC
441 = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group
442 Switched Cutoff, and RF = Reaction Field (where $\varepsilon \approx
443 \infty$).}
444 \begin{tabular}{@{} ccrrrrrr @{}}
445 \\
446 \toprule
447 & & \multicolumn{3}{c}{Force $\sigma^2$} \\
448 \cmidrule(lr){3-5}
449 \cmidrule(l){6-8}
450 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA \\
451 \midrule
452 PC & & 111.945 & 111.824 & 111.866 \\
453 SP & 0.0 & 112.414 & 152.215 & 38.087 \\
454 & 0.1 & 52.361 & 42.574 & 2.819 \\
455 & 0.2 & 10.847 & 9.709 & 9.686 \\
456 & 0.3 & 31.128 & 31.104 & 31.029 \\
457 SF & 0.0 & 10.025 & 3.555 & 1.648 \\
458 & 0.1 & 9.462 & 3.303 & 1.721 \\
459 & 0.2 & 11.454 & 9.813 & 9.701 \\
460 & 0.3 & 31.120 & 31.105 & 31.029 \\
461 \bottomrule
462 \end{tabular}
463 \label{tab:saltAng}
464 \end{table}
465
466 The crystalline NaCl system is the most challenging test case for the
467 pairwise summation methods, as evidenced by the results in tables
468 \ref{tab:salt} and \ref{tab:saltAng}. The undamped and weakly damped
469 {\sc sf} methods with a 12 \AA\ cutoff radius seem to be the best
470 choices. These methods match well with {\sc spme} across the energy
471 gap, force magnitude, and force directionality tests. The {\sc sp}
472 method struggles in all cases, with the exception of good dynamics
473 reproduction when using weak electrostatic damping with a large cutoff
474 radius.
475
476 The moderate electrostatic damping case is not as good as we would
477 expect given the long-time dynamics results observed for this
478 system. Since the data tabulated in tables \ref{tab:salt} and
479 \ref{tab:saltAng} are a test of instantaneous dynamics, this indicates
480 that good long-time dynamics comes in part at the expense of
481 short-time dynamics.
482
483 \section{\label{app:solnWeak}Weak NaCl Solution}
484
485 In an effort to bridge the charged atomic and neutral molecular
486 systems, Na$^+$ and Cl$^-$ ion charge defects were incorporated into
487 the liquid water system. This low ionic strength system consists of 4
488 ions in the 1000 SPC/E water solvent ($\approx$0.11 M). The results
489 for the energy gap comparisons and the force and torque vector
490 magnitude comparisons are shown in table \ref{tab:solnWeak}. The
491 force and torque vector directionality results are displayed
492 separately in table \ref{tab:solnWeakAng}, where the effect of
493 group-based cutoffs and switching functions on the {\sc sp} and {\sc
494 sf} potentials are investigated.
495
496 \begin{table}[htbp]
497 \centering
498 \caption{Regression results for the weak NaCl solution
499 system. Tabulated results include $\Delta E$ values (top set), force
500 vector magnitudes (middle set) and torque vector magnitudes (bottom
501 set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
502 GSC = Group Switched Cutoff, and RF = Reaction Field (where $\varepsilon
503 \approx \infty$).}
504 \begin{tabular}{@{} ccrrrrrr @{}}
505 \\
506 \toprule
507 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
508 \cmidrule(lr){3-4}
509 \cmidrule(lr){5-6}
510 \cmidrule(l){7-8}
511 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
512 \midrule
513 PC & & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\
514 SP & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\
515 & 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\
516 & 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\
517 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
518 SF & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\
519 & 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\
520 & 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\
521 & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
522 GSC & & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\
523 RF & & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\
524 \midrule
525 PC & & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\
526 SP & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\
527 & 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\
528 & 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\
529 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
530 SF & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\
531 & 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\
532 & 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\
533 & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
534 GSC & & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\
535 RF & & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\
536 \midrule
537 PC & & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\
538 SP & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\
539 & 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\
540 & 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\
541 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
542 SF & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\
543 & 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\
544 & 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\
545 & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
546 GSC & & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\
547 RF & & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\
548 \bottomrule
549 \end{tabular}
550 \label{tab:solnWeak}
551 \end{table}
552
553 \begin{table}[htbp]
554 \centering
555 \caption{Variance results from Gaussian fits to angular
556 distributions of the force and torque vectors in the weak NaCl
557 solution system. PC = Pure Cutoff, SP = Shifted Potential, SF =
558 Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where
559 $\varepsilon \approx \infty$), GSSP = Group Switched Shifted
560 Potential, and GSSF = Group Switched Shifted Force.}
561 \begin{tabular}{@{} ccrrrrrr @{}}
562 \\
563 \toprule
564 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
565 \cmidrule(lr){3-5}
566 \cmidrule(l){6-8}
567 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
568 \midrule
569 PC & & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\
570 SP & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\
571 & 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\
572 & 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\
573 & 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\
574 SF & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\
575 & 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\
576 & 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\
577 & 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\
578 GSC & & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
579 RF & & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\
580 \midrule
581 GSSP & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
582 & 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\
583 & 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\
584 & 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\
585 GSSF & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\
586 & 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\
587 & 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\
588 & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\
589 \bottomrule
590 \end{tabular}
591 \label{tab:solnWeakAng}
592 \end{table}
593
594 Because this system is a perturbation of the pure liquid water system,
595 comparisons are best drawn between these two sets. The {\sc sp} and
596 {\sc sf} methods are not significantly affected by the inclusion of a
597 few ions. The aspect of cutoff sphere neutralization aids in the
598 smooth incorporation of these ions; thus, all of the observations
599 regarding these methods carry over from section \ref{app:water}. The
600 differences between these systems are more visible for the {\sc rf}
601 method. Though good force agreement is still maintained, the energy
602 gaps show a significant increase in the scatter of the data.
603
604 \section{\label{app:solnStr}Strong NaCl Solution}
605
606 The bridging of the charged atomic and neutral molecular systems was
607 further developed by considering a high ionic strength system
608 consisting of 40 ions in the 1000 SPC/E water solvent ($\approx$1.1
609 M). The results for the energy gap comparisons and the force and
610 torque vector magnitude comparisons are shown in table
611 \ref{tab:solnStr}. The force and torque vector directionality
612 results are displayed separately in table \ref{tab:solnStrAng}, where
613 the effect of group-based cutoffs and switching functions on the {\sc
614 sp} and {\sc sf} potentials are investigated.
615
616 \begin{table}[htbp]
617 \centering
618 \caption{Regression results for the strong NaCl solution
619 system. Tabulated results include $\Delta E$ values (top set), force
620 vector magnitudes (middle set) and torque vector magnitudes (bottom
621 set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force,
622 GSC = Group Switched Cutoff, and RF = Reaction Field (where
623 $\varepsilon \approx \infty$).}
624 \begin{tabular}{@{} ccrrrrrr @{}}
625 \\
626 \toprule
627 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
628 \cmidrule(lr){3-4}
629 \cmidrule(lr){5-6}
630 \cmidrule(l){7-8}
631 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
632 \midrule
633 PC & & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\
634 SP & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\
635 & 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\
636 & 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\
637 & 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\
638 SF & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\
639 & 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\
640 & 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\
641 & 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\
642 GSC & & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\
643 RF & & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\
644 \midrule
645 PC & & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\
646 SP & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\
647 & 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\
648 & 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\
649 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
650 SF & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\
651 & 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\
652 & 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\
653 & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
654 GSC & & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\
655 RF & & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\
656 \midrule
657 PC & & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\
658 SP & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\
659 & 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\
660 & 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\
661 & 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\
662 SF & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\
663 & 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\
664 & 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\
665 & 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\
666 GSC & & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\
667 RF & & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\
668 \bottomrule
669 \end{tabular}
670 \label{tab:solnStr}
671 \end{table}
672
673 \begin{table}[htbp]
674 \centering
675 \caption{Variance results from Gaussian fits to angular distributions of the force and torque vectors in the strong NaCl solution system. PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF = Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
676 \begin{tabular}{@{} ccrrrrrr @{}}
677 \\
678 \toprule
679 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
680 \cmidrule(lr){3-5}
681 \cmidrule(l){6-8}
682 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
683 \midrule
684 PC & & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\
685 SP & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\
686 & 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\
687 & 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\
688 & 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\
689 SF & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\
690 & 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\
691 & 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\
692 & 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\
693 GSC & & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\
694 RF & & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\
695 \midrule
696 GSSP & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\
697 & 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\
698 & 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\
699 & 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\
700 GSSF & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\
701 & 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\
702 & 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\
703 & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\
704 \bottomrule
705 \end{tabular}
706 \label{tab:solnStrAng}
707 \end{table}
708
709 The {\sc rf} method struggles with the jump in ionic strength. The
710 configuration energy differences degrade to unusable levels while the
711 forces and torques show a more modest reduction in the agreement with
712 {\sc spme}. The {\sc rf} method was designed for homogeneous systems,
713 and this attribute is apparent in these results.
714
715 The {\sc sp} and {\sc sf} methods require larger cutoffs to maintain
716 their agreement with {\sc spme}. With these results, we still
717 recommend no to moderate damping for the {\sc sf} method and moderate
718 damping for the {\sc sp} method, both with cutoffs greater than 12
719 \AA.
720
721 \section{\label{app:argon}Argon Sphere in Water}
722
723 The final model system studied was a 6 \AA\ sphere of Argon solvated
724 by SPC/E water. The results for the energy gap comparisons and the
725 force and torque vector magnitude comparisons are shown in table
726 \ref{tab:argon}. The force and torque vector directionality
727 results are displayed separately in table \ref{tab:argonAng}, where
728 the effect of group-based cutoffs and switching functions on the {\sc
729 sp} and {\sc sf} potentials are investigated.
730
731 \begin{table}[htbp]
732 \centering
733 \caption{Regression results for the 6 \AA\ Argon sphere in liquid
734 water system. Tabulated results include $\Delta E$ values (top set),
735 force vector magnitudes (middle set) and torque vector magnitudes
736 (bottom set). PC = Pure Cutoff, SP = Shifted Potential, SF = Shifted
737 Force, GSC = Group Switched Cutoff, and RF = Reaction Field (where
738 $\varepsilon \approx \infty$).}
739 \begin{tabular}{@{} ccrrrrrr @{}}
740 \\
741 \toprule
742 & & \multicolumn{2}{c}{9 \AA} & \multicolumn{2}{c}{12 \AA} & \multicolumn{2}{c}{15 \AA}\\
743 \cmidrule(lr){3-4}
744 \cmidrule(lr){5-6}
745 \cmidrule(l){7-8}
746 Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
747 \midrule
748 PC & & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\
749 SP & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\
750 & 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\
751 & 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\
752 & 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\
753 SF & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\
754 & 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\
755 & 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\
756 & 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\
757 GSC & & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\
758 RF & & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\
759 \midrule
760 PC & & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\
761 SP & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\
762 & 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\
763 & 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\
764 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
765 SF & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
766 & 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
767 & 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
768 & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
769 GSC & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
770 RF & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
771 \midrule
772 PC & & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\
773 SP & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\
774 & 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\
775 & 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\
776 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
777 SF & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\
778 & 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\
779 & 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\
780 & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
781 GSC & & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\
782 RF & & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\
783 \bottomrule
784 \end{tabular}
785 \label{tab:argon}
786 \end{table}
787
788 \begin{table}[htbp]
789 \centering
790 \caption{Variance results from Gaussian fits to angular
791 distributions of the force and torque vectors in the 6 \AA\ sphere of
792 Argon in liquid water system. PC = Pure Cutoff, SP = Shifted
793 Potential, SF = Shifted Force, GSC = Group Switched Cutoff, RF =
794 Reaction Field (where $\varepsilon \approx \infty$), GSSP = Group
795 Switched Shifted Potential, and GSSF = Group Switched Shifted Force.}
796 \begin{tabular}{@{} ccrrrrrr @{}}
797 \\
798 \toprule
799 & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
800 \cmidrule(lr){3-5}
801 \cmidrule(l){6-8}
802 Method & $\alpha$ & 9 \AA & 12 \AA & 15 \AA & 9 \AA & 12 \AA & 15 \AA \\
803 \midrule
804 PC & & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\
805 SP & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\
806 & 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\
807 & 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\
808 & 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\
809 SF & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\
810 & 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\
811 & 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\
812 & 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\
813 GSC & & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
814 RF & & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\
815 \midrule
816 GSSP & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
817 & 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\
818 & 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\
819 & 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\
820 GSSF & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\
821 & 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\
822 & 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\
823 & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\
824 \bottomrule
825 \end{tabular}
826 \label{tab:argonAng}
827 \end{table}
828
829 This system does not appear to show any significant deviations from
830 the previously observed results. The {\sc sp} and {\sc sf} methods
831 have aggrements similar to those observed in section
832 \ref{app:water}. The only significant difference is the improvement
833 in the configuration energy differences for the {\sc rf} method. This
834 is surprising in that we are introducing an inhomogeneity to the
835 system; however, this inhomogeneity is charge-neutral and does not
836 result in charged cutoff spheres. The charge-neutrality of the cutoff
837 spheres, which the {\sc sp} and {\sc sf} methods explicitly enforce,
838 seems to play a greater role in the stability of the {\sc rf} method
839 than the required homogeneity of the environment.
840
841 \newpage
842
843 \bibliographystyle{jcp2}
844 \bibliography{electrostaticMethods}
845
846 \end{document}