ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/fennellDissertation/dissertation.tex
Revision: 2971
Committed: Sun Aug 6 22:29:27 2006 UTC (17 years, 11 months ago) by chrisfen
Content type: application/x-tex
File size: 122687 byte(s)
Log Message:
added text and figures in the tip5p-e application section

File Contents

# User Rev Content
1 chrisfen 2957 \documentclass[11pt]{ndthesis}
2 chrisfen 2918
3     % some packages for things like equations and graphics
4 chrisfen 2971 \usepackage[tbtags]{amsmath}
5 chrisfen 2918 \usepackage{amsmath,bm}
6     \usepackage{amssymb}
7     \usepackage{mathrsfs}
8     \usepackage{tabularx}
9     \usepackage{graphicx}
10     \usepackage{booktabs}
11 chrisfen 2957 \usepackage{cite}
12 chrisfen 2971 \usepackage{enumitem}
13 chrisfen 2918
14     \begin{document}
15    
16     \frontmatter
17    
18     \title{APPLICATION AND DEVELOPMENT OF MOLECULAR DYNAMICS TECHNIQUES FOR THE
19     STUDY OF WATER}
20     \author{Christopher Joseph Fennell}
21     \work{Dissertation}
22     \degprior{B.Sc.}
23     \degaward{Doctor of Philosophy}
24     \advisor{J. Daniel Gezelter}
25     \department{Chemistry and Biochemistry}
26    
27     \maketitle
28    
29     \begin{abstract}
30     \end{abstract}
31    
32     \begin{dedication}
33     \end{dedication}
34    
35     \tableofcontents
36     \listoffigures
37     \listoftables
38    
39     \begin{acknowledge}
40     \end{acknowledge}
41    
42     \mainmatter
43    
44     \chapter{\label{chap:intro}INTRODUCTION AND BACKGROUND}
45    
46     \chapter{\label{chap:electrostatics}ELECTROSTATIC INTERACTION CORRECTION
47     TECHNIQUES}
48    
49     In molecular simulations, proper accumulation of the electrostatic
50     interactions is essential and is one of the most
51     computationally-demanding tasks. The common molecular mechanics force
52     fields represent atomic sites with full or partial charges protected
53     by Lennard-Jones (short range) interactions. This means that nearly
54     every pair interaction involves a calculation of charge-charge forces.
55     Coupled with relatively long-ranged $r^{-1}$ decay, the monopole
56     interactions quickly become the most expensive part of molecular
57     simulations. Historically, the electrostatic pair interaction would
58     not have decayed appreciably within the typical box lengths that could
59     be feasibly simulated. In the larger systems that are more typical of
60     modern simulations, large cutoffs should be used to incorporate
61     electrostatics correctly.
62    
63     There have been many efforts to address the proper and practical
64     handling of electrostatic interactions, and these have resulted in a
65     variety of techniques.\cite{Roux99,Sagui99,Tobias01} These are
66     typically classified as implicit methods (i.e., continuum dielectrics,
67     static dipolar fields),\cite{Born20,Grossfield00} explicit methods
68     (i.e., Ewald summations, interaction shifting or
69     truncation),\cite{Ewald21,Steinbach94} or a mixture of the two (i.e.,
70     reaction field type methods, fast multipole
71     methods).\cite{Onsager36,Rokhlin85} The explicit or mixed methods are
72     often preferred because they physically incorporate solvent molecules
73     in the system of interest, but these methods are sometimes difficult
74     to utilize because of their high computational cost.\cite{Roux99} In
75     addition to the computational cost, there have been some questions
76     regarding possible artifacts caused by the inherent periodicity of the
77     explicit Ewald summation.\cite{Tobias01}
78    
79     In this chapter, we focus on a new set of pairwise methods devised by
80     Wolf {\it et al.},\cite{Wolf99} which we further extend. These
81     methods along with a few other mixed methods (i.e. reaction field) are
82     compared with the smooth particle mesh Ewald
83     sum,\cite{Onsager36,Essmann99} which is our reference method for
84     handling long-range electrostatic interactions. The new methods for
85     handling electrostatics have the potential to scale linearly with
86     increasing system size since they involve only a simple modification
87     to the direct pairwise sum. They also lack the added periodicity of
88     the Ewald sum, so they can be used for systems which are non-periodic
89     or which have one- or two-dimensional periodicity. Below, these
90     methods are evaluated using a variety of model systems to
91     establish their usability in molecular simulations.
92    
93     \section{The Ewald Sum}
94    
95     The complete accumulation of the electrostatic interactions in a system with
96     periodic boundary conditions (PBC) requires the consideration of the
97     effect of all charges within a (cubic) simulation box as well as those
98     in the periodic replicas,
99     \begin{equation}
100     V_\textrm{elec} = \frac{1}{2} {\sum_{\mathbf{n}}}^\prime
101     \left[ \sum_{i=1}^N\sum_{j=1}^N \phi
102     \left( \mathbf{r}_{ij} + L\mathbf{n},\bm{\Omega}_i,\bm{\Omega}_j\right)
103     \right],
104     \label{eq:PBCSum}
105     \end{equation}
106     where the sum over $\mathbf{n}$ is a sum over all periodic box
107     replicas with integer coordinates $\mathbf{n} = (l,m,n)$, and the
108     prime indicates $i = j$ are neglected for $\mathbf{n} =
109     0$.\cite{deLeeuw80} Within the sum, $N$ is the number of electrostatic
110     particles, $\mathbf{r}_{ij}$ is $\mathbf{r}_j - \mathbf{r}_i$, $L$ is
111     the cell length, $\bm{\Omega}_{i,j}$ are the Euler angles for $i$ and
112     $j$, and $\phi$ is the solution to Poisson's equation
113     ($\phi(\mathbf{r}_{ij}) = q_i q_j |\mathbf{r}_{ij}|^{-1}$ for
114     charge-charge interactions). In the case of monopole electrostatics,
115     eq. (\ref{eq:PBCSum}) is conditionally convergent and is divergent for
116     non-neutral systems.
117    
118     The electrostatic summation problem was originally studied by Ewald
119     for the case of an infinite crystal.\cite{Ewald21}. The approach he
120     took was to convert this conditionally convergent sum into two
121     absolutely convergent summations: a short-ranged real-space summation
122     and a long-ranged reciprocal-space summation,
123     \begin{equation}
124     \begin{split}
125     V_\textrm{elec} = \frac{1}{2}&
126     \sum_{i=1}^N\sum_{j=1}^N \Biggr[ q_i q_j\Biggr( {\sum_{\mathbf{n}}}^\prime
127     \frac{\textrm{erfc}\left( \alpha|\mathbf{r}_{ij}+\mathbf{n}|\right)}
128     {|\mathbf{r}_{ij}+\mathbf{n}|} \\
129     &+ \frac{1}{\pi L^3}\sum_{\mathbf{k}\ne 0}\frac{4\pi^2}{|\mathbf{k}|^2}
130     \exp{\left(-\frac{\pi^2|\mathbf{k}|^2}{\alpha^2}\right)
131     \cos\left(\mathbf{k}\cdot\mathbf{r}_{ij}\right)}\Biggr)\Biggr] \\
132     &- \frac{\alpha}{\pi^{1/2}}\sum_{i=1}^N q_i^2
133     + \frac{2\pi}{(2\epsilon_\textrm{S}+1)L^3}
134     \left|\sum_{i=1}^N q_i\mathbf{r}_i\right|^2,
135     \end{split}
136     \label{eq:EwaldSum}
137     \end{equation}
138     where $\alpha$ is the damping or convergence parameter with units of
139     \AA$^{-1}$, $\mathbf{k}$ are the reciprocal vectors and are equal to
140     $2\pi\mathbf{n}/L^2$, and $\epsilon_\textrm{S}$ is the dielectric
141     constant of the surrounding medium. The final two terms of
142     eq. (\ref{eq:EwaldSum}) are a particle-self term and a dipolar term
143     for interacting with a surrounding dielectric.\cite{Allen87} This
144     dipolar term was neglected in early applications in molecular
145     simulations,\cite{Brush66,Woodcock71} until it was introduced by de
146     Leeuw {\it et al.} to address situations where the unit cell has a
147     dipole moment which is magnified through replication of the periodic
148     images.\cite{deLeeuw80,Smith81} If this term is taken to be zero, the
149     system is said to be using conducting (or ``tin-foil'') boundary
150     conditions, $\epsilon_{\rm S} = \infty$. Figure
151     \ref{fig:ewaldTime} shows how the Ewald sum has been applied over
152     time. Initially, due to the small system sizes that could be
153     simulated feasibly, the entire simulation box was replicated to
154     convergence. In more modern simulations, the systems have grown large
155     enough that a real-space cutoff could potentially give convergent
156     behavior. Indeed, it has been observed that with the choice of a
157     small $\alpha$, the reciprocal-space portion of the Ewald sum can be
158     rapidly convergent and small relative to the real-space
159     portion.\cite{Karasawa89,Kolafa92}
160    
161     \begin{figure}
162     \includegraphics[width=\linewidth]{./figures/ewaldProgression.pdf}
163     \caption{The change in the need for the Ewald sum with
164     increasing computational power. A:~Initially, only small systems
165     could be studied, and the Ewald sum replicated the simulation box to
166     convergence. B:~Now, radial cutoff methods should be able to reach
167     convergence for the larger systems of charges that are common today.}
168     \label{fig:ewaldTime}
169     \end{figure}
170    
171     The original Ewald summation is an $\mathscr{O}(N^2)$ algorithm. The
172     convergence parameter $(\alpha)$ plays an important role in balancing
173     the computational cost between the direct and reciprocal-space
174     portions of the summation. The choice of this value allows one to
175     select whether the real-space or reciprocal space portion of the
176     summation is an $\mathscr{O}(N^2)$ calculation (with the other being
177     $\mathscr{O}(N)$).\cite{Sagui99} With the appropriate choice of
178     $\alpha$ and thoughtful algorithm development, this cost can be
179     reduced to $\mathscr{O}(N^{3/2})$.\cite{Perram88} The typical route
180     taken to reduce the cost of the Ewald summation even further is to set
181     $\alpha$ such that the real-space interactions decay rapidly, allowing
182     for a short spherical cutoff. Then the reciprocal space summation is
183     optimized. These optimizations usually involve utilization of the
184     fast Fourier transform (FFT),\cite{Hockney81} leading to the
185     particle-particle particle-mesh (P3M) and particle mesh Ewald (PME)
186     methods.\cite{Shimada93,Luty94,Luty95,Darden93,Essmann95} In these
187     methods, the cost of the reciprocal-space portion of the Ewald
188     summation is reduced from $\mathscr{O}(N^2)$ down to $\mathscr{O}(N
189     \log N)$.
190    
191     These developments and optimizations have made the use of the Ewald
192     summation routine in simulations with periodic boundary
193     conditions. However, in certain systems, such as vapor-liquid
194     interfaces and membranes, the intrinsic three-dimensional periodicity
195     can prove problematic. The Ewald sum has been reformulated to handle
196     2-D systems,\cite{Parry75,Parry76,Heyes77,deLeeuw79,Rhee89} but these
197     methods are computationally expensive.\cite{Spohr97,Yeh99} More
198     recently, there have been several successful efforts toward reducing
199     the computational cost of 2-D lattice
200     summations,\cite{Yeh99,Kawata01,Arnold02,deJoannis02,Brodka04}
201     bringing them more in line with the cost of the full 3-D summation.
202    
203     Several studies have recognized that the inherent periodicity in the
204     Ewald sum can also have an effect on three-dimensional
205     systems.\cite{Roberts94,Roberts95,Luty96,Hunenberger99a,Hunenberger99b,Weber00}
206     Solvated proteins are essentially kept at high concentration due to
207     the periodicity of the electrostatic summation method. In these
208     systems, the more compact folded states of a protein can be
209     artificially stabilized by the periodic replicas introduced by the
210     Ewald summation.\cite{Weber00} Thus, care must be taken when
211     considering the use of the Ewald summation where the assumed
212     periodicity would introduce spurious effects in the system dynamics.
213    
214    
215     \section{The Wolf and Zahn Methods}
216    
217     In a recent paper by Wolf \textit{et al.}, a procedure was outlined
218     for the accurate accumulation of electrostatic interactions in an
219     efficient pairwise fashion. This procedure lacks the inherent
220     periodicity of the Ewald summation.\cite{Wolf99} Wolf \textit{et al.}
221     observed that the electrostatic interaction is effectively
222     short-ranged in condensed phase systems and that neutralization of the
223     charge contained within the cutoff radius is crucial for potential
224     stability. They devised a pairwise summation method that ensures
225     charge neutrality and gives results similar to those obtained with the
226     Ewald summation. The resulting shifted Coulomb potential includes
227     image-charges subtracted out through placement on the cutoff sphere
228     and a distance-dependent damping function (identical to that seen in
229     the real-space portion of the Ewald sum) to aid convergence
230     \begin{equation}
231     V_{\textrm{Wolf}}(r_{ij})= \frac{q_i q_j \textrm{erfc}(\alpha r_{ij})}{r_{ij}}
232     - \lim_{r_{ij}\rightarrow R_\textrm{c}}
233     \left\{\frac{q_iq_j \textrm{erfc}(\alpha r_{ij})}{r_{ij}}\right\}.
234     \label{eq:WolfPot}
235     \end{equation}
236     Eq. (\ref{eq:WolfPot}) is essentially the common form of a shifted
237     potential. However, neutralizing the charge contained within each
238     cutoff sphere requires the placement of a self-image charge on the
239     surface of the cutoff sphere. This additional self-term in the total
240     potential enabled Wolf {\it et al.} to obtain excellent estimates of
241     Madelung energies for many crystals.
242    
243     In order to use their charge-neutralized potential in molecular
244     dynamics simulations, Wolf \textit{et al.} suggested taking the
245     derivative of this potential prior to evaluation of the limit. This
246     procedure gives an expression for the forces,
247     \begin{equation}
248     \begin{split}
249     F_{\textrm{Wolf}}(r_{ij}) = q_i q_j \Biggr\{&
250     \Biggr[\frac{\textrm{erfc}\left(\alpha r_{ij}\right)}{r^2_{ij}}
251     + \frac{2\alpha}{\pi^{1/2}}\frac{\exp{\left(-\alpha^2r_{ij}^2\right)}}{r_{ij}}
252     \Biggr]\\
253     &-\Biggr[
254     \frac{\textrm{erfc}\left(\alpha R_{\textrm{c}}\right)}{R_{\textrm{c}}^2}
255     + \frac{2\alpha}{\pi^{1/2}}
256     \frac{\exp{\left(-\alpha^2R_{\textrm{c}}^2\right)}}{R_{\textrm{c}}}
257     \Biggr]\Biggr\},
258     \end{split}
259     \label{eq:WolfForces}
260     \end{equation}
261     that incorporates both image charges and damping of the electrostatic
262     interaction.
263    
264     More recently, Zahn \textit{et al.} investigated these potential and
265     force expressions for use in simulations involving water.\cite{Zahn02}
266     In their work, they pointed out that the forces and derivative of
267     the potential are not commensurate. Attempts to use both
268     eqs. (\ref{eq:WolfPot}) and (\ref{eq:WolfForces}) together will lead
269     to poor energy conservation. They correctly observed that taking the
270     limit shown in equation (\ref{eq:WolfPot}) {\it after} calculating the
271     derivatives gives forces for a different potential energy function
272     than the one shown in eq. (\ref{eq:WolfPot}).
273    
274     Zahn \textit{et al.} introduced a modified form of this summation
275     method as a way to use the technique in Molecular Dynamics
276     simulations. They proposed a new damped Coulomb potential,
277     \begin{equation}
278     \begin{split}
279     V_{\textrm{Zahn}}(r_{ij}) = q_iq_j\Biggr\{&
280     \frac{\mathrm{erfc}\left(\alpha r_{ij}\right)}{r_{ij}} \\
281     &- \left[\frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}^2}
282     + \frac{2\alpha}{\pi^{1/2}}
283     \frac{\exp\left(-\alpha^2R_\mathrm{c}^2\right)}{R_\mathrm{c}}
284     \right]\left(r_{ij}-R_\mathrm{c}\right)\Biggr\},
285     \end{split}
286     \label{eq:ZahnPot}
287     \end{equation}
288     and showed that this potential does fairly well at capturing the
289     structural and dynamic properties of water compared the same
290     properties obtained using the Ewald sum.
291    
292 chrisfen 2957 \section{Simple Forms for Pairwise Electrostatics}\label{sec:PairwiseDerivation}
293 chrisfen 2918
294     The potentials proposed by Wolf \textit{et al.} and Zahn \textit{et
295     al.} are constructed using two different (and separable) computational
296     tricks:
297    
298 chrisfen 2971 \begin{enumerate}[itemsep=0pt]
299 chrisfen 2918 \item shifting through the use of image charges, and
300     \item damping the electrostatic interaction.
301     \end{enumerate}
302 chrisfen 2971 Wolf \textit{et al.} treated the development of their summation method
303     as a progressive application of these techniques,\cite{Wolf99} while
304     Zahn \textit{et al.} founded their damped Coulomb modification
305     (Eq. (\ref{eq:ZahnPot})) on the post-limit forces
306     (Eq. (\ref{eq:WolfForces})) which were derived using both techniques.
307     It is possible, however, to separate these tricks and study their
308     effects independently.
309 chrisfen 2918
310     Starting with the original observation that the effective range of the
311     electrostatic interaction in condensed phases is considerably less
312     than $r^{-1}$, either the cutoff sphere neutralization or the
313     distance-dependent damping technique could be used as a foundation for
314     a new pairwise summation method. Wolf \textit{et al.} made the
315     observation that charge neutralization within the cutoff sphere plays
316     a significant role in energy convergence; therefore we will begin our
317     analysis with the various shifted forms that maintain this charge
318     neutralization. We can evaluate the methods of Wolf
319     \textit{et al.} and Zahn \textit{et al.} by considering the standard
320     shifted potential,
321     \begin{equation}
322     V_\textrm{SP}(r) = \begin{cases}
323     v(r)-v_\textrm{c} &\quad r\leqslant R_\textrm{c} \\ 0 &\quad r >
324     R_\textrm{c}
325     \end{cases},
326     \label{eq:shiftingPotForm}
327     \end{equation}
328     and shifted force,
329     \begin{equation}
330     V_\textrm{SF}(r) = \begin{cases}
331     v(r) - v_\textrm{c}
332     - \left(\frac{d v(r)}{d r}\right)_{r=R_\textrm{c}}(r-R_\textrm{c})
333     &\quad r\leqslant R_\textrm{c} \\ 0 &\quad r > R_\textrm{c}
334     \end{cases},
335     \label{eq:shiftingForm}
336     \end{equation}
337     functions where $v(r)$ is the unshifted form of the potential, and
338     $v_c$ is $v(R_\textrm{c})$. The Shifted Force ({\sc sf}) form ensures
339     that both the potential and the forces goes to zero at the cutoff
340     radius, while the Shifted Potential ({\sc sp}) form only ensures the
341     potential is smooth at the cutoff radius
342     ($R_\textrm{c}$).\cite{Allen87}
343    
344     The forces associated with the shifted potential are simply the forces
345     of the unshifted potential itself (when inside the cutoff sphere),
346     \begin{equation}
347     F_{\textrm{SP}} = -\left( \frac{d v(r)}{dr} \right),
348     \end{equation}
349     and are zero outside. Inside the cutoff sphere, the forces associated
350     with the shifted force form can be written,
351     \begin{equation}
352     F_{\textrm{SF}} = -\left( \frac{d v(r)}{dr} \right) + \left(\frac{d
353     v(r)}{dr} \right)_{r=R_\textrm{c}}.
354     \end{equation}
355    
356     If the potential, $v(r)$, is taken to be the normal Coulomb potential,
357     \begin{equation}
358     v(r) = \frac{q_i q_j}{r},
359     \label{eq:Coulomb}
360     \end{equation}
361     then the Shifted Potential ({\sc sp}) forms will give Wolf {\it et
362     al.}'s undamped prescription:
363     \begin{equation}
364     V_\textrm{SP}(r) =
365     q_iq_j\left(\frac{1}{r}-\frac{1}{R_\textrm{c}}\right) \quad
366     r\leqslant R_\textrm{c},
367     \label{eq:SPPot}
368     \end{equation}
369     with associated forces,
370     \begin{equation}
371     F_\textrm{SP}(r) = q_iq_j\left(\frac{1}{r^2}\right)
372     \quad r\leqslant R_\textrm{c}.
373     \label{eq:SPForces}
374     \end{equation}
375     These forces are identical to the forces of the standard Coulomb
376     interaction, and cutting these off at $R_c$ was addressed by Wolf
377     \textit{et al.} as undesirable. They pointed out that the effect of
378     the image charges is neglected in the forces when this form is
379     used,\cite{Wolf99} thereby eliminating any benefit from the method in
380     molecular dynamics. Additionally, there is a discontinuity in the
381     forces at the cutoff radius which results in energy drift during MD
382     simulations.
383    
384     The shifted force ({\sc sf}) form using the normal Coulomb potential
385     will give,
386     \begin{equation}
387     V_\textrm{SF}(r) = q_iq_j\left[\frac{1}{r}-\frac{1}{R_\textrm{c}}
388     + \left(\frac{1}{R_\textrm{c}^2}\right)(r-R_\textrm{c})\right]
389     \quad r\leqslant R_\textrm{c}.
390     \label{eq:SFPot}
391     \end{equation}
392     with associated forces,
393     \begin{equation}
394     F_\textrm{SF}(r) = q_iq_j\left(\frac{1}{r^2}-\frac{1}{R_\textrm{c}^2}\right)
395     \quad r\leqslant R_\textrm{c}.
396     \label{eq:SFForces}
397     \end{equation}
398     This formulation has the benefits that there are no discontinuities at
399     the cutoff radius, while the neutralizing image charges are present in
400     both the energy and force expressions. It would be simple to add the
401     self-neutralizing term back when computing the total energy of the
402     system, thereby maintaining the agreement with the Madelung energies.
403     A side effect of this treatment is the alteration in the shape of the
404     potential that comes from the derivative term. Thus, a degree of
405     clarity about agreement with the empirical potential is lost in order
406     to gain functionality in dynamics simulations.
407    
408     Wolf \textit{et al.} originally discussed the energetics of the
409     shifted Coulomb potential (Eq. \ref{eq:SPPot}) and found that it was
410     insufficient for accurate determination of the energy with reasonable
411     cutoff distances. The calculated Madelung energies fluctuated around
412     the expected value as the cutoff radius was increased, but the
413     oscillations converged toward the correct value.\cite{Wolf99} A
414     damping function was incorporated to accelerate the convergence; and
415     though alternative forms for the damping function could be
416     used,\cite{Jones56,Heyes81} the complimentary error function was
417     chosen to mirror the effective screening used in the Ewald summation.
418     Incorporating this error function damping into the simple Coulomb
419     potential,
420     \begin{equation}
421     v(r) = \frac{\mathrm{erfc}\left(\alpha r\right)}{r},
422     \label{eq:dampCoulomb}
423     \end{equation}
424     the shifted potential (eq. (\ref{eq:SPPot})) becomes
425     \begin{equation}
426     V_{\textrm{DSP}}(r) = q_iq_j\left(\frac{\textrm{erfc}\left(\alpha r\right)}{r}
427     - \frac{\textrm{erfc}\left(\alpha R_\textrm{c}\right)}{R_\textrm{c}}\right)
428     \quad r\leqslant R_\textrm{c},
429     \label{eq:DSPPot}
430     \end{equation}
431     with associated forces,
432     \begin{equation}
433     F_{\textrm{DSP}}(r) = q_iq_j
434     \left(\frac{\textrm{erfc}\left(\alpha r\right)}{r^2}
435     + \frac{2\alpha}{\pi^{1/2}}\frac{\exp{\left(-\alpha^2r^2\right)}}{r}\right)
436     \quad r\leqslant R_\textrm{c}.
437     \label{eq:DSPForces}
438     \end{equation}
439     Again, this damped shifted potential suffers from a
440     force-discontinuity at the cutoff radius, and the image charges play
441     no role in the forces. To remedy these concerns, one may derive a
442     {\sc sf} variant by including the derivative term in
443     eq. (\ref{eq:shiftingForm}),
444     \begin{equation}
445     \begin{split}
446     V_\mathrm{DSF}(r) = q_iq_j\Biggr{[}&
447     \frac{\mathrm{erfc}\left(\alpha r\right)}{r}
448     - \frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}} \\
449     &+ \left(\frac{\mathrm{erfc}\left(\alpha R_\mathrm{c}\right)}{R_\mathrm{c}^2}
450     + \frac{2\alpha}{\pi^{1/2}}
451     \frac{\exp\left(-\alpha^2R_\mathrm{c}^2\right)}{R_\mathrm{c}}
452     \right)\left(r-R_\mathrm{c}\right)\ \Biggr{]}
453     \quad r\leqslant R_\textrm{c}.
454     \label{eq:DSFPot}
455     \end{split}
456     \end{equation}
457     The derivative of the above potential will lead to the following forces,
458     \begin{equation}
459     \begin{split}
460     F_\mathrm{DSF}(r) = q_iq_j\Biggr{[}&
461     \left(\frac{\textrm{erfc}\left(\alpha r\right)}{r^2}
462     + \frac{2\alpha}{\pi^{1/2}}\frac{\exp{\left(-\alpha^2r^2\right)}}{r}\right) \\
463     &- \left(\frac{\textrm{erfc}\left(\alpha R_{\textrm{c}}\right)}
464     {R_{\textrm{c}}^2}
465     + \frac{2\alpha}{\pi^{1/2}}
466     \frac{\exp{\left(-\alpha^2R_{\textrm{c}}^2\right)}}{R_{\textrm{c}}}
467     \right)\Biggr{]}
468     \quad r\leqslant R_\textrm{c}.
469     \label{eq:DSFForces}
470     \end{split}
471     \end{equation}
472     If the damping parameter $(\alpha)$ is set to zero, the undamped case,
473     eqs. (\ref{eq:SPPot} through \ref{eq:SFForces}) are correctly
474     recovered from eqs. (\ref{eq:DSPPot} through \ref{eq:DSFForces}).
475    
476     This new {\sc sf} potential is similar to equation \ref{eq:ZahnPot}
477     derived by Zahn \textit{et al.}; however, there are two important
478     differences.\cite{Zahn02} First, the $v_\textrm{c}$ term from
479     eq. (\ref{eq:shiftingForm}) is equal to eq. (\ref{eq:dampCoulomb})
480     with $r$ replaced by $R_\textrm{c}$. This term is {\it not} present
481     in the Zahn potential, resulting in a potential discontinuity as
482     particles cross $R_\textrm{c}$. Second, the sign of the derivative
483     portion is different. The missing $v_\textrm{c}$ term would not
484     affect molecular dynamics simulations (although the computed energy
485     would be expected to have sudden jumps as particle distances crossed
486     $R_c$). The sign problem is a potential source of errors, however.
487     In fact, it introduces a discontinuity in the forces at the cutoff,
488     because the force function is shifted in the wrong direction and
489     doesn't cross zero at $R_\textrm{c}$.
490    
491     Eqs. (\ref{eq:DSFPot}) and (\ref{eq:DSFForces}) result in an
492     electrostatic summation method in which the potential and forces are
493     continuous at the cutoff radius and which incorporates the damping
494     function proposed by Wolf \textit{et al.}\cite{Wolf99} In the rest of
495     this paper, we will evaluate exactly how good these methods ({\sc sp},
496     {\sc sf}, damping) are at reproducing the correct electrostatic
497     summation performed by the Ewald sum.
498    
499    
500     \section{Evaluating Pairwise Summation Techniques}
501    
502     In classical molecular mechanics simulations, there are two primary
503     techniques utilized to obtain information about the system of
504     interest: Monte Carlo (MC) and Molecular Dynamics (MD). Both of these
505     techniques utilize pairwise summations of interactions between
506     particle sites, but they use these summations in different ways.
507    
508     In MC, the potential energy difference between configurations dictates
509     the progression of MC sampling. Going back to the origins of this
510     method, the acceptance criterion for the canonical ensemble laid out
511     by Metropolis \textit{et al.} states that a subsequent configuration
512     is accepted if $\Delta E < 0$ or if $\xi < \exp(-\Delta E/kT)$, where
513     $\xi$ is a random number between 0 and 1.\cite{Metropolis53}
514     Maintaining the correct $\Delta E$ when using an alternate method for
515     handling the long-range electrostatics will ensure proper sampling
516     from the ensemble.
517    
518     In MD, the derivative of the potential governs how the system will
519     progress in time. Consequently, the force and torque vectors on each
520     body in the system dictate how the system evolves. If the magnitude
521     and direction of these vectors are similar when using alternate
522     electrostatic summation techniques, the dynamics in the short term
523     will be indistinguishable. Because error in MD calculations is
524     cumulative, one should expect greater deviation at longer times,
525     although methods which have large differences in the force and torque
526     vectors will diverge from each other more rapidly.
527    
528     \subsection{Monte Carlo and the Energy Gap}\label{sec:MCMethods}
529    
530     The pairwise summation techniques (outlined in section
531     \ref{sec:ESMethods}) were evaluated for use in MC simulations by
532     studying the energy differences between conformations. We took the
533     {\sc spme}-computed energy difference between two conformations to be the
534     correct behavior. An ideal performance by an alternative method would
535     reproduce these energy differences exactly (even if the absolute
536     energies calculated by the methods are different). Since none of the
537     methods provide exact energy differences, we used linear least squares
538     regressions of energy gap data to evaluate how closely the methods
539     mimicked the Ewald energy gaps. Unitary results for both the
540     correlation (slope) and correlation coefficient for these regressions
541     indicate perfect agreement between the alternative method and {\sc spme}.
542     Sample correlation plots for two alternate methods are shown in
543     Fig. \ref{fig:linearFit}.
544    
545     \begin{figure}
546     \centering
547     \includegraphics[width = \linewidth]{./figures/dualLinear.pdf}
548     \caption{Example least squares regressions of the configuration energy
549     differences for SPC/E water systems. The upper plot shows a data set
550     with a poor correlation coefficient ($R^2$), while the lower plot
551     shows a data set with a good correlation coefficient.}
552     \label{fig:linearFit}
553     \end{figure}
554    
555     Each of the seven system types (detailed in section \ref{sec:RepSims})
556     were represented using 500 independent configurations. Thus, each of
557     the alternative (non-Ewald) electrostatic summation methods was
558     evaluated using an accumulated 873,250 configurational energy
559     differences.
560    
561     Results and discussion for the individual analysis of each of the
562 chrisfen 2927 system types appear in sections \ref{sec:IndividualResults}, while the
563 chrisfen 2918 cumulative results over all the investigated systems appear below in
564     sections \ref{sec:EnergyResults}.
565    
566     \subsection{Molecular Dynamics and the Force and Torque
567     Vectors}\label{sec:MDMethods} We evaluated the pairwise methods
568     (outlined in section \ref{sec:ESMethods}) for use in MD simulations by
569     comparing the force and torque vectors with those obtained using the
570     reference Ewald summation ({\sc spme}). Both the magnitude and the
571     direction of these vectors on each of the bodies in the system were
572     analyzed. For the magnitude of these vectors, linear least squares
573     regression analyses were performed as described previously for
574     comparing $\Delta E$ values. Instead of a single energy difference
575     between two system configurations, we compared the magnitudes of the
576     forces (and torques) on each molecule in each configuration. For a
577     system of 1000 water molecules and 40 ions, there are 1040 force
578     vectors and 1000 torque vectors. With 500 configurations, this
579     results in 520,000 force and 500,000 torque vector comparisons.
580     Additionally, data from seven different system types was aggregated
581     before the comparison was made.
582    
583     The {\it directionality} of the force and torque vectors was
584     investigated through measurement of the angle ($\theta$) formed
585     between those computed from the particular method and those from {\sc spme},
586     \begin{equation}
587     \theta_f = \cos^{-1} \left(\hat{F}_\textrm{SPME}
588     \cdot \hat{F}_\textrm{M}\right),
589     \end{equation}
590     where $\hat{F}_\textrm{M}$ is the unit vector pointing along the force
591     vector computed using method M. Each of these $\theta$ values was
592     accumulated in a distribution function and weighted by the area on the
593     unit sphere. Since this distribution is a measure of angular error
594     between two different electrostatic summation methods, there is no
595     {\it a priori} reason for the profile to adhere to any specific
596     shape. Thus, gaussian fits were used to measure the width of the
597     resulting distributions. The variance ($\sigma^2$) was extracted from
598     each of these fits and was used to compare distribution widths.
599     Values of $\sigma^2$ near zero indicate vector directions
600     indistinguishable from those calculated when using the reference
601     method ({\sc spme}).
602    
603     \subsection{Short-time Dynamics}
604    
605     The effects of the alternative electrostatic summation methods on the
606     short-time dynamics of charged systems were evaluated by considering a
607     NaCl crystal at a temperature of 1000 K. A subset of the best
608     performing pairwise methods was used in this comparison. The NaCl
609     crystal was chosen to avoid possible complications from the treatment
610     of orientational motion in molecular systems. All systems were
611     started with the same initial positions and velocities. Simulations
612     were performed under the microcanonical ensemble, and velocity
613     autocorrelation functions (Eq. \ref{eq:vCorr}) were computed for each
614     of the trajectories,
615     \begin{equation}
616     C_v(t) = \frac{\langle v(0)\cdot v(t)\rangle}{\langle v^2\rangle}.
617     \label{eq:vCorr}
618     \end{equation}
619     Velocity autocorrelation functions require detailed short time data,
620     thus velocity information was saved every 2 fs over 10 ps
621     trajectories. Because the NaCl crystal is composed of two different
622     atom types, the average of the two resulting velocity autocorrelation
623     functions was used for comparisons.
624    
625     \subsection{Long-Time and Collective Motion}\label{sec:LongTimeMethods}
626    
627     The effects of the same subset of alternative electrostatic methods on
628     the {\it long-time} dynamics of charged systems were evaluated using
629     the same model system (NaCl crystals at 1000K). The power spectrum
630     ($I(\omega)$) was obtained via Fourier transform of the velocity
631     autocorrelation function, \begin{equation} I(\omega) =
632     \frac{1}{2\pi}\int^{\infty}_{-\infty}C_v(t)e^{-i\omega t}dt,
633     \label{eq:powerSpec}
634     \end{equation}
635     where the frequency, $\omega=0,\ 1,\ ...,\ N-1$. Again, because the
636     NaCl crystal is composed of two different atom types, the average of
637     the two resulting power spectra was used for comparisons. Simulations
638     were performed under the microcanonical ensemble, and velocity
639     information was saved every 5~fs over 100~ps trajectories.
640    
641     \subsection{Representative Simulations}\label{sec:RepSims}
642     A variety of representative molecular simulations were analyzed to
643     determine the relative effectiveness of the pairwise summation
644     techniques in reproducing the energetics and dynamics exhibited by
645     {\sc spme}. We wanted to span the space of typical molecular
646     simulations (i.e. from liquids of neutral molecules to ionic
647     crystals), so the systems studied were:
648    
649 chrisfen 2971 \begin{enumerate}[itemsep=0pt]
650 chrisfen 2918 \item liquid water (SPC/E),\cite{Berendsen87}
651     \item crystalline water (Ice I$_\textrm{c}$ crystals of SPC/E),
652     \item NaCl crystals,
653     \item NaCl melts,
654     \item a low ionic strength solution of NaCl in water (0.11 M),
655     \item a high ionic strength solution of NaCl in water (1.1 M), and
656     \item a 6\AA\ radius sphere of Argon in water.
657     \end{enumerate}
658    
659     By utilizing the pairwise techniques (outlined in section
660     \ref{sec:ESMethods}) in systems composed entirely of neutral groups,
661     charged particles, and mixtures of the two, we hope to discern under
662     which conditions it will be possible to use one of the alternative
663     summation methodologies instead of the Ewald sum.
664    
665     For the solid and liquid water configurations, configurations were
666     taken at regular intervals from high temperature trajectories of 1000
667     SPC/E water molecules. Each configuration was equilibrated
668     independently at a lower temperature (300K for the liquid, 200K for
669     the crystal). The solid and liquid NaCl systems consisted of 500
670     $\textrm{Na}^{+}$ and 500 $\textrm{Cl}^{-}$ ions. Configurations for
671     these systems were selected and equilibrated in the same manner as the
672     water systems. In order to introduce measurable fluctuations in the
673     configuration energy differences, the crystalline simulations were
674     equilibrated at 1000K, near the $T_\textrm{m}$ for NaCl. The liquid
675     NaCl configurations needed to represent a fully disordered array of
676     point charges, so the high temperature of 7000K was selected for
677     equilibration. The ionic solutions were made by solvating 4 (or 40)
678     ions in a periodic box containing 1000 SPC/E water molecules. Ion and
679     water positions were then randomly swapped, and the resulting
680     configurations were again equilibrated individually. Finally, for the
681     Argon / Water ``charge void'' systems, the identities of all the SPC/E
682     waters within 6\AA\ of the center of the equilibrated water
683     configurations were converted to argon.
684    
685     These procedures guaranteed us a set of representative configurations
686     from chemically-relevant systems sampled from appropriate
687     ensembles. Force field parameters for the ions and Argon were taken
688     from the force field utilized by {\sc oopse}.\cite{Meineke05}
689    
690     \subsection{Comparison of Summation Methods}\label{sec:ESMethods}
691     We compared the following alternative summation methods with results
692     from the reference method ({\sc spme}):
693    
694 chrisfen 2971 \begin{enumerate}[itemsep=0pt]
695 chrisfen 2918 \item {\sc sp} with damping parameters ($\alpha$) of 0.0, 0.1, 0.2,
696     and 0.3\AA$^{-1}$,
697     \item {\sc sf} with damping parameters ($\alpha$) of 0.0, 0.1, 0.2,
698     and 0.3\AA$^{-1}$,
699     \item reaction field with an infinite dielectric constant, and
700     \item an unmodified cutoff.
701     \end{enumerate}
702    
703     Group-based cutoffs with a fifth-order polynomial switching function
704     were utilized for the reaction field simulations. Additionally, we
705     investigated the use of these cutoffs with the {\sc sp}, {\sc sf}, and pure
706     cutoff. The {\sc spme} electrostatics were performed using the {\sc tinker}
707     implementation of {\sc spme},\cite{Ponder87} while all other calculations
708     were performed using the {\sc oopse} molecular mechanics
709     package.\cite{Meineke05} All other portions of the energy calculation
710     (i.e. Lennard-Jones interactions) were handled in exactly the same
711     manner across all systems and configurations.
712    
713     The alternative methods were also evaluated with three different
714     cutoff radii (9, 12, and 15\AA). As noted previously, the
715     convergence parameter ($\alpha$) plays a role in the balance of the
716     real-space and reciprocal-space portions of the Ewald calculation.
717     Typical molecular mechanics packages set this to a value dependent on
718     the cutoff radius and a tolerance (typically less than $1 \times
719     10^{-4}$ kcal/mol). Smaller tolerances are typically associated with
720     increasing accuracy at the expense of computational time spent on the
721     reciprocal-space portion of the summation.\cite{Perram88,Essmann95}
722     The default {\sc tinker} tolerance of $1 \times 10^{-8}$ kcal/mol was used
723     in all {\sc spme} calculations, resulting in Ewald coefficients of 0.4200,
724     0.3119, and 0.2476\AA$^{-1}$ for cutoff radii of 9, 12, and 15\AA\
725     respectively.
726    
727 chrisfen 2927 \section{Configuration Energy Difference Results}\label{sec:EnergyResults}
728 chrisfen 2918 In order to evaluate the performance of the pairwise electrostatic
729 chrisfen 2920 summation methods for Monte Carlo (MC) simulations, the energy
730     differences between configurations were compared to the values
731     obtained when using {\sc spme}. The results for the combined
732     regression analysis of all of the systems are shown in figure
733     \ref{fig:delE}.
734 chrisfen 2918
735     \begin{figure}
736     \centering
737     \includegraphics[width=4.75in]{./figures/delEplot.pdf}
738     \caption{Statistical analysis of the quality of configurational energy
739     differences for a given electrostatic method compared with the
740     reference Ewald sum. Results with a value equal to 1 (dashed line)
741     indicate $\Delta E$ values indistinguishable from those obtained using
742     {\sc spme}. Different values of the cutoff radius are indicated with
743     different symbols (9\AA\ = circles, 12\AA\ = squares, and 15\AA\ =
744     inverted triangles).}
745     \label{fig:delE}
746     \end{figure}
747    
748     The most striking feature of this plot is how well the Shifted Force
749     ({\sc sf}) and Shifted Potential ({\sc sp}) methods capture the energy
750     differences. For the undamped {\sc sf} method, and the
751     moderately-damped {\sc sp} methods, the results are nearly
752     indistinguishable from the Ewald results. The other common methods do
753     significantly less well.
754    
755     The unmodified cutoff method is essentially unusable. This is not
756     surprising since hard cutoffs give large energy fluctuations as atoms
757     or molecules move in and out of the cutoff
758     radius.\cite{Rahman71,Adams79} These fluctuations can be alleviated to
759     some degree by using group based cutoffs with a switching
760     function.\cite{Adams79,Steinbach94,Leach01} However, we do not see
761     significant improvement using the group-switched cutoff because the
762     salt and salt solution systems contain non-neutral groups. Section
763 chrisfen 2927 \ref{sec:IndividualResults} includes results for systems comprised entirely
764 chrisfen 2918 of neutral groups.
765    
766     For the {\sc sp} method, inclusion of electrostatic damping improves
767     the agreement with Ewald, and using an $\alpha$ of 0.2\AA $^{-1}$
768     shows an excellent correlation and quality of fit with the {\sc spme}
769     results, particularly with a cutoff radius greater than 12
770     \AA . Use of a larger damping parameter is more helpful for the
771     shortest cutoff shown, but it has a detrimental effect on simulations
772     with larger cutoffs.
773    
774     In the {\sc sf} sets, increasing damping results in progressively {\it
775     worse} correlation with Ewald. Overall, the undamped case is the best
776     performing set, as the correlation and quality of fits are
777     consistently superior regardless of the cutoff distance. The undamped
778     case is also less computationally demanding (because no evaluation of
779     the complementary error function is required).
780    
781     The reaction field results illustrates some of that method's
782 chrisfen 2957 limitations, primarily that it was developed for use in homogeneous
783 chrisfen 2918 systems; although it does provide results that are an improvement over
784     those from an unmodified cutoff.
785    
786 chrisfen 2927 \section{Magnitude of the Force and Torque Vector Results}\label{sec:FTMagResults}
787 chrisfen 2918
788     Evaluation of pairwise methods for use in Molecular Dynamics
789     simulations requires consideration of effects on the forces and
790     torques. Figures \ref{fig:frcMag} and \ref{fig:trqMag} show the
791     regression results for the force and torque vector magnitudes,
792     respectively. The data in these figures was generated from an
793     accumulation of the statistics from all of the system types.
794    
795     \begin{figure}
796     \centering
797     \includegraphics[width=4.75in]{./figures/frcMagplot.pdf}
798     \caption{Statistical analysis of the quality of the force vector
799     magnitudes for a given electrostatic method compared with the
800     reference Ewald sum. Results with a value equal to 1 (dashed line)
801     indicate force magnitude values indistinguishable from those obtained
802     using {\sc spme}. Different values of the cutoff radius are indicated with
803     different symbols (9\AA\ = circles, 12\AA\ = squares, and 15\AA\ =
804     inverted triangles).}
805     \label{fig:frcMag}
806     \end{figure}
807    
808     Again, it is striking how well the Shifted Potential and Shifted Force
809     methods are doing at reproducing the {\sc spme} forces. The undamped and
810     weakly-damped {\sc sf} method gives the best agreement with Ewald.
811     This is perhaps expected because this method explicitly incorporates a
812     smooth transition in the forces at the cutoff radius as well as the
813     neutralizing image charges.
814    
815     Figure \ref{fig:frcMag}, for the most part, parallels the results seen
816     in the previous $\Delta E$ section. The unmodified cutoff results are
817     poor, but using group based cutoffs and a switching function provides
818     an improvement much more significant than what was seen with $\Delta
819     E$.
820    
821     With moderate damping and a large enough cutoff radius, the {\sc sp}
822     method is generating usable forces. Further increases in damping,
823     while beneficial for simulations with a cutoff radius of 9\AA\ , is
824     detrimental to simulations with larger cutoff radii.
825    
826     The reaction field results are surprisingly good, considering the poor
827     quality of the fits for the $\Delta E$ results. There is still a
828     considerable degree of scatter in the data, but the forces correlate
829     well with the Ewald forces in general. We note that the reaction
830     field calculations do not include the pure NaCl systems, so these
831     results are partly biased towards conditions in which the method
832     performs more favorably.
833    
834     \begin{figure}
835     \centering
836     \includegraphics[width=4.75in]{./figures/trqMagplot.pdf}
837     \caption{Statistical analysis of the quality of the torque vector
838     magnitudes for a given electrostatic method compared with the
839     reference Ewald sum. Results with a value equal to 1 (dashed line)
840     indicate torque magnitude values indistinguishable from those obtained
841     using {\sc spme}. Different values of the cutoff radius are indicated with
842     different symbols (9\AA\ = circles, 12\AA\ = squares, and 15\AA\ =
843     inverted triangles).}
844     \label{fig:trqMag}
845     \end{figure}
846    
847     Molecular torques were only available from the systems which contained
848     rigid molecules (i.e. the systems containing water). The data in
849     fig. \ref{fig:trqMag} is taken from this smaller sampling pool.
850    
851     Torques appear to be much more sensitive to charges at a longer
852     distance. The striking feature in comparing the new electrostatic
853     methods with {\sc spme} is how much the agreement improves with increasing
854     cutoff radius. Again, the weakly damped and undamped {\sc sf} method
855     appears to be reproducing the {\sc spme} torques most accurately.
856    
857     Water molecules are dipolar, and the reaction field method reproduces
858     the effect of the surrounding polarized medium on each of the
859     molecular bodies. Therefore it is not surprising that reaction field
860     performs best of all of the methods on molecular torques.
861    
862 chrisfen 2927 \section{Directionality of the Force and Torque Vector Results}\label{sec:FTDirResults}
863 chrisfen 2918
864     It is clearly important that a new electrostatic method can reproduce
865     the magnitudes of the force and torque vectors obtained via the Ewald
866     sum. However, the {\it directionality} of these vectors will also be
867     vital in calculating dynamical quantities accurately. Force and
868     torque directionalities were investigated by measuring the angles
869     formed between these vectors and the same vectors calculated using
870     {\sc spme}. The results (Fig. \ref{fig:frcTrqAng}) are compared through the
871     variance ($\sigma^2$) of the Gaussian fits of the angle error
872     distributions of the combined set over all system types.
873    
874     \begin{figure}
875     \centering
876     \includegraphics[width=4.75in]{./figures/frcTrqAngplot.pdf}
877     \caption{Statistical analysis of the width of the angular distribution
878     that the force and torque vectors from a given electrostatic method
879     make with their counterparts obtained using the reference Ewald sum.
880     Results with a variance ($\sigma^2$) equal to zero (dashed line)
881     indicate force and torque directions indistinguishable from those
882     obtained using {\sc spme}. Different values of the cutoff radius are
883     indicated with different symbols (9\AA\ = circles, 12\AA\ = squares,
884     and 15\AA\ = inverted triangles).}
885     \label{fig:frcTrqAng}
886     \end{figure}
887    
888     Both the force and torque $\sigma^2$ results from the analysis of the
889     total accumulated system data are tabulated in figure
890     \ref{fig:frcTrqAng}. Here it is clear that the Shifted Potential ({\sc
891     sp}) method would be essentially unusable for molecular dynamics
892     unless the damping function is added. The Shifted Force ({\sc sf})
893     method, however, is generating force and torque vectors which are
894     within a few degrees of the Ewald results even with weak (or no)
895     damping.
896    
897     All of the sets (aside from the over-damped case) show the improvement
898     afforded by choosing a larger cutoff radius. Increasing the cutoff
899     from 9 to 12\AA\ typically results in a halving of the width of the
900     distribution, with a similar improvement when going from 12 to 15
901     \AA .
902    
903     The undamped {\sc sf}, group-based cutoff, and reaction field methods
904     all do equivalently well at capturing the direction of both the force
905     and torque vectors. Using the electrostatic damping improves the
906     angular behavior significantly for the {\sc sp} and moderately for the
907 chrisfen 2957 {\sc sf} methods. Over-damping is detrimental to both methods. Again
908 chrisfen 2918 it is important to recognize that the force vectors cover all
909     particles in all seven systems, while torque vectors are only
910     available for neutral molecular groups. Damping is more beneficial to
911     charged bodies, and this observation is investigated further in
912 chrisfen 2957 section \ref{sec:IndividualResults}.
913 chrisfen 2918
914     Although not discussed previously, group based cutoffs can be applied
915     to both the {\sc sp} and {\sc sf} methods. The group-based cutoffs
916     will reintroduce small discontinuities at the cutoff radius, but the
917     effects of these can be minimized by utilizing a switching function.
918     Though there are no significant benefits or drawbacks observed in
919     $\Delta E$ and the force and torque magnitudes when doing this, there
920     is a measurable improvement in the directionality of the forces and
921     torques. Table \ref{tab:groupAngle} shows the angular variances
922     obtained both without (N) and with (Y) group based cutoffs and a
923     switching function. Note that the $\alpha$ values have units of
924     \AA$^{-1}$ and the variance values have units of degrees$^2$. The
925     {\sc sp} (with an $\alpha$ of 0.2\AA$^{-1}$ or smaller) shows much
926     narrower angular distributions when using group-based cutoffs. The
927     {\sc sf} method likewise shows improvement in the undamped and lightly
928     damped cases.
929    
930     \begin{table}
931     \caption{STATISTICAL ANALYSIS OF THE ANGULAR DISTRIBUTIONS ($\sigma^2$)
932     THAT THE FORCE ({\it upper}) AND TORQUE ({\it lower}) VECTORS FROM A
933     GIVEN ELECTROSTATIC METHOD MAKE WITH THEIR COUNTERPARTS OBTAINED USING
934     THE REFERENCE EWALD SUMMATION}
935    
936     \footnotesize
937     \begin{center}
938 chrisfen 2971 \begin{tabular}{@{} ccrrrrrrrr @{}}
939 chrisfen 2918 \toprule
940     \toprule
941     & &\multicolumn{4}{c}{Shifted Potential} & \multicolumn{4}{c}{Shifted
942     Force} \\
943     \cmidrule(lr){3-6} \cmidrule(l){7-10} $R_\textrm{c}$ & Groups &
944     $\alpha = 0$ & $\alpha = 0.1$ & $\alpha = 0.2$ & $\alpha = 0.3$ &
945     $\alpha = 0$ & $\alpha = 0.1$ & $\alpha = 0.2$ & $\alpha = 0.3$\\
946    
947     \midrule
948    
949     9\AA & N & 29.545 & 12.003 & 5.489 & 0.610 & 2.323 & 2.321 & 0.429 & 0.603 \\
950     & \textbf{Y} & \textbf{2.486} & \textbf{2.160} & \textbf{0.667} & \textbf{0.608} & \textbf{1.768} & \textbf{1.766} & \textbf{0.676} & \textbf{0.609} \\
951     12\AA & N & 19.381 & 3.097 & 0.190 & 0.608 & 0.920 & 0.736 & 0.133 & 0.612 \\
952     & \textbf{Y} & \textbf{0.515} & \textbf{0.288} & \textbf{0.127} & \textbf{0.586} & \textbf{0.308} & \textbf{0.249} & \textbf{0.127} & \textbf{0.586} \\
953     15\AA & N & 12.700 & 1.196 & 0.123 & 0.601 & 0.339 & 0.160 & 0.123 & 0.601 \\
954     & \textbf{Y} & \textbf{0.228} & \textbf{0.099} & \textbf{0.121} & \textbf{0.598} & \textbf{0.144} & \textbf{0.090} & \textbf{0.121} & \textbf{0.598} \\
955    
956     \midrule
957    
958     9\AA & N & 262.716 & 116.585 & 5.234 & 5.103 & 2.392 & 2.350 & 1.770 & 5.122 \\
959     & \textbf{Y} & \textbf{2.115} & \textbf{1.914} & \textbf{1.878} & \textbf{5.142} & \textbf{2.076} & \textbf{2.039} & \textbf{1.972} & \textbf{5.146} \\
960     12\AA & N & 129.576 & 25.560 & 1.369 & 5.080 & 0.913 & 0.790 & 1.362 & 5.124 \\
961     & \textbf{Y} & \textbf{0.810} & \textbf{0.685} & \textbf{1.352} & \textbf{5.082} & \textbf{0.765} & \textbf{0.714} & \textbf{1.360} & \textbf{5.082} \\
962     15\AA & N & 87.275 & 4.473 & 1.271 & 5.000 & 0.372 & 0.312 & 1.271 & 5.000 \\
963     & \textbf{Y} & \textbf{0.282} & \textbf{0.294} & \textbf{1.272} & \textbf{4.999} & \textbf{0.324} & \textbf{0.318} & \textbf{1.272} & \textbf{4.999} \\
964    
965     \bottomrule
966     \end{tabular}
967     \end{center}
968     \label{tab:groupAngle}
969     \end{table}
970    
971     One additional trend in table \ref{tab:groupAngle} is that the
972     $\sigma^2$ values for both {\sc sp} and {\sc sf} converge as $\alpha$
973     increases, something that is more obvious with group-based cutoffs.
974     The complimentary error function inserted into the potential weakens
975     the electrostatic interaction as the value of $\alpha$ is increased.
976 chrisfen 2957 However, at larger values of $\alpha$, it is possible to over-damp the
977 chrisfen 2918 electrostatic interaction and to remove it completely. Kast
978     \textit{et al.} developed a method for choosing appropriate $\alpha$
979     values for these types of electrostatic summation methods by fitting
980     to $g(r)$ data, and their methods indicate optimal values of 0.34,
981     0.25, and 0.16\AA$^{-1}$ for cutoff values of 9, 12, and 15\AA\
982     respectively.\cite{Kast03} These appear to be reasonable choices to
983     obtain proper MC behavior (Fig. \ref{fig:delE}); however, based on
984     these findings, choices this high would introduce error in the
985     molecular torques, particularly for the shorter cutoffs. Based on our
986     observations, empirical damping up to 0.2\AA$^{-1}$ is beneficial,
987     but damping may be unnecessary when using the {\sc sf} method.
988    
989 chrisfen 2927 \section{Individual System Analysis Results}\label{sec:IndividualResults}
990 chrisfen 2918
991 chrisfen 2920 The combined results of the previous sections show how the pairwise
992     methods compare to the Ewald summation in the general sense over all
993     of the system types. It is also useful to consider each of the
994     studied systems in an individual fashion, so that we can identify
995     conditions that are particularly difficult for a selected pairwise
996     method to address. This allows us to further establish the limitations
997     of these pairwise techniques. Below, the energy difference, force
998     vector, and torque vector analyses are presented on an individual
999     system basis.
1000    
1001 chrisfen 2927 \subsection{SPC/E Water Results}\label{sec:WaterResults}
1002 chrisfen 2920
1003 chrisfen 2927 The first system considered was liquid water at 300K using the SPC/E
1004     model of water.\cite{Berendsen87} The results for the energy gap
1005     comparisons and the force and torque vector magnitude comparisons are
1006     shown in table \ref{tab:spce}. The force and torque vector
1007     directionality results are displayed separately in table
1008     \ref{tab:spceAng}, where the effect of group-based cutoffs and
1009     switching functions on the {\sc sp} and {\sc sf} potentials are also
1010     investigated. In all of the individual results table, the method
1011     abbreviations are as follows:
1012 chrisfen 2920
1013 chrisfen 2971 \begin{itemize}[itemsep=0pt]
1014 chrisfen 2927 \item PC = Pure Cutoff,
1015     \item SP = Shifted Potential,
1016     \item SF = Shifted Force,
1017     \item GSC = Group Switched Cutoff,
1018     \item RF = Reaction Field (where $\varepsilon \approx\infty$),
1019     \item GSSP = Group Switched Shifted Potential, and
1020     \item GSSF = Group Switched Shifted Force.
1021     \end{itemize}
1022 chrisfen 2920
1023 chrisfen 2927 \begin{table}[htbp]
1024     \centering
1025     \caption{REGRESSION RESULTS OF THE LIQUID WATER SYSTEM FOR THE
1026     $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES ({\it middle})
1027     AND TORQUE VECTOR MAGNITUDES ({\it lower})}
1028 chrisfen 2920
1029 chrisfen 2927 \footnotesize
1030     \begin{tabular}{@{} ccrrrrrr @{}}
1031     \toprule
1032     \toprule
1033     & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1034     \cmidrule(lr){3-4}
1035     \cmidrule(lr){5-6}
1036     \cmidrule(l){7-8}
1037     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1038     \midrule
1039     PC & & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\
1040     SP & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\
1041     & 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\
1042     & 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\
1043     & 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\
1044     SF & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\
1045     & 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\
1046     & 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\
1047     & 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\
1048     GSC & & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\
1049     RF & & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\
1050     \midrule
1051     PC & & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\
1052     SP & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\
1053     & 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\
1054     & 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\
1055     & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
1056     SF & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\
1057     & 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
1058     & 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\
1059     & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
1060     GSC & & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
1061     RF & & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
1062     \midrule
1063     PC & & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\
1064     SP & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\
1065     & 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\
1066     & 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\
1067     & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
1068     SF & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\
1069     & 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\
1070     & 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\
1071     & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
1072     GSC & & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\
1073     RF & & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\
1074     \bottomrule
1075     \end{tabular}
1076     \label{tab:spce}
1077     \end{table}
1078 chrisfen 2920
1079 chrisfen 2927 \begin{table}[htbp]
1080     \centering
1081     \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
1082     DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE LIQUID WATER
1083     SYSTEM}
1084 chrisfen 2920
1085 chrisfen 2927 \footnotesize
1086     \begin{tabular}{@{} ccrrrrrr @{}}
1087     \toprule
1088     \toprule
1089     & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
1090     \cmidrule(lr){3-5}
1091     \cmidrule(l){6-8}
1092     Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\
1093     \midrule
1094     PC & & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\
1095     SP & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\
1096     & 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\
1097     & 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\
1098     & 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\
1099     SF & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\
1100     & 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\
1101     & 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\
1102     & 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\
1103     GSC & & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
1104     RF & & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\
1105     \midrule
1106     GSSP & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
1107     & 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\
1108     & 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\
1109     & 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\
1110     GSSF & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\
1111     & 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\
1112     & 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\
1113     & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\
1114     \bottomrule
1115     \end{tabular}
1116     \label{tab:spceAng}
1117     \end{table}
1118    
1119     The water results parallel the combined results seen in sections
1120     \ref{sec:EnergyResults} through \ref{sec:FTDirResults}. There is good
1121     agreement with {\sc spme} in both energetic and dynamic behavior when
1122     using the {\sc sf} method with and without damping. The {\sc sp}
1123     method does well with an $\alpha$ around 0.2\AA$^{-1}$, particularly
1124 chrisfen 2957 with cutoff radii greater than 12\AA. Over-damping the electrostatics
1125 chrisfen 2927 reduces the agreement between both these methods and {\sc spme}.
1126    
1127     The pure cutoff ({\sc pc}) method performs poorly, again mirroring the
1128     observations from the combined results. In contrast to these results, however, the use of a switching function and group
1129     based cutoffs greatly improves the results for these neutral water
1130     molecules. The group switched cutoff ({\sc gsc}) does not mimic the
1131     energetics of {\sc spme} as well as the {\sc sp} (with moderate
1132     damping) and {\sc sf} methods, but the dynamics are quite good. The
1133     switching functions correct discontinuities in the potential and
1134     forces, leading to these improved results. Such improvements with the
1135     use of a switching function have been recognized in previous
1136     studies,\cite{Andrea83,Steinbach94} and this proves to be a useful
1137     tactic for stably incorporating local area electrostatic effects.
1138    
1139     The reaction field ({\sc rf}) method simply extends upon the results
1140     observed in the {\sc gsc} case. Both methods are similar in form
1141     (i.e. neutral groups, switching function), but {\sc rf} incorporates
1142     an added effect from the external dielectric. This similarity
1143     translates into the same good dynamic results and improved energetic
1144     agreement with {\sc spme}. Though this agreement is not to the level
1145     of the moderately damped {\sc sp} and {\sc sf} methods, these results
1146     show how incorporating some implicit properties of the surroundings
1147     (i.e. $\epsilon_\textrm{S}$) can improve the solvent depiction.
1148    
1149     As a final note for the liquid water system, use of group cutoffs and a
1150     switching function leads to noticeable improvements in the {\sc sp}
1151     and {\sc sf} methods, primarily in directionality of the force and
1152     torque vectors (table \ref{tab:spceAng}). The {\sc sp} method shows
1153     significant narrowing of the angle distribution when using little to
1154     no damping and only modest improvement for the recommended conditions
1155     ($\alpha = 0.2$\AA$^{-1}$ and $R_\textrm{c}~\geqslant~12$\AA). The
1156     {\sc sf} method shows modest narrowing across all damping and cutoff
1157 chrisfen 2957 ranges of interest. When over-damping these methods, group cutoffs and
1158 chrisfen 2927 the switching function do not improve the force and torque
1159     directionalities.
1160    
1161     \subsection{SPC/E Ice I$_\textrm{c}$ Results}\label{sec:IceResults}
1162    
1163     In addition to the disordered molecular system above, the ordered
1164     molecular system of ice I$_\textrm{c}$ was also considered. Ice
1165     polymorph could have been used to fit this role; however, ice
1166     I$_\textrm{c}$ was chosen because it can form an ideal periodic
1167     lattice with the same number of water molecules used in the disordered
1168     liquid state case. The results for the energy gap comparisons and the
1169     force and torque vector magnitude comparisons are shown in table
1170     \ref{tab:ice}. The force and torque vector directionality results are
1171     displayed separately in table \ref{tab:iceAng}, where the effect of
1172     group-based cutoffs and switching functions on the {\sc sp} and {\sc
1173     sf} potentials are also displayed.
1174    
1175     \begin{table}[htbp]
1176     \centering
1177     \caption{REGRESSION RESULTS OF THE ICE I$_\textrm{c}$ SYSTEM FOR
1178     $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES ({\it
1179     middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
1180    
1181     \footnotesize
1182     \begin{tabular}{@{} ccrrrrrr @{}}
1183     \toprule
1184     \toprule
1185     & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1186     \cmidrule(lr){3-4}
1187     \cmidrule(lr){5-6}
1188     \cmidrule(l){7-8}
1189     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1190     \midrule
1191     PC & & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\
1192     SP & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\
1193     & 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\
1194     & 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\
1195     & 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\
1196     SF & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\
1197     & 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\
1198     & 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\
1199     & 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\
1200     GSC & & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\
1201     RF & & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\
1202     \midrule
1203     PC & & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\
1204     SP & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\
1205     & 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\
1206     & 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\
1207     & 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\
1208     SF & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\
1209     & 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\
1210     & 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\
1211     & 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\
1212     GSC & & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\
1213     RF & & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\
1214     \midrule
1215     PC & & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\
1216     SP & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\
1217     & 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\
1218     & 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\
1219     & 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\
1220     SF & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\
1221     & 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\
1222     & 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\
1223     & 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\
1224     GSC & & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\
1225     RF & & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\
1226     \bottomrule
1227     \end{tabular}
1228     \label{tab:ice}
1229     \end{table}
1230    
1231     \begin{table}[htbp]
1232     \centering
1233     \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS
1234     OF THE FORCE AND TORQUE VECTORS IN THE ICE I$_\textrm{c}$ SYSTEM}
1235    
1236     \footnotesize
1237     \begin{tabular}{@{} ccrrrrrr @{}}
1238     \toprule
1239     \toprule
1240     & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque
1241     $\sigma^2$} \\
1242     \cmidrule(lr){3-5}
1243     \cmidrule(l){6-8}
1244     Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\
1245     \midrule
1246     PC & & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\
1247     SP & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\
1248     & 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\
1249     & 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\
1250     & 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\
1251     SF & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\
1252     & 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\
1253     & 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\
1254     & 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\
1255     GSC & & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
1256     RF & & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\
1257     \midrule
1258     GSSP & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
1259     & 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\
1260     & 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\
1261     & 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
1262     GSSF & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\
1263     & 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\
1264     & 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\
1265     & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
1266     \bottomrule
1267     \end{tabular}
1268     \label{tab:iceAng}
1269     \end{table}
1270    
1271     Highly ordered systems are a difficult test for the pairwise methods
1272     in that they lack the implicit periodicity of the Ewald summation. As
1273     expected, the energy gap agreement with {\sc spme} is reduced for the
1274     {\sc sp} and {\sc sf} methods with parameters that were ideal for the
1275     disordered liquid system. Moving to higher $R_\textrm{c}$ helps
1276     improve the agreement, though at an increase in computational cost.
1277     The dynamics of this crystalline system (both in magnitude and
1278     direction) are little affected. Both methods still reproduce the Ewald
1279     behavior with the same parameter recommendations from the previous
1280     section.
1281    
1282     It is also worth noting that {\sc rf} exhibits improved energy gap
1283     results over the liquid water system. One possible explanation is
1284     that the ice I$_\textrm{c}$ crystal is ordered such that the net
1285     dipole moment of the crystal is zero. With $\epsilon_\textrm{S} =
1286     \infty$, the reaction field incorporates this structural organization
1287     by actively enforcing a zeroed dipole moment within each cutoff
1288     sphere.
1289    
1290     \subsection{NaCl Melt Results}\label{sec:SaltMeltResults}
1291    
1292     A high temperature NaCl melt was tested to gauge the accuracy of the
1293     pairwise summation methods in a disordered system of charges. The
1294     results for the energy gap comparisons and the force vector magnitude
1295     comparisons are shown in table \ref{tab:melt}. The force vector
1296     directionality results are displayed separately in table
1297     \ref{tab:meltAng}.
1298    
1299     \begin{table}[htbp]
1300     \centering
1301     \caption{REGRESSION RESULTS OF THE MOLTEN SODIUM CHLORIDE SYSTEM FOR
1302     $\Delta E$ VALUES ({\it upper}) AND FORCE VECTOR MAGNITUDES ({\it
1303     lower})}
1304    
1305     \footnotesize
1306     \begin{tabular}{@{} ccrrrrrr @{}}
1307     \toprule
1308     \toprule
1309     & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1310     \cmidrule(lr){3-4}
1311     \cmidrule(lr){5-6}
1312     \cmidrule(l){7-8}
1313     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1314     \midrule
1315     PC & & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\
1316     SP & 0.0 & 0.928 & 0.996 & 0.931 & 0.998 & 0.950 & 0.999 \\
1317     & 0.1 & 0.977 & 0.998 & 0.998 & 1.000 & 0.997 & 1.000 \\
1318     & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
1319     & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
1320     SF & 0.0 & 0.996 & 1.000 & 0.995 & 1.000 & 0.997 & 1.000 \\
1321     & 0.1 & 1.021 & 1.000 & 1.024 & 1.000 & 1.007 & 1.000 \\
1322     & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
1323     & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
1324     \midrule
1325     PC & & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\
1326     SP & 0.0 & 0.973 & 0.981 & 0.975 & 0.988 & 0.979 & 0.992 \\
1327     & 0.1 & 0.987 & 0.992 & 0.993 & 0.998 & 0.997 & 0.999 \\
1328     & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
1329     & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
1330     SF & 0.0 & 0.996 & 0.997 & 0.997 & 0.999 & 0.998 & 1.000 \\
1331     & 0.1 & 1.000 & 0.997 & 1.001 & 0.999 & 1.000 & 1.000 \\
1332     & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
1333     & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
1334     \bottomrule
1335     \end{tabular}
1336     \label{tab:melt}
1337     \end{table}
1338    
1339     \begin{table}[htbp]
1340     \centering
1341     \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS
1342     OF THE FORCE VECTORS IN THE MOLTEN SODIUM CHLORIDE SYSTEM}
1343    
1344     \footnotesize
1345     \begin{tabular}{@{} ccrrrrrr @{}}
1346     \toprule
1347     \toprule
1348     & & \multicolumn{3}{c}{Force $\sigma^2$} \\
1349     \cmidrule(lr){3-5}
1350     \cmidrule(l){6-8}
1351     Method & $\alpha$ & 9\AA & 12\AA & 15\AA \\
1352     \midrule
1353     PC & & 13.294 & 8.035 & 5.366 \\
1354     SP & 0.0 & 13.316 & 8.037 & 5.385 \\
1355     & 0.1 & 5.705 & 1.391 & 0.360 \\
1356     & 0.2 & 2.415 & 7.534 & 13.927 \\
1357     & 0.3 & 23.769 & 67.306 & 57.252 \\
1358     SF & 0.0 & 1.693 & 0.603 & 0.256 \\
1359     & 0.1 & 1.687 & 0.653 & 0.272 \\
1360     & 0.2 & 2.598 & 7.523 & 13.930 \\
1361     & 0.3 & 23.734 & 67.305 & 57.252 \\
1362     \bottomrule
1363     \end{tabular}
1364     \label{tab:meltAng}
1365     \end{table}
1366    
1367     The molten NaCl system shows more sensitivity to the electrostatic
1368     damping than the water systems. The most noticeable point is that the
1369     undamped {\sc sf} method does very well at replicating the {\sc spme}
1370     configurational energy differences and forces. Light damping appears
1371     to minimally improve the dynamics, but this comes with a deterioration
1372     of the energy gap results. In contrast, this light damping improves
1373     the {\sc sp} energy gaps and forces. Moderate and heavy electrostatic
1374     damping reduce the agreement with {\sc spme} for both methods. From
1375     these observations, the undamped {\sc sf} method is the best choice
1376     for disordered systems of charges.
1377    
1378     \subsection{NaCl Crystal Results}\label{sec:SaltCrystalResults}
1379    
1380     Similar to the use of ice I$_\textrm{c}$ to investigate the role of
1381     order in molecular systems on the effectiveness of the pairwise
1382     methods, the 1000K NaCl crystal system was used to investigate the
1383     accuracy of the pairwise summation methods in an ordered system of
1384     charged particles. The results for the energy gap comparisons and the
1385     force vector magnitude comparisons are shown in table \ref{tab:salt}.
1386     The force vector directionality results are displayed separately in
1387     table \ref{tab:saltAng}.
1388    
1389     \begin{table}[htbp]
1390     \centering
1391     \caption{REGRESSION RESULTS OF THE CRYSTALLINE SODIUM CHLORIDE
1392     SYSTEM FOR $\Delta E$ VALUES ({\it upper}) AND FORCE VECTOR MAGNITUDES
1393     ({\it lower})}
1394    
1395     \footnotesize
1396     \begin{tabular}{@{} ccrrrrrr @{}}
1397     \toprule
1398     \toprule
1399     & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1400     \cmidrule(lr){3-4}
1401     \cmidrule(lr){5-6}
1402     \cmidrule(l){7-8}
1403     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1404     \midrule
1405     PC & & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\
1406     SP & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\
1407     & 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\
1408     & 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\
1409     & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\
1410     SF & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\
1411     & 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\
1412     & 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\
1413     & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\
1414     \midrule
1415     PC & & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\
1416     SP & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\
1417     & 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\
1418     & 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\
1419     & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
1420     SF & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\
1421     & 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\
1422     & 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\
1423     & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
1424     \bottomrule
1425     \end{tabular}
1426     \label{tab:salt}
1427     \end{table}
1428    
1429     \begin{table}[htbp]
1430     \centering
1431     \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
1432     DISTRIBUTIONS OF THE FORCE VECTORS IN THE CRYSTALLINE SODIUM CHLORIDE
1433     SYSTEM}
1434    
1435     \footnotesize
1436     \begin{tabular}{@{} ccrrrrrr @{}}
1437     \toprule
1438     \toprule
1439     & & \multicolumn{3}{c}{Force $\sigma^2$} \\
1440     \cmidrule(lr){3-5}
1441     \cmidrule(l){6-8}
1442     Method & $\alpha$ & 9\AA & 12\AA & 15\AA \\
1443     \midrule
1444     PC & & 111.945 & 111.824 & 111.866 \\
1445     SP & 0.0 & 112.414 & 152.215 & 38.087 \\
1446     & 0.1 & 52.361 & 42.574 & 2.819 \\
1447     & 0.2 & 10.847 & 9.709 & 9.686 \\
1448     & 0.3 & 31.128 & 31.104 & 31.029 \\
1449     SF & 0.0 & 10.025 & 3.555 & 1.648 \\
1450     & 0.1 & 9.462 & 3.303 & 1.721 \\
1451     & 0.2 & 11.454 & 9.813 & 9.701 \\
1452     & 0.3 & 31.120 & 31.105 & 31.029 \\
1453     \bottomrule
1454     \end{tabular}
1455     \label{tab:saltAng}
1456     \end{table}
1457    
1458     The crystalline NaCl system is the most challenging test case for the
1459     pairwise summation methods, as evidenced by the results in tables
1460     \ref{tab:salt} and \ref{tab:saltAng}. The undamped and weakly damped
1461     {\sc sf} methods seem to be the best choices. These methods match well
1462     with {\sc spme} across the energy gap, force magnitude, and force
1463     directionality tests. The {\sc sp} method struggles in all cases,
1464     with the exception of good dynamics reproduction when using weak
1465     electrostatic damping with a large cutoff radius.
1466    
1467     The moderate electrostatic damping case is not as good as we would
1468     expect given the long-time dynamics results observed for this system
1469     (see section \ref{sec:LongTimeDynamics}). Since the data tabulated in
1470     tables \ref{tab:salt} and \ref{tab:saltAng} are a test of
1471     instantaneous dynamics, this indicates that good long-time dynamics
1472     comes in part at the expense of short-time dynamics.
1473    
1474     \subsection{0.11M NaCl Solution Results}
1475    
1476     In an effort to bridge the charged atomic and neutral molecular
1477     systems, Na$^+$ and Cl$^-$ ion charge defects were incorporated into
1478     the liquid water system. This low ionic strength system consists of 4
1479     ions in the 1000 SPC/E water solvent ($\approx$0.11 M). The results
1480     for the energy gap comparisons and the force and torque vector
1481     magnitude comparisons are shown in table \ref{tab:solnWeak}. The
1482     force and torque vector directionality results are displayed
1483     separately in table \ref{tab:solnWeakAng}, where the effect of
1484     group-based cutoffs and switching functions on the {\sc sp} and {\sc
1485     sf} potentials are investigated.
1486    
1487     \begin{table}[htbp]
1488     \centering
1489     \caption{REGRESSION RESULTS OF THE WEAK SODIUM CHLORIDE SOLUTION
1490     SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES
1491     ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
1492    
1493     \footnotesize
1494     \begin{tabular}{@{} ccrrrrrr @{}}
1495     \toprule
1496     \toprule
1497     & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1498     \cmidrule(lr){3-4}
1499     \cmidrule(lr){5-6}
1500     \cmidrule(l){7-8}
1501     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1502     \midrule
1503     PC & & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\
1504     SP & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\
1505     & 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\
1506     & 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\
1507     & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
1508     SF & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\
1509     & 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\
1510     & 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\
1511     & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
1512     GSC & & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\
1513     RF & & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\
1514     \midrule
1515     PC & & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\
1516     SP & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\
1517     & 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\
1518     & 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\
1519     & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
1520     SF & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\
1521     & 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\
1522     & 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\
1523     & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
1524     GSC & & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\
1525     RF & & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\
1526     \midrule
1527     PC & & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\
1528     SP & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\
1529     & 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\
1530     & 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\
1531     & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
1532     SF & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\
1533     & 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\
1534     & 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\
1535     & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
1536     GSC & & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\
1537     RF & & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\
1538     \bottomrule
1539     \end{tabular}
1540     \label{tab:solnWeak}
1541     \end{table}
1542    
1543     \begin{table}[htbp]
1544     \centering
1545     \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
1546     DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE WEAK SODIUM
1547     CHLORIDE SOLUTION SYSTEM}
1548    
1549     \footnotesize
1550     \begin{tabular}{@{} ccrrrrrr @{}}
1551     \toprule
1552     \toprule
1553     & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
1554     \cmidrule(lr){3-5}
1555     \cmidrule(l){6-8}
1556     Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\
1557     \midrule
1558     PC & & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\
1559     SP & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\
1560     & 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\
1561     & 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\
1562     & 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\
1563     SF & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\
1564     & 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\
1565     & 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\
1566     & 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\
1567     GSC & & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
1568     RF & & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\
1569     \midrule
1570     GSSP & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
1571     & 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\
1572     & 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\
1573     & 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\
1574     GSSF & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\
1575     & 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\
1576     & 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\
1577     & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\
1578     \bottomrule
1579     \end{tabular}
1580     \label{tab:solnWeakAng}
1581     \end{table}
1582    
1583     Because this system is a perturbation of the pure liquid water system,
1584     comparisons are best drawn between these two sets. The {\sc sp} and
1585     {\sc sf} methods are not significantly affected by the inclusion of a
1586     few ions. The aspect of cutoff sphere neutralization aids in the
1587     smooth incorporation of these ions; thus, all of the observations
1588     regarding these methods carry over from section
1589     \ref{sec:WaterResults}. The differences between these systems are more
1590     visible for the {\sc rf} method. Though good force agreement is still
1591     maintained, the energy gaps show a significant increase in the scatter
1592     of the data.
1593    
1594     \subsection{1.1M NaCl Solution Results}
1595    
1596     The bridging of the charged atomic and neutral molecular systems was
1597     further developed by considering a high ionic strength system
1598     consisting of 40 ions in the 1000 SPC/E water solvent ($\approx$1.1
1599     M). The results for the energy gap comparisons and the force and
1600     torque vector magnitude comparisons are shown in table
1601     \ref{tab:solnStr}. The force and torque vector directionality
1602     results are displayed separately in table \ref{tab:solnStrAng}, where
1603     the effect of group-based cutoffs and switching functions on the {\sc
1604     sp} and {\sc sf} potentials are investigated.
1605    
1606     \begin{table}[htbp]
1607     \centering
1608     \caption{REGRESSION RESULTS OF THE STRONG SODIUM CHLORIDE SOLUTION
1609     SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES
1610     ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
1611    
1612     \footnotesize
1613     \begin{tabular}{@{} ccrrrrrr @{}}
1614     \toprule
1615     \toprule
1616     & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1617     \cmidrule(lr){3-4}
1618     \cmidrule(lr){5-6}
1619     \cmidrule(l){7-8}
1620     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1621     \midrule
1622     PC & & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\
1623     SP & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\
1624     & 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\
1625     & 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\
1626     & 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\
1627     SF & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\
1628     & 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\
1629     & 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\
1630     & 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\
1631     GSC & & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\
1632     RF & & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\
1633     \midrule
1634     PC & & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\
1635     SP & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\
1636     & 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\
1637     & 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\
1638     & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
1639     SF & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\
1640     & 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\
1641     & 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\
1642     & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
1643     GSC & & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\
1644     RF & & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\
1645     \midrule
1646     PC & & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\
1647     SP & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\
1648     & 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\
1649     & 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\
1650     & 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\
1651     SF & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\
1652     & 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\
1653     & 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\
1654     & 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\
1655     GSC & & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\
1656     RF & & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\
1657     \bottomrule
1658     \end{tabular}
1659     \label{tab:solnStr}
1660     \end{table}
1661    
1662     \begin{table}[htbp]
1663     \centering
1664     \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS
1665     OF THE FORCE AND TORQUE VECTORS IN THE STRONG SODIUM CHLORIDE SOLUTION
1666     SYSTEM}
1667    
1668     \footnotesize
1669     \begin{tabular}{@{} ccrrrrrr @{}}
1670     \toprule
1671     \toprule
1672     & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
1673     \cmidrule(lr){3-5}
1674     \cmidrule(l){6-8}
1675     Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\
1676     \midrule
1677     PC & & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\
1678     SP & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\
1679     & 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\
1680     & 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\
1681     & 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\
1682     SF & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\
1683     & 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\
1684     & 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\
1685     & 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\
1686     GSC & & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\
1687     RF & & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\
1688     \midrule
1689     GSSP & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\
1690     & 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\
1691     & 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\
1692     & 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\
1693     GSSF & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\
1694     & 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\
1695     & 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\
1696     & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\
1697     \bottomrule
1698     \end{tabular}
1699     \label{tab:solnStrAng}
1700     \end{table}
1701    
1702     The {\sc rf} method struggles with the jump in ionic strength. The
1703     configuration energy differences degrade to unusable levels while the
1704     forces and torques show a more modest reduction in the agreement with
1705     {\sc spme}. The {\sc rf} method was designed for homogeneous systems,
1706     and this attribute is apparent in these results.
1707    
1708     The {\sc sp} and {\sc sf} methods require larger cutoffs to maintain
1709     their agreement with {\sc spme}. With these results, we still
1710     recommend undamped to moderate damping for the {\sc sf} method and
1711     moderate damping for the {\sc sp} method, both with cutoffs greater
1712     than 12\AA.
1713    
1714 chrisfen 2920 \subsection{6\AA\ Argon Sphere in SPC/E Water Results}
1715    
1716 chrisfen 2927 The final model system studied was a 6\AA\ sphere of Argon solvated
1717     by SPC/E water. This serves as a test case of a specifically sized
1718     electrostatic defect in a disordered molecular system. The results for
1719     the energy gap comparisons and the force and torque vector magnitude
1720     comparisons are shown in table \ref{tab:argon}. The force and torque
1721     vector directionality results are displayed separately in table
1722     \ref{tab:argonAng}, where the effect of group-based cutoffs and
1723     switching functions on the {\sc sp} and {\sc sf} potentials are
1724     investigated.
1725 chrisfen 2920
1726 chrisfen 2927 \begin{table}[htbp]
1727     \centering
1728     \caption{REGRESSION RESULTS OF THE 6\AA\ ARGON SPHERE IN LIQUID
1729     WATER SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR
1730     MAGNITUDES ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
1731    
1732     \footnotesize
1733     \begin{tabular}{@{} ccrrrrrr @{}}
1734     \toprule
1735     \toprule
1736     & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1737     \cmidrule(lr){3-4}
1738     \cmidrule(lr){5-6}
1739     \cmidrule(l){7-8}
1740     Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1741     \midrule
1742     PC & & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\
1743     SP & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\
1744     & 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\
1745     & 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\
1746     & 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\
1747     SF & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\
1748     & 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\
1749     & 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\
1750     & 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\
1751     GSC & & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\
1752     RF & & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\
1753     \midrule
1754     PC & & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\
1755     SP & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\
1756     & 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\
1757     & 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\
1758     & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
1759     SF & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
1760     & 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
1761     & 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
1762     & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
1763     GSC & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
1764     RF & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
1765     \midrule
1766     PC & & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\
1767     SP & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\
1768     & 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\
1769     & 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\
1770     & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
1771     SF & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\
1772     & 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\
1773     & 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\
1774     & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
1775     GSC & & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\
1776     RF & & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\
1777     \bottomrule
1778     \end{tabular}
1779     \label{tab:argon}
1780     \end{table}
1781    
1782     \begin{table}[htbp]
1783     \centering
1784     \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
1785     DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE 6\AA\ SPHERE OF
1786     ARGON IN LIQUID WATER SYSTEM}
1787    
1788     \footnotesize
1789     \begin{tabular}{@{} ccrrrrrr @{}}
1790     \toprule
1791     \toprule
1792     & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
1793     \cmidrule(lr){3-5}
1794     \cmidrule(l){6-8}
1795     Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\
1796     \midrule
1797     PC & & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\
1798     SP & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\
1799     & 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\
1800     & 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\
1801     & 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\
1802     SF & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\
1803     & 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\
1804     & 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\
1805     & 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\
1806     GSC & & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
1807     RF & & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\
1808     \midrule
1809     GSSP & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
1810     & 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\
1811     & 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\
1812     & 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\
1813     GSSF & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\
1814     & 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\
1815     & 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\
1816     & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\
1817     \bottomrule
1818     \end{tabular}
1819     \label{tab:argonAng}
1820     \end{table}
1821    
1822     This system does not appear to show any significant deviations from
1823     the previously observed results. The {\sc sp} and {\sc sf} methods
1824 chrisfen 2957 have agreements similar to those observed in section
1825 chrisfen 2927 \ref{sec:WaterResults}. The only significant difference is the
1826     improvement in the configuration energy differences for the {\sc rf}
1827     method. This is surprising in that we are introducing an inhomogeneity
1828     to the system; however, this inhomogeneity is charge-neutral and does
1829     not result in charged cutoff spheres. The charge-neutrality of the
1830     cutoff spheres, which the {\sc sp} and {\sc sf} methods explicitly
1831     enforce, seems to play a greater role in the stability of the {\sc rf}
1832     method than the required homogeneity of the environment.
1833    
1834    
1835     \section{Short-Time Dynamics: Velocity Autocorrelation Functions of NaCl Crystals}\label{sec:ShortTimeDynamics}
1836    
1837 chrisfen 2918 Zahn {\it et al.} investigated the structure and dynamics of water
1838     using eqs. (\ref{eq:ZahnPot}) and
1839     (\ref{eq:WolfForces}).\cite{Zahn02,Kast03} Their results indicated
1840     that a method similar (but not identical with) the damped {\sc sf}
1841     method resulted in properties very similar to those obtained when
1842     using the Ewald summation. The properties they studied (pair
1843     distribution functions, diffusion constants, and velocity and
1844     orientational correlation functions) may not be particularly sensitive
1845     to the long-range and collective behavior that governs the
1846     low-frequency behavior in crystalline systems. Additionally, the
1847     ionic crystals are the worst case scenario for the pairwise methods
1848     because they lack the reciprocal space contribution contained in the
1849     Ewald summation.
1850    
1851     We are using two separate measures to probe the effects of these
1852     alternative electrostatic methods on the dynamics in crystalline
1853     materials. For short- and intermediate-time dynamics, we are
1854     computing the velocity autocorrelation function, and for long-time
1855     and large length-scale collective motions, we are looking at the
1856     low-frequency portion of the power spectrum.
1857    
1858     \begin{figure}
1859     \centering
1860     \includegraphics[width = \linewidth]{./figures/vCorrPlot.pdf}
1861     \caption{Velocity autocorrelation functions of NaCl crystals at
1862 chrisfen 2927 1000K using {\sc spme}, {\sc sf} ($\alpha$ = 0.0, 0.1, \&
1863     0.2\AA$^{-1}$), and {\sc sp} ($\alpha$ = 0.2\AA$^{-1}$). The inset is
1864     a magnification of the area around the first minimum. The times to
1865     first collision are nearly identical, but differences can be seen in
1866     the peaks and troughs, where the undamped and weakly damped methods
1867     are stiffer than the moderately damped and {\sc spme} methods.}
1868 chrisfen 2918 \label{fig:vCorrPlot}
1869     \end{figure}
1870    
1871     The short-time decay of the velocity autocorrelation function through
1872     the first collision are nearly identical in figure
1873     \ref{fig:vCorrPlot}, but the peaks and troughs of the functions show
1874     how the methods differ. The undamped {\sc sf} method has deeper
1875     troughs (see inset in Fig. \ref{fig:vCorrPlot}) and higher peaks than
1876     any of the other methods. As the damping parameter ($\alpha$) is
1877     increased, these peaks are smoothed out, and the {\sc sf} method
1878     approaches the {\sc spme} results. With $\alpha$ values of 0.2\AA$^{-1}$,
1879     the {\sc sf} and {\sc sp} functions are nearly identical and track the
1880     {\sc spme} features quite well. This is not surprising because the {\sc sf}
1881     and {\sc sp} potentials become nearly identical with increased
1882     damping. However, this appears to indicate that once damping is
1883     utilized, the details of the form of the potential (and forces)
1884     constructed out of the damped electrostatic interaction are less
1885     important.
1886    
1887 chrisfen 2927 \section{Collective Motion: Power Spectra of NaCl Crystals}\label{sec:LongTimeDynamics}
1888 chrisfen 2918
1889     To evaluate how the differences between the methods affect the
1890     collective long-time motion, we computed power spectra from long-time
1891     traces of the velocity autocorrelation function. The power spectra for
1892     the best-performing alternative methods are shown in
1893     fig. \ref{fig:methodPS}. Apodization of the correlation functions via
1894     a cubic switching function between 40 and 50 ps was used to reduce the
1895     ringing resulting from data truncation. This procedure had no
1896     noticeable effect on peak location or magnitude.
1897    
1898     \begin{figure}
1899     \centering
1900     \includegraphics[width = \linewidth]{./figures/spectraSquare.pdf}
1901     \caption{Power spectra obtained from the velocity auto-correlation
1902     functions of NaCl crystals at 1000K while using {\sc spme}, {\sc sf}
1903 chrisfen 2927 ($\alpha$ = 0, 0.1, \& 0.2\AA$^{-1}$), and {\sc sp} ($\alpha$ =
1904     0.2\AA$^{-1}$). The inset shows the frequency region below 100
1905     cm$^{-1}$ to highlight where the spectra differ.}
1906 chrisfen 2918 \label{fig:methodPS}
1907     \end{figure}
1908    
1909     While the high frequency regions of the power spectra for the
1910     alternative methods are quantitatively identical with Ewald spectrum,
1911     the low frequency region shows how the summation methods differ.
1912     Considering the low-frequency inset (expanded in the upper frame of
1913     figure \ref{fig:dampInc}), at frequencies below 100 cm$^{-1}$, the
1914     correlated motions are blue-shifted when using undamped or weakly
1915     damped {\sc sf}. When using moderate damping ($\alpha = 0.2$
1916     \AA$^{-1}$) both the {\sc sf} and {\sc sp} methods give nearly identical
1917     correlated motion to the Ewald method (which has a convergence
1918     parameter of 0.3119\AA$^{-1}$). This weakening of the electrostatic
1919     interaction with increased damping explains why the long-ranged
1920     correlated motions are at lower frequencies for the moderately damped
1921     methods than for undamped or weakly damped methods.
1922    
1923     To isolate the role of the damping constant, we have computed the
1924     spectra for a single method ({\sc sf}) with a range of damping
1925     constants and compared this with the {\sc spme} spectrum.
1926     Fig. \ref{fig:dampInc} shows more clearly that increasing the
1927     electrostatic damping red-shifts the lowest frequency phonon modes.
1928     However, even without any electrostatic damping, the {\sc sf} method
1929     has at most a 10 cm$^{-1}$ error in the lowest frequency phonon mode.
1930     Without the {\sc sf} modifications, an undamped (pure cutoff) method
1931     would predict the lowest frequency peak near 325 cm$^{-1}$. {\it
1932     Most} of the collective behavior in the crystal is accurately captured
1933     using the {\sc sf} method. Quantitative agreement with Ewald can be
1934     obtained using moderate damping in addition to the shifting at the
1935     cutoff distance.
1936    
1937     \begin{figure}
1938     \centering
1939     \includegraphics[width = \linewidth]{./figures/increasedDamping.pdf}
1940     \caption{Effect of damping on the two lowest-frequency phonon modes in
1941     the NaCl crystal at 1000K. The undamped shifted force ({\sc sf})
1942     method is off by less than 10 cm$^{-1}$, and increasing the
1943     electrostatic damping to 0.25\AA$^{-1}$ gives quantitative agreement
1944 chrisfen 2957 with the power spectrum obtained using the Ewald sum. Over-damping can
1945 chrisfen 2918 result in underestimates of frequencies of the long-wavelength
1946     motions.}
1947     \label{fig:dampInc}
1948     \end{figure}
1949    
1950 chrisfen 2957 \section{An Application: TIP5P-E Water}\label{sec:t5peApplied}
1951 chrisfen 2918
1952 chrisfen 2957 The above sections focused on the energetics and dynamics of a variety
1953     of systems when utilizing the {\sc sp} and {\sc sf} pairwise
1954     techniques. A unitary correlation with results obtained using the
1955     Ewald summation should result in a successful reproduction of both the
1956     static and dynamic properties of any selected system. To test this,
1957     we decided to calculate a series of properties for the TIP5P-E water
1958     model when using the {\sc sf} technique.
1959    
1960     The TIP5P-E water model is a variant of Mahoney and Jorgensen's
1961     five-point transferable intermolecular potential (TIP5P) model for
1962     water.\cite{Mahoney00} TIP5P was developed to reproduce the density
1963     maximum anomaly present in liquid water near 4$^\circ$C. As with many
1964     previous point charge water models (such as ST2, TIP3P, TIP4P, SPC,
1965     and SPC/E), TIP5P was parametrized using a simple cutoff with no
1966     long-range electrostatic
1967     correction.\cite{Stillinger74,Jorgensen83,Berendsen81,Berendsen87}
1968     Without this correction, the pressure term on the central particle
1969     from the surroundings is missing. Because they expand to compensate
1970     for this added pressure term when this correction is included, systems
1971     composed of these particles tend to underpredict the density of water
1972     under standard conditions. When using any form of long-range
1973     electrostatic correction, it has become common practice to develop or
1974     utilize a reparametrized water model that corrects for this
1975     effect.\cite{vanderSpoel98,Fennell04,Horn04} The TIP5P-E model follows
1976     this practice and was optimized specifically for use with the Ewald
1977     summation.\cite{Rick04} In his publication, Rick preserved the
1978     geometry and point charge magnitudes in TIP5P and focused on altering
1979     the Lennard-Jones parameters to correct the density at
1980     298K.\cite{Rick04} With the density corrected, he compared common
1981     water properties for TIP5P-E using the Ewald sum with TIP5P using a
1982     9\AA\ cutoff.
1983    
1984     In the following sections, we compared these same water properties
1985     calculated from TIP5P-E using the Ewald sum with TIP5P-E using the
1986     {\sc sf} technique. In the above evaluation of the pairwise
1987     techniques, we observed some flexibility in the choice of parameters.
1988     Because of this, the following comparisons include the {\sc sf}
1989     technique with a 12\AA\ cutoff and an $\alpha$ = 0.0, 0.1, and
1990     0.2\AA$^{-1}$, as well as a 9\AA\ cutoff with an $\alpha$ =
1991     0.2\AA$^{-1}$.
1992    
1993     \subsection{Density}\label{sec:t5peDensity}
1994    
1995     As stated previously, the property that prompted the development of
1996     TIP5P-E was the density at 1 atm. The density depends upon the
1997     internal pressure of the system in the $NPT$ ensemble, and the
1998     calculation of the pressure includes a components from both the
1999     kinetic energy and the virial. More specifically, the instantaneous
2000 chrisfen 2971 molecular pressure ($p(t)$) is given by
2001 chrisfen 2957 \begin{equation}
2002 chrisfen 2971 p(t) = \frac{1}{\textrm{d}V}\sum_\mu
2003 chrisfen 2957 \left[\frac{\mathbf{P}_{\mu}^2}{M_{\mu}}
2004     + \mathbf{R}_{\mu}\cdot\sum_i\mathbf{F}_{\mu i}\right],
2005     \label{eq:MolecularPressure}
2006     \end{equation}
2007     where $V$ is the volume, $\mathbf{P}_{\mu}$ is the momentum of
2008     molecule $\mu$, $\mathbf{R}_\mu$ is the position of the center of mass
2009     ($M_\mu$) of molecule $\mu$, and $\mathbf{F}_{\mu i}$ is the force on
2010     atom $i$ of molecule $\mu$.\cite{Melchionna93} The virial term (the
2011     right term in the brackets of eq. \ref{eq:MolecularPressure}) is
2012     directly dependent on the interatomic forces. Since the {\sc sp}
2013     method does not modify the forces (see
2014     sec. \ref{sec:PairwiseDerivation}), the pressure using {\sc sp} will
2015     be identical to that obtained without an electrostatic correction.
2016     The {\sc sf} method does alter the virial component and, by way of the
2017     modified pressures, should provide densities more in line with those
2018     obtained using the Ewald summation.
2019    
2020     To compare densities, $NPT$ simulations were performed with the same
2021     temperatures as those selected by Rick in his Ewald summation
2022     simulations.\cite{Rick04} In order to improve statistics around the
2023     density maximum, 3ns trajectories were accumulated at 0, 12.5, and
2024     25$^\circ$C, while 2ns trajectories were obtained at all other
2025     temperatures. The average densities were calculated from the later
2026     three-fourths of each trajectory. Similar to Mahoney and Jorgensen's
2027     method for accumulating statistics, these sequences were spliced into
2028     200 segments to calculate the average density and standard deviation
2029     at each temperature.\cite{Mahoney00}
2030    
2031     \begin{figure}
2032     \includegraphics[width=\linewidth]{./figures/tip5peDensities.pdf}
2033     \caption{Density versus temperature for the TIP5P-E water model when
2034     using the Ewald summation (Ref. \cite{Rick04}) and the {\sc sf} method
2035     with various parameters. The pressure term from the image-charge shell
2036     is larger than that provided by the reciprocal-space portion of the
2037     Ewald summation, leading to slightly lower densities. This effect is
2038     more visible with the 9\AA\ cutoff, where the image charges exert a
2039     greater force on the central particle. The error bars for the {\sc sf}
2040     methods show plus or minus the standard deviation of the density
2041     measurement at each temperature.}
2042     \label{fig:t5peDensities}
2043     \end{figure}
2044    
2045     Figure \ref{fig:t5peDensities} shows the densities calculated for
2046     TIP5P-E using differing electrostatic corrections overlaid on the
2047     experimental values.\cite{CRC80} The densities when using the {\sc sf}
2048     technique are close to, though typically lower than, those calculated
2049     while using the Ewald summation. These slightly reduced densities
2050     indicate that the pressure component from the image charges at
2051     R$_\textrm{c}$ is larger than that exerted by the reciprocal-space
2052     portion of the Ewald summation. Bringing the image charges closer to
2053     the central particle by choosing a 9\AA\ R$_\textrm{c}$ (rather than
2054     the preferred 12\AA\ R$_\textrm{c}$) increases the strength of their
2055     interactions, resulting in a further reduction of the densities.
2056    
2057     Because the strength of the image charge interactions has a noticable
2058     effect on the density, we would expect the use of electrostatic
2059     damping to also play a role in these calculations. Larger values of
2060     $\alpha$ weaken the pair-interactions; and since electrostatic damping
2061     is distance-dependent, force components from the image charges will be
2062     reduced more than those from particles close the the central
2063     charge. This effect is visible in figure \ref{fig:t5peDensities} with
2064     the damped {\sc sf} sums showing slightly higher densities; however,
2065     it is apparent that the choice of cutoff radius plays a much more
2066     important role in the resulting densities.
2067    
2068     As a final note, all of the above density calculations were performed
2069     with systems of 512 water molecules. Rick observed a system sized
2070     dependence of the computed densities when using the Ewald summation,
2071     most likely due to his tying of the convergence parameter to the box
2072     dimensions.\cite{Rick04} For systems of 256 water molecules, the
2073     calculated densities were on average 0.002 to 0.003 g/cm$^3$ lower. A
2074     system size of 256 molecules would force the use of a shorter
2075     R$_\textrm{c}$ when using the {\sc sf} technique, and this would also
2076     lower the densities. Moving to larger systems, as long as the
2077     R$_\textrm{c}$ remains at a fixed value, we would expect the densities
2078     to remain constant.
2079    
2080     \subsection{Liquid Structure}\label{sec:t5peLiqStructure}
2081    
2082     A common function considered when developing and comparing water
2083     models is the oxygen-oxygen radial distribution function
2084     ($g_\textrm{OO}(r)$). The $g_\textrm{OO}(r)$ is the probability of
2085     finding a pair of oxygen atoms some distance ($r$) apart relative to a
2086     random distribution at the same density.\cite{Allen87} It is
2087     calculated via
2088     \begin{equation}
2089     g_\textrm{OO}(r) = \frac{V}{N^2}\left\langle\sum_i\sum_{j\ne i}
2090     \delta(\mathbf{r}-\mathbf{r}_{ij})\right\rangle,
2091     \label{eq:GOOofR}
2092     \end{equation}
2093     where the double sum is over all $i$ and $j$ pairs of $N$ oxygen
2094     atoms. The $g_\textrm{OO}(r)$ can be directly compared to X-ray or
2095     neutron scattering experiments through the oxygen-oxygen structure
2096     factor ($S_\textrm{OO}(k)$) by the following relationship:
2097     \begin{equation}
2098     S_\textrm{OO}(k) = 1 + 4\pi\rho
2099     \int_0^\infty r^2\frac{\sin kr}{kr}g_\textrm{OO}(r)\textrm{d}r.
2100     \label{eq:SOOofK}
2101     \end{equation}
2102 chrisfen 2971 Thus, $S_\textrm{OO}(k)$ is related to the Fourier-Laplace transform
2103     of $g_\textrm{OO}(r)$.
2104 chrisfen 2957
2105     The expermentally determined $g_\textrm{OO}(r)$ for liquid water has
2106     been compared in great detail with the various common water models,
2107     and TIP5P was found to be in better agreement than other rigid,
2108     non-polarizable models.\cite{Sorenson00} This excellent agreement with
2109     experiment was maintained when Rick developed TIP5P-E.\cite{Rick04} To
2110     check whether the choice of using the Ewald summation or the {\sc sf}
2111     technique alters the liquid structure, the $g_\textrm{OO}(r)$s at 298K
2112     and 1atm were determined for the systems compared in the previous
2113     section.
2114    
2115     \begin{figure}
2116     \includegraphics[width=\linewidth]{./figures/tip5peGofR.pdf}
2117     \caption{The $g_\textrm{OO}(r)$s calculated for TIP5P-E at 298K and
2118     1atm while using the Ewald summation (Ref. \cite{Rick04}) and the {\sc
2119     sf} technique with varying parameters. Even with the reduced densities
2120     using the {\sc sf} technique, the $g_\textrm{OO}(r)$s are essentially
2121     identical.}
2122     \label{fig:t5peGofRs}
2123     \end{figure}
2124    
2125     The $g_\textrm{OO}(r)$s calculated for TIP5P-E while using the {\sc
2126     sf} technique with a various parameters are overlaid on the
2127     $g_\textrm{OO}(r)$ while using the Ewald summation. The differences in
2128     density do not appear to have any effect on the liquid structure as
2129     the $g_\textrm{OO}(r)$s are indistinquishable. These results indicate
2130     that the $g_\textrm{OO}(r)$ is insensitive to the choice of
2131     electrostatic correction.
2132    
2133 chrisfen 2971 \subsection{Thermodynamic Properties}\label{sec:t5peThermo}
2134 chrisfen 2957
2135 chrisfen 2971 In addition to the density, there are a variety of thermodynamic
2136     quantities that can be calculated for water and compared directly to
2137     experimental values. Some of these additional quatities include the
2138     latent heat of vaporization ($\Delta H_\textrm{vap}$), the constant
2139     pressure heat capacity ($C_p$), the isothermal compressibility
2140     ($\kappa_T$), the thermal expansivity ($\alpha_p$), and the static
2141     dielectric constant ($\epsilon$). All of these properties were
2142     calculated for TIP5P-E with the Ewald summation, so they provide a
2143     good set for comparisons involving the {\sc sf} technique.
2144 chrisfen 2957
2145 chrisfen 2971 The $\Delta H_\textrm{vap}$ is the enthalpy change required to
2146     transform one mol of substance from the liquid phase to the gas
2147     phase.\cite{Berry00} In molecular simulations, this quantity can be
2148     determined via
2149     \begin{equation}
2150     \begin{split}
2151     \Delta H_\textrm{vap} &= H_\textrm{gas} - H_\textrm{liq.} \\
2152     &= E_\textrm{gas} - E_\textrm{liq.}
2153     + p(V_\textrm{gas} - V_\textrm{liq.}) \\
2154     &\approx -\frac{\langle U_\textrm{liq.}\rangle}{N}+ RT,
2155     \end{split}
2156     \label{eq:DeltaHVap}
2157     \end{equation}
2158     where $E$ is the total energy, $U$ is the potential energy, $p$ is the
2159     pressure, $V$ is the volume, $N$ is the number of molecules, $R$ is
2160     the gas constant, and $T$ is the temperature.\cite{Jorgensen98b} As
2161     seen in the last line of equation \ref{eq:DeltaHVap}, we can
2162     approximate $\Delta H_\textrm{vap}$ by using the ideal gas for the gas
2163     state. This allows us to cancel the kinetic energy terms, leaving only
2164     the $U_\textrm{liq.}$ term. Additionally, the $pV$ term for the gas is
2165     several orders of magnitude larger than that of the liquid, so we can
2166     neglect the liquid $pV$ term.
2167 chrisfen 2968
2168 chrisfen 2971 The remaining thermodynamic properties can all be calculated from
2169     fluctuations of the enthalpy, volume, and system dipole
2170     moment.\cite{Allen87} $C_p$ can be calculated from fluctuations in the
2171     enthalpy in constant pressure simulations via
2172     \begin{equation}
2173     \begin{split}
2174     C_p = \left(\frac{\partial H}{\partial T}\right)_{N,p}
2175     = \frac{(\langle H^2\rangle - \langle H\rangle^2)}{Nk_BT^2},
2176     \end{split}
2177     \label{eq:Cp}
2178     \end{equation}
2179     where $k_B$ is Boltzmann's constant. $\kappa_T$ can be calculated via
2180     \begin{equation}
2181     \begin{split}
2182     \kappa_T = \frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{N,T}
2183     = \frac{(\langle V^2\rangle_{N,P,T} - \langle V\rangle^2_{N,P,T})}
2184     {k_BT\langle V\rangle_{N,P,T}},
2185     \end{split}
2186     \label{eq:kappa}
2187     \end{equation}
2188     and $\alpha_p$ can be calculated via
2189     \begin{equation}
2190     \begin{split}
2191     \alpha_p = \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{N,P}
2192     = \frac{(\langle VH\rangle_{N,P,T}
2193     - \langle V\rangle_{N,P,T}\langle H\rangle_{N,P,T})}
2194     {k_BT^2\langle V\rangle_{N,P,T}}.
2195     \end{split}
2196     \label{eq:alpha}
2197     \end{equation}
2198     Using the Ewald sum under tin-foil boundary conditions, $\epsilon$ can
2199     be calculated for systems of non-polarizable substances via
2200     \begin{equation}
2201     \epsilon = 1 + \frac{\langle M^2\rangle}{3\epsilon_0k_\textrm{B}TV},
2202     \label{eq:staticDielectric}
2203     \end{equation}
2204     where $\epsilon_0$ is the permittivity of free space and $\langle
2205     M^2\rangle$ is the fluctuation of the system dipole
2206     moment.\cite{Allen87} The numerator in the fractional term in equation
2207     \ref{eq:staticDielectric} is the fluctuation of the simulation-box
2208     dipole moment, identical to the quantity calculated in the
2209     finite-system Kirkwood $g$ factor ($G_k$):
2210     \begin{equation}
2211     G_k = \frac{\langle M^2\rangle}{N\mu^2},
2212     \label{eq:KirkwoodFactor}
2213     \end{equation}
2214     where $\mu$ is the dipole moment of a single molecule of the
2215     homogeneous system.\cite{Neumann83,Neumann84,Neumann85} The
2216     fluctuation term in both equation \ref{eq:staticDielectric} and
2217     \ref{eq:KirkwoodFactor} is calculated as follows,
2218     \begin{equation}
2219     \begin{split}
2220     \langle M^2\rangle &= \langle\bm{M}\cdot\bm{M}\rangle
2221     - \langle\bm{M}\rangle\cdot\langle\bm{M}\rangle \\
2222     &= \langle M_x^2+M_y^2+M_z^2\rangle
2223     - (\langle M_x\rangle^2 + \langle M_x\rangle^2
2224     + \langle M_x\rangle^2).
2225     \end{split}
2226     \label{eq:fluctBoxDipole}
2227     \end{equation}
2228     This fluctuation term can be accumulated during the simulation;
2229     however, it converges rather slowly, thus requiring multi-nanosecond
2230     simulation times.\cite{Horn04} In the case of tin-foil boundary
2231     conditions, the dielectric/surface term of equation \ref{eq:EwaldSum}
2232     is equal to zero. Since the {\sc sf} method also lacks this
2233     dielectric/surface term, equation \ref{eq:staticDielectric} is still
2234     valid for determining static dielectric constants.
2235 chrisfen 2968
2236 chrisfen 2971 All of the above properties were calculated from the same trajectories
2237     used to determine the densities in section \ref{sec:t5peDensity}
2238     except for the static dielectric constants. The $\epsilon$ values were
2239     accumulated from 2ns $NVE$ ensemble trajectories with system densities
2240     fixed at the average values from the $NPT$ simulations at each of the
2241     temperatures. The resulting values are displayed in figure
2242     \ref{fig:t5peThermo}.
2243     \begin{figure}
2244     \centering
2245     \includegraphics[width=5.5in]{./figures/t5peThermo.pdf}
2246     \caption{Thermodynamic properties for TIP5P-E using the Ewald summation
2247     and the {\sc sf} techniques along with the experimental values. Units
2248     for the properties are kcal mol$^{-1}$ for $\Delta H_\textrm{vap}$,
2249     cal mol$^{-1}$ K$^{-1}$ for $C_p$, 10$^6$ atm$^{-1}$ for $\kappa_T$,
2250     and 10$^5$ K$^{-1}$ for $\alpha_p$. Ewald summation results are from
2251     reference \cite{Rick04}. Experimental values for $\Delta
2252     H_\textrm{vap}$, $\kappa_T$, and $\alpha_p$ are from reference
2253     \cite{Kell75}. Experimental values for $C_p$ are from reference
2254     \cite{Wagner02}. Experimental values for $\epsilon$ are from reference
2255     \cite{Malmberg56}.}
2256     \label{fig:t5peThermo}
2257     \end{figure}
2258    
2259     As observed for the density in section \ref{sec:t5peDensity}, the
2260     property trends with temperature seen when using the Ewald summation
2261     are reproduced with the {\sc sf} technique. Differences include the
2262     calculated values of $\Delta H_\textrm{vap}$ underpredicting the Ewald
2263     values. This is to be expected due to the direct weakening of the
2264     electrostatic interaction through forced neutralization in {\sc
2265     sf}. This results in an increase of the intermolecular potential
2266     producing lower values from equation \ref{eq:DeltaHVap}. The slopes of
2267     these values with temperature are similar to that seen using the Ewald
2268     summation; however, they are both steeper than the experimental trend,
2269     indirectly resulting in the inflated $C_p$ values at all temperatures.
2270    
2271     Above the supercooled regim\'{e}, $C_p$, $\kappa_T$, and $\alpha_p$
2272     values all overlap within error. As indicated for the $\Delta
2273     H_\textrm{vap}$ and $C_p$ results discussed in the previous paragraph,
2274     the deviations between experiment and simulation in this region are
2275     not the fault of the electrostatic summation methods but are due to
2276     the TIP5P class model itself. Like most rigid, non-polarizable,
2277     point-charge water models, the density decreases with temperature at a
2278     much faster rate than experiment (see figure
2279     \ref{fig:t5peDensities}). The reduced density leads to the inflated
2280     compressibility and expansivity values at higher temperatures seen
2281     here in figure \ref{fig:t5peThermo}. Incorporation of polarizability
2282     and many-body effects are required in order for simulation to overcome
2283     these differences with experiment.\cite{Laasonen93,Donchev06}
2284    
2285     At temperatures below the freezing point for experimental water, the
2286     differences between {\sc sf} and the Ewald summation results are more
2287     apparent. The larger $C_p$ and lower $\alpha_p$ values in this region
2288     indicate a more pronounced transition in the supercooled regim\'{e},
2289     particularly in the case of {\sc sf} without damping. This points to
2290     the onset of a more frustrated or glassy behavior for TIP5P-E at
2291     temperatures below 250K in these simulations. Because the systems are
2292     locked in different regions of phase-space, comparisons between
2293     properties at these temperatures are not exactly fair. This
2294     observation is explored in more detail in section
2295     \ref{sec:t5peDynamics}.
2296    
2297     The final thermodynamic property displayed in figure
2298     \ref{fig:t5peThermo}, $\epsilon$, shows the greatest discrepancy
2299     between the Ewald summation and the {\sc sf} technique (and experiment
2300     for that matter). It is known that the dielectric constant is
2301     dependent upon and quite sensitive to the imposed boundary
2302     conditions.\cite{Neumann80,Neumann83} This is readily apparent in the
2303     converged $\epsilon$ values accumulated for the {\sc sf}
2304     simulations. Lack of a damping function results in dielectric
2305     constants significantly smaller than that obtained using the Ewald
2306     sum. Increasing the damping coefficient to 0.2\AA$^{-1}$ improves the
2307     agreement considerably. It should be noted that the choice of the
2308     ``Ewald coefficient'' value also has a significant effect on the
2309     calculated value when using the Ewald summation. In the simulations of
2310     TIP5P-E with the Ewald sum, this screening parameter was tethered to
2311     the simulation box size (as was the $R_\textrm{c}$).\cite{Rick04}
2312     Systems with larger screening parameters reported larger dielectric
2313     constant values, the same behavior we see here with {\sc sf}. In
2314     section \ref{sec:dampingDielectric}, this connection is further
2315     explored as optimal damping coefficients are determined for {\sc
2316     sf} for capturing the dielectric behavior.
2317    
2318     \subsection{Dynamic Properties}\label{sec:t5peDynamics}
2319    
2320     To look at the dynamic properties of TIP5P-E when using the {\sc sf}
2321     method, 200ps $NVE$ simulations were performed for each temperature at
2322     the average density reported by the $NPT$ simulations. The
2323     self-diffusion constants ($D$) were calculated with the Einstein
2324     relation using the mean square displacement (MSD),
2325     \begin{equation}
2326     D = \frac{\langle\left|\mathbf{r}_i(t)-\mathbf{r}_i(0)\right|^2\rangle}{6t},
2327     \label{eq:MSD}
2328     \end{equation}
2329     where $t$ is time, and $\mathbf{r}_i$ is the position of particle
2330     $i$.\cite{Allen87} Figure \ref{fig:ExampleMSD} shows an example MSD
2331     plot. As labeled in the figure, MSD plots consist of three distinct
2332     regions:
2333    
2334     \begin{enumerate}[itemsep=0pt]
2335     \item parabolic short-time ballistic motion,
2336     \item linear diffusive regime, and
2337     \item poor statistic region at long-time.
2338     \end{enumerate}
2339     The slope from the linear region (region 2) is used to calculate $D$.
2340     \begin{figure}
2341     \centering
2342     \includegraphics[width=3.5in]{./figures/ExampleMSD.pdf}
2343     \caption{Example plot of mean square displacement verses time. The
2344     left red region is the ballistic motion regime, the middle green
2345     region is the linear diffusive regime, and the right blue region is
2346     the region with poor statistics.}
2347     \label{fig:ExampleMSD}
2348     \end{figure}
2349    
2350     \begin{figure}
2351     \centering
2352     \includegraphics[width=3.5in]{./figures/waterFrame.pdf}
2353     \caption{Body-fixed coordinate frame for a water molecule. The
2354     respective molecular principle axes point in the direction of the
2355     labeled frame axes.}
2356     \label{fig:waterFrame}
2357     \end{figure}
2358     In addition to translational diffusion, reorientational time constants
2359     were calculated for comparisons with the Ewald simulations and with
2360     experiments. These values were determined from 25ps $NVE$ trajectories
2361     through calculation of the orientational time correlation function,
2362     \begin{equation}
2363     C_l^\alpha(t) = \left\langle P_l\left[\hat{\mathbf{u}}_i^\alpha(t)
2364     \cdot\hat{\mathbf{u}}_i^\alpha(0)\right]\right\rangle,
2365     \label{eq:OrientCorr}
2366     \end{equation}
2367     where $P_l$ is the Legendre polynomial of order $l$ and
2368     $\hat{\mathbf{u}}_i^\alpha$ is the unit vector of molecule $i$ along
2369     principle axis $\alpha$. The principle axis frame for these water
2370     molecules is shown in figure \ref{fig:waterFrame}. As an example,
2371     $C_l^y$ is calculated from the time evolution of the unit vector
2372     connecting the two hydrogen atoms.
2373    
2374     \begin{figure}
2375     \centering
2376     \includegraphics[width=3.5in]{./figures/ExampleOrientCorr.pdf}
2377     \caption{Example plots of the orientational autocorrelation functions
2378     for the first and second Legendre polynomials. These curves show the
2379     time decay of the unit vector along the $y$ principle axis.}
2380     \label{fig:OrientCorr}
2381     \end{figure}
2382     From the orientation autocorrelation functions, we can obtain time
2383     constants for rotational relaxation. Figure \ref{fig:OrientCorr} shows
2384     some example plots of orientational autocorrelation functions for the
2385     first and second Legendre polynomials. The relatively short time
2386     portions (between 1 and 3ps for water) of these curves can be fit to
2387     an exponential decay to obtain these constants, and they are directly
2388     comparable to water orientational relaxation times from nuclear
2389     magnetic resonance (NMR). The relaxation constant obtained from
2390     $C_2^y(t)$ is of particular interest because it is about the principle
2391     axis with the minimum moment of inertia and should thereby dominate
2392     the orientational relaxation of the molecule.\cite{Impey82} This means
2393     that $C_2^y(t)$ should provide the best comparison to the NMR
2394     relaxation data.
2395    
2396     \begin{figure}
2397     \centering
2398     \includegraphics[width=5.5in]{./figures/t5peDynamics.pdf}
2399     \caption{Diffusion constants ({\it upper}) and reorientational time
2400     constants ({\it lower}) for TIP5P-E using the Ewald sum and {\sc sf}
2401     technique compared with experiment. Data at temperatures less that
2402     0$^\circ$C were not included in the $\tau_2^y$ plot to allow for
2403     easier comparisons in the more relavent temperature regime.}
2404     \label{fig:t5peDynamics}
2405     \end{figure}
2406     Results for the diffusion constants and reorientational time constants
2407     are shown in figure \ref{fig:t5peDynamics}. From this figure, it is
2408     apparent that the trends for both $D$ and $\tau_2^y$ of TIP5P-E using
2409     the Ewald sum are reproduced with the {\sc sf} techinque. The enhanced
2410     diffusion at high temperatures are again the product of the lower
2411     densities in comparison with experiment and do not provide any special
2412     insight into differences between the electrostatic summation
2413     techniques. With the undamped {\sc sf} technique, TIP5P-E tends to
2414     diffuse a little faster than with the Ewald sum; however, use of light
2415     to moderate damping results in indistiguishable $D$ values. Though not
2416     apparent in this figure, {\sc sf} values at the lowest temperature are
2417     approximately an order of magnitude lower than with Ewald. These
2418     values support the observation from section \ref{sec:t5peThermo} that
2419     there appeared to be a change to a more glassy-like phase with the
2420     {\sc sf} technique at these lower temperatures.
2421    
2422     The $\tau_2^y$ results in the lower frame of figure
2423     \ref{fig:t5peDynamics} show a much greater difference between the {\sc
2424     sf} results and the Ewald results. At all temperatures shown, TIP5P-E
2425     relaxes faster than experiment with the Ewald sum while tracking
2426     experiment fairly well when using the {\sc sf} technique, independent
2427     of the choice of damping constant. Their are several possible reasons
2428     for this deviation between techniques. The Ewald results were taken
2429     shorter (10ps) trajectories than the {\sc sf} results (25ps). A quick
2430     calculation from a 10ps trajectory with {\sc sf} with an $\alpha$ of
2431     0.2\AA$^-1$ at 25$^\circ$C showed a 0.4ps drop in $\tau_2^y$, placing
2432     the result more in line with that obtained using the Ewald sum. These
2433     results support this explanation; however, recomputing the results to
2434     meet a poorer statistical standard is counter-productive. Assuming the
2435     Ewald results are not the product of poor statistics, differences in
2436     techniques to integrate the orientational motion could also play a
2437     role. {\sc shake} is the most commonly used technique for
2438     approximating rigid-body orientational motion,\cite{Ryckaert77} where
2439     as in {\sc oopse}, we maintain and integrate the entire rotation
2440     matrix using the {\sc dlm} method.\cite{Meineke05} Since {\sc shake}
2441     is an iterative constraint technique, if the convergence tolerances
2442     are raised for increased performance, error will accumulate in the
2443     orientational motion. Finally, the Ewald results were calculated using
2444     the $NVT$ ensemble, while the $NVE$ ensemble was used for {\sc sf}
2445     calculations. The additional mode of motion due to the thermostat will
2446     alter the dynamics, resulting in differences between $NVT$ and $NVE$
2447     results. These differences are increasingly noticable as the
2448     thermostat time constant decreases.
2449    
2450     \section{Damping of Point Multipoles}\label{sec:dampingMultipoles}
2451    
2452    
2453    
2454     \section{Damping and Dielectric Constants}\label{sec:dampingDielectric}
2455    
2456 chrisfen 2957 \section{Conclusions}\label{sec:PairwiseConclusions}
2457    
2458 chrisfen 2927 The above investigation of pairwise electrostatic summation techniques
2459     shows that there are viable and computationally efficient alternatives
2460     to the Ewald summation. These methods are derived from the damped and
2461     cutoff-neutralized Coulombic sum originally proposed by Wolf
2462     \textit{et al.}\cite{Wolf99} In particular, the {\sc sf}
2463     method, reformulated above as eqs. (\ref{eq:DSFPot}) and
2464     (\ref{eq:DSFForces}), shows a remarkable ability to reproduce the
2465     energetic and dynamic characteristics exhibited by simulations
2466     employing lattice summation techniques. The cumulative energy
2467     difference results showed the undamped {\sc sf} and moderately damped
2468     {\sc sp} methods produced results nearly identical to {\sc spme}.
2469     Similarly for the dynamic features, the undamped or moderately damped
2470     {\sc sf} and moderately damped {\sc sp} methods produce force and
2471     torque vector magnitude and directions very similar to the expected
2472     values. These results translate into long-time dynamic behavior
2473     equivalent to that produced in simulations using {\sc spme}.
2474    
2475     As in all purely-pairwise cutoff methods, these methods are expected
2476     to scale approximately {\it linearly} with system size, and they are
2477     easily parallelizable. This should result in substantial reductions
2478     in the computational cost of performing large simulations.
2479    
2480     Aside from the computational cost benefit, these techniques have
2481     applicability in situations where the use of the Ewald sum can prove
2482     problematic. Of greatest interest is their potential use in
2483     interfacial systems, where the unmodified lattice sum techniques
2484     artificially accentuate the periodicity of the system in an
2485     undesirable manner. There have been alterations to the standard Ewald
2486     techniques, via corrections and reformulations, to compensate for
2487     these systems; but the pairwise techniques discussed here require no
2488     modifications, making them natural tools to tackle these problems.
2489     Additionally, this transferability gives them benefits over other
2490     pairwise methods, like reaction field, because estimations of physical
2491     properties (e.g. the dielectric constant) are unnecessary.
2492    
2493     If a researcher is using Monte Carlo simulations of large chemical
2494     systems containing point charges, most structural features will be
2495     accurately captured using the undamped {\sc sf} method or the {\sc sp}
2496     method with an electrostatic damping of 0.2\AA$^{-1}$. These methods
2497     would also be appropriate for molecular dynamics simulations where the
2498     data of interest is either structural or short-time dynamical
2499     quantities. For long-time dynamics and collective motions, the safest
2500     pairwise method we have evaluated is the {\sc sf} method with an
2501     electrostatic damping between 0.2 and 0.25\AA$^{-1}$.
2502    
2503     We are not suggesting that there is any flaw with the Ewald sum; in
2504     fact, it is the standard by which these simple pairwise sums have been
2505     judged. However, these results do suggest that in the typical
2506     simulations performed today, the Ewald summation may no longer be
2507     required to obtain the level of accuracy most researchers have come to
2508     expect.
2509    
2510 chrisfen 2918 \chapter{\label{chap:water}SIMPLE MODELS FOR WATER}
2511    
2512     \chapter{\label{chap:ice}PHASE BEHAVIOR OF WATER IN COMPUTER SIMULATIONS}
2513    
2514     \chapter{\label{chap:shapes}SPHERICAL HARMONIC APPROXIMATIONS FOR MOLECULAR
2515     SIMULATIONS}
2516    
2517     \chapter{\label{chap:conclusion}CONCLUSION}
2518    
2519     \backmatter
2520    
2521     \bibliographystyle{ndthesis}
2522 chrisfen 2927 \bibliography{dissertation}
2523 chrisfen 2918
2524     \end{document}
2525    
2526    
2527     \endinput