556 |
|
differences. |
557 |
|
|
558 |
|
Results and discussion for the individual analysis of each of the |
559 |
< |
system types appear in sections \ref{sec:SystemResults}, while the |
559 |
> |
system types appear in sections \ref{sec:IndividualResults}, while the |
560 |
|
cumulative results over all the investigated systems appear below in |
561 |
|
sections \ref{sec:EnergyResults}. |
562 |
|
|
721 |
|
0.3119, and 0.2476\AA$^{-1}$ for cutoff radii of 9, 12, and 15\AA\ |
722 |
|
respectively. |
723 |
|
|
724 |
< |
\section{Combined Configuration Energy Difference Results}\label{sec:EnergyResults} |
724 |
> |
\section{Configuration Energy Difference Results}\label{sec:EnergyResults} |
725 |
|
In order to evaluate the performance of the pairwise electrostatic |
726 |
|
summation methods for Monte Carlo (MC) simulations, the energy |
727 |
|
differences between configurations were compared to the values |
757 |
|
function.\cite{Adams79,Steinbach94,Leach01} However, we do not see |
758 |
|
significant improvement using the group-switched cutoff because the |
759 |
|
salt and salt solution systems contain non-neutral groups. Section |
760 |
< |
\ref{sec:SystemResults} includes results for systems comprised entirely |
760 |
> |
\ref{sec:IndividualResults} includes results for systems comprised entirely |
761 |
|
of neutral groups. |
762 |
|
|
763 |
|
For the {\sc sp} method, inclusion of electrostatic damping improves |
780 |
|
systems; although it does provide results that are an improvement over |
781 |
|
those from an unmodified cutoff. |
782 |
|
|
783 |
< |
\section{Magnitude of the Force and Torque Vector Results} |
783 |
> |
\section{Magnitude of the Force and Torque Vector Results}\label{sec:FTMagResults} |
784 |
|
|
785 |
|
Evaluation of pairwise methods for use in Molecular Dynamics |
786 |
|
simulations requires consideration of effects on the forces and |
856 |
|
molecular bodies. Therefore it is not surprising that reaction field |
857 |
|
performs best of all of the methods on molecular torques. |
858 |
|
|
859 |
< |
\section{Directionality of the Force and Torque Vector Results} |
859 |
> |
\section{Directionality of the Force and Torque Vector Results}\label{sec:FTDirResults} |
860 |
|
|
861 |
|
It is clearly important that a new electrostatic method can reproduce |
862 |
|
the magnitudes of the force and torque vectors obtained via the Ewald |
906 |
|
particles in all seven systems, while torque vectors are only |
907 |
|
available for neutral molecular groups. Damping is more beneficial to |
908 |
|
charged bodies, and this observation is investigated further in |
909 |
< |
section \ref{SystemResults}. |
909 |
> |
section \ref{IndividualResults}. |
910 |
|
|
911 |
|
Although not discussed previously, group based cutoffs can be applied |
912 |
|
to both the {\sc sp} and {\sc sf} methods. The group-based cutoffs |
984 |
|
observations, empirical damping up to 0.2\AA$^{-1}$ is beneficial, |
985 |
|
but damping may be unnecessary when using the {\sc sf} method. |
986 |
|
|
987 |
< |
\section{Individual System Analysis Results} |
987 |
> |
\section{Individual System Analysis Results}\label{sec:IndividualResults} |
988 |
|
|
989 |
|
The combined results of the previous sections show how the pairwise |
990 |
|
methods compare to the Ewald summation in the general sense over all |
996 |
|
vector, and torque vector analyses are presented on an individual |
997 |
|
system basis. |
998 |
|
|
999 |
< |
\subsection{SPC/E Water Results} |
999 |
> |
\subsection{SPC/E Water Results}\label{sec:WaterResults} |
1000 |
> |
|
1001 |
> |
The first system considered was liquid water at 300K using the SPC/E |
1002 |
> |
model of water.\cite{Berendsen87} The results for the energy gap |
1003 |
> |
comparisons and the force and torque vector magnitude comparisons are |
1004 |
> |
shown in table \ref{tab:spce}. The force and torque vector |
1005 |
> |
directionality results are displayed separately in table |
1006 |
> |
\ref{tab:spceAng}, where the effect of group-based cutoffs and |
1007 |
> |
switching functions on the {\sc sp} and {\sc sf} potentials are also |
1008 |
> |
investigated. In all of the individual results table, the method |
1009 |
> |
abbreviations are as follows: |
1010 |
|
|
1011 |
< |
\subsection{SPC/E Ice I$_\textrm{c}$ Results} |
1012 |
< |
|
1013 |
< |
\subsection{NaCl Melt Results} |
1014 |
< |
|
1015 |
< |
\subsection{NaCl Crystal Results} |
1011 |
> |
\begin{itemize} |
1012 |
> |
\item PC = Pure Cutoff, |
1013 |
> |
\item SP = Shifted Potential, |
1014 |
> |
\item SF = Shifted Force, |
1015 |
> |
\item GSC = Group Switched Cutoff, |
1016 |
> |
\item RF = Reaction Field (where $\varepsilon \approx\infty$), |
1017 |
> |
\item GSSP = Group Switched Shifted Potential, and |
1018 |
> |
\item GSSF = Group Switched Shifted Force. |
1019 |
> |
\end{itemize} |
1020 |
|
|
1021 |
< |
\subsection{0.1M NaCl Solution Results} |
1021 |
> |
\begin{table}[htbp] |
1022 |
> |
\centering |
1023 |
> |
\caption{REGRESSION RESULTS OF THE LIQUID WATER SYSTEM FOR THE |
1024 |
> |
$\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES ({\it middle}) |
1025 |
> |
AND TORQUE VECTOR MAGNITUDES ({\it lower})} |
1026 |
> |
|
1027 |
> |
\footnotesize |
1028 |
> |
\begin{tabular}{@{} ccrrrrrr @{}} |
1029 |
> |
\\ |
1030 |
> |
\toprule |
1031 |
> |
\toprule |
1032 |
> |
& & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\ |
1033 |
> |
\cmidrule(lr){3-4} |
1034 |
> |
\cmidrule(lr){5-6} |
1035 |
> |
\cmidrule(l){7-8} |
1036 |
> |
Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ |
1037 |
> |
\midrule |
1038 |
> |
PC & & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\ |
1039 |
> |
SP & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\ |
1040 |
> |
& 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\ |
1041 |
> |
& 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\ |
1042 |
> |
& 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\ |
1043 |
> |
SF & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\ |
1044 |
> |
& 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\ |
1045 |
> |
& 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\ |
1046 |
> |
& 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\ |
1047 |
> |
GSC & & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\ |
1048 |
> |
RF & & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\ |
1049 |
> |
\midrule |
1050 |
> |
PC & & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\ |
1051 |
> |
SP & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\ |
1052 |
> |
& 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\ |
1053 |
> |
& 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\ |
1054 |
> |
& 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\ |
1055 |
> |
SF & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\ |
1056 |
> |
& 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\ |
1057 |
> |
& 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\ |
1058 |
> |
& 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\ |
1059 |
> |
GSC & & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\ |
1060 |
> |
RF & & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\ |
1061 |
> |
\midrule |
1062 |
> |
PC & & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\ |
1063 |
> |
SP & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\ |
1064 |
> |
& 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\ |
1065 |
> |
& 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\ |
1066 |
> |
& 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\ |
1067 |
> |
SF & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\ |
1068 |
> |
& 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\ |
1069 |
> |
& 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\ |
1070 |
> |
& 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\ |
1071 |
> |
GSC & & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\ |
1072 |
> |
RF & & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\ |
1073 |
> |
\bottomrule |
1074 |
> |
\end{tabular} |
1075 |
> |
\label{tab:spce} |
1076 |
> |
\end{table} |
1077 |
|
|
1078 |
< |
\subsection{1M NaCl Solution Results} |
1078 |
> |
\begin{table}[htbp] |
1079 |
> |
\centering |
1080 |
> |
\caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR |
1081 |
> |
DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE LIQUID WATER |
1082 |
> |
SYSTEM} |
1083 |
> |
|
1084 |
> |
\footnotesize |
1085 |
> |
\begin{tabular}{@{} ccrrrrrr @{}} |
1086 |
> |
\\ |
1087 |
> |
\toprule |
1088 |
> |
\toprule |
1089 |
> |
& & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\ |
1090 |
> |
\cmidrule(lr){3-5} |
1091 |
> |
\cmidrule(l){6-8} |
1092 |
> |
Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\ |
1093 |
> |
\midrule |
1094 |
> |
PC & & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\ |
1095 |
> |
SP & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\ |
1096 |
> |
& 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\ |
1097 |
> |
& 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\ |
1098 |
> |
& 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\ |
1099 |
> |
SF & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\ |
1100 |
> |
& 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\ |
1101 |
> |
& 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\ |
1102 |
> |
& 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\ |
1103 |
> |
GSC & & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\ |
1104 |
> |
RF & & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\ |
1105 |
> |
\midrule |
1106 |
> |
GSSP & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\ |
1107 |
> |
& 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\ |
1108 |
> |
& 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\ |
1109 |
> |
& 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\ |
1110 |
> |
GSSF & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\ |
1111 |
> |
& 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\ |
1112 |
> |
& 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\ |
1113 |
> |
& 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\ |
1114 |
> |
\bottomrule |
1115 |
> |
\end{tabular} |
1116 |
> |
\label{tab:spceAng} |
1117 |
> |
\end{table} |
1118 |
> |
|
1119 |
> |
The water results parallel the combined results seen in sections |
1120 |
> |
\ref{sec:EnergyResults} through \ref{sec:FTDirResults}. There is good |
1121 |
> |
agreement with {\sc spme} in both energetic and dynamic behavior when |
1122 |
> |
using the {\sc sf} method with and without damping. The {\sc sp} |
1123 |
> |
method does well with an $\alpha$ around 0.2\AA$^{-1}$, particularly |
1124 |
> |
with cutoff radii greater than 12\AA. Overdamping the electrostatics |
1125 |
> |
reduces the agreement between both these methods and {\sc spme}. |
1126 |
> |
|
1127 |
> |
The pure cutoff ({\sc pc}) method performs poorly, again mirroring the |
1128 |
> |
observations from the combined results. In contrast to these results, however, the use of a switching function and group |
1129 |
> |
based cutoffs greatly improves the results for these neutral water |
1130 |
> |
molecules. The group switched cutoff ({\sc gsc}) does not mimic the |
1131 |
> |
energetics of {\sc spme} as well as the {\sc sp} (with moderate |
1132 |
> |
damping) and {\sc sf} methods, but the dynamics are quite good. The |
1133 |
> |
switching functions correct discontinuities in the potential and |
1134 |
> |
forces, leading to these improved results. Such improvements with the |
1135 |
> |
use of a switching function have been recognized in previous |
1136 |
> |
studies,\cite{Andrea83,Steinbach94} and this proves to be a useful |
1137 |
> |
tactic for stably incorporating local area electrostatic effects. |
1138 |
> |
|
1139 |
> |
The reaction field ({\sc rf}) method simply extends upon the results |
1140 |
> |
observed in the {\sc gsc} case. Both methods are similar in form |
1141 |
> |
(i.e. neutral groups, switching function), but {\sc rf} incorporates |
1142 |
> |
an added effect from the external dielectric. This similarity |
1143 |
> |
translates into the same good dynamic results and improved energetic |
1144 |
> |
agreement with {\sc spme}. Though this agreement is not to the level |
1145 |
> |
of the moderately damped {\sc sp} and {\sc sf} methods, these results |
1146 |
> |
show how incorporating some implicit properties of the surroundings |
1147 |
> |
(i.e. $\epsilon_\textrm{S}$) can improve the solvent depiction. |
1148 |
> |
|
1149 |
> |
As a final note for the liquid water system, use of group cutoffs and a |
1150 |
> |
switching function leads to noticeable improvements in the {\sc sp} |
1151 |
> |
and {\sc sf} methods, primarily in directionality of the force and |
1152 |
> |
torque vectors (table \ref{tab:spceAng}). The {\sc sp} method shows |
1153 |
> |
significant narrowing of the angle distribution when using little to |
1154 |
> |
no damping and only modest improvement for the recommended conditions |
1155 |
> |
($\alpha = 0.2$\AA$^{-1}$ and $R_\textrm{c}~\geqslant~12$\AA). The |
1156 |
> |
{\sc sf} method shows modest narrowing across all damping and cutoff |
1157 |
> |
ranges of interest. When overdamping these methods, group cutoffs and |
1158 |
> |
the switching function do not improve the force and torque |
1159 |
> |
directionalities. |
1160 |
> |
|
1161 |
> |
\subsection{SPC/E Ice I$_\textrm{c}$ Results}\label{sec:IceResults} |
1162 |
> |
|
1163 |
> |
In addition to the disordered molecular system above, the ordered |
1164 |
> |
molecular system of ice I$_\textrm{c}$ was also considered. Ice |
1165 |
> |
polymorph could have been used to fit this role; however, ice |
1166 |
> |
I$_\textrm{c}$ was chosen because it can form an ideal periodic |
1167 |
> |
lattice with the same number of water molecules used in the disordered |
1168 |
> |
liquid state case. The results for the energy gap comparisons and the |
1169 |
> |
force and torque vector magnitude comparisons are shown in table |
1170 |
> |
\ref{tab:ice}. The force and torque vector directionality results are |
1171 |
> |
displayed separately in table \ref{tab:iceAng}, where the effect of |
1172 |
> |
group-based cutoffs and switching functions on the {\sc sp} and {\sc |
1173 |
> |
sf} potentials are also displayed. |
1174 |
> |
|
1175 |
> |
\begin{table}[htbp] |
1176 |
> |
\centering |
1177 |
> |
\caption{REGRESSION RESULTS OF THE ICE I$_\textrm{c}$ SYSTEM FOR |
1178 |
> |
$\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES ({\it |
1179 |
> |
middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})} |
1180 |
> |
|
1181 |
> |
\footnotesize |
1182 |
> |
\begin{tabular}{@{} ccrrrrrr @{}} |
1183 |
> |
\\ |
1184 |
> |
\toprule |
1185 |
> |
\toprule |
1186 |
> |
& & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\ |
1187 |
> |
\cmidrule(lr){3-4} |
1188 |
> |
\cmidrule(lr){5-6} |
1189 |
> |
\cmidrule(l){7-8} |
1190 |
> |
Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ |
1191 |
> |
\midrule |
1192 |
> |
PC & & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\ |
1193 |
> |
SP & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\ |
1194 |
> |
& 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\ |
1195 |
> |
& 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\ |
1196 |
> |
& 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\ |
1197 |
> |
SF & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\ |
1198 |
> |
& 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\ |
1199 |
> |
& 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\ |
1200 |
> |
& 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\ |
1201 |
> |
GSC & & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\ |
1202 |
> |
RF & & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\ |
1203 |
> |
\midrule |
1204 |
> |
PC & & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\ |
1205 |
> |
SP & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\ |
1206 |
> |
& 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\ |
1207 |
> |
& 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\ |
1208 |
> |
& 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\ |
1209 |
> |
SF & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\ |
1210 |
> |
& 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\ |
1211 |
> |
& 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\ |
1212 |
> |
& 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\ |
1213 |
> |
GSC & & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\ |
1214 |
> |
RF & & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\ |
1215 |
> |
\midrule |
1216 |
> |
PC & & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\ |
1217 |
> |
SP & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\ |
1218 |
> |
& 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\ |
1219 |
> |
& 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\ |
1220 |
> |
& 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\ |
1221 |
> |
SF & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\ |
1222 |
> |
& 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\ |
1223 |
> |
& 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\ |
1224 |
> |
& 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\ |
1225 |
> |
GSC & & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\ |
1226 |
> |
RF & & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\ |
1227 |
> |
\bottomrule |
1228 |
> |
\end{tabular} |
1229 |
> |
\label{tab:ice} |
1230 |
> |
\end{table} |
1231 |
> |
|
1232 |
> |
\begin{table}[htbp] |
1233 |
> |
\centering |
1234 |
> |
\caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS |
1235 |
> |
OF THE FORCE AND TORQUE VECTORS IN THE ICE I$_\textrm{c}$ SYSTEM} |
1236 |
> |
|
1237 |
> |
\footnotesize |
1238 |
> |
\begin{tabular}{@{} ccrrrrrr @{}} |
1239 |
> |
\\ |
1240 |
> |
\toprule |
1241 |
> |
\toprule |
1242 |
> |
& & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque |
1243 |
> |
$\sigma^2$} \\ |
1244 |
> |
\cmidrule(lr){3-5} |
1245 |
> |
\cmidrule(l){6-8} |
1246 |
> |
Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\ |
1247 |
> |
\midrule |
1248 |
> |
PC & & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\ |
1249 |
> |
SP & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\ |
1250 |
> |
& 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\ |
1251 |
> |
& 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\ |
1252 |
> |
& 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\ |
1253 |
> |
SF & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\ |
1254 |
> |
& 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\ |
1255 |
> |
& 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\ |
1256 |
> |
& 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\ |
1257 |
> |
GSC & & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\ |
1258 |
> |
RF & & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\ |
1259 |
> |
\midrule |
1260 |
> |
GSSP & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\ |
1261 |
> |
& 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\ |
1262 |
> |
& 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\ |
1263 |
> |
& 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\ |
1264 |
> |
GSSF & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\ |
1265 |
> |
& 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\ |
1266 |
> |
& 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\ |
1267 |
> |
& 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\ |
1268 |
> |
\bottomrule |
1269 |
> |
\end{tabular} |
1270 |
> |
\label{tab:iceAng} |
1271 |
> |
\end{table} |
1272 |
> |
|
1273 |
> |
Highly ordered systems are a difficult test for the pairwise methods |
1274 |
> |
in that they lack the implicit periodicity of the Ewald summation. As |
1275 |
> |
expected, the energy gap agreement with {\sc spme} is reduced for the |
1276 |
> |
{\sc sp} and {\sc sf} methods with parameters that were ideal for the |
1277 |
> |
disordered liquid system. Moving to higher $R_\textrm{c}$ helps |
1278 |
> |
improve the agreement, though at an increase in computational cost. |
1279 |
> |
The dynamics of this crystalline system (both in magnitude and |
1280 |
> |
direction) are little affected. Both methods still reproduce the Ewald |
1281 |
> |
behavior with the same parameter recommendations from the previous |
1282 |
> |
section. |
1283 |
> |
|
1284 |
> |
It is also worth noting that {\sc rf} exhibits improved energy gap |
1285 |
> |
results over the liquid water system. One possible explanation is |
1286 |
> |
that the ice I$_\textrm{c}$ crystal is ordered such that the net |
1287 |
> |
dipole moment of the crystal is zero. With $\epsilon_\textrm{S} = |
1288 |
> |
\infty$, the reaction field incorporates this structural organization |
1289 |
> |
by actively enforcing a zeroed dipole moment within each cutoff |
1290 |
> |
sphere. |
1291 |
> |
|
1292 |
> |
\subsection{NaCl Melt Results}\label{sec:SaltMeltResults} |
1293 |
> |
|
1294 |
> |
A high temperature NaCl melt was tested to gauge the accuracy of the |
1295 |
> |
pairwise summation methods in a disordered system of charges. The |
1296 |
> |
results for the energy gap comparisons and the force vector magnitude |
1297 |
> |
comparisons are shown in table \ref{tab:melt}. The force vector |
1298 |
> |
directionality results are displayed separately in table |
1299 |
> |
\ref{tab:meltAng}. |
1300 |
> |
|
1301 |
> |
\begin{table}[htbp] |
1302 |
> |
\centering |
1303 |
> |
\caption{REGRESSION RESULTS OF THE MOLTEN SODIUM CHLORIDE SYSTEM FOR |
1304 |
> |
$\Delta E$ VALUES ({\it upper}) AND FORCE VECTOR MAGNITUDES ({\it |
1305 |
> |
lower})} |
1306 |
> |
|
1307 |
> |
\footnotesize |
1308 |
> |
\begin{tabular}{@{} ccrrrrrr @{}} |
1309 |
> |
\\ |
1310 |
> |
\toprule |
1311 |
> |
\toprule |
1312 |
> |
& & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\ |
1313 |
> |
\cmidrule(lr){3-4} |
1314 |
> |
\cmidrule(lr){5-6} |
1315 |
> |
\cmidrule(l){7-8} |
1316 |
> |
Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ |
1317 |
> |
\midrule |
1318 |
> |
PC & & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\ |
1319 |
> |
SP & 0.0 & 0.928 & 0.996 & 0.931 & 0.998 & 0.950 & 0.999 \\ |
1320 |
> |
& 0.1 & 0.977 & 0.998 & 0.998 & 1.000 & 0.997 & 1.000 \\ |
1321 |
> |
& 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\ |
1322 |
> |
& 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\ |
1323 |
> |
SF & 0.0 & 0.996 & 1.000 & 0.995 & 1.000 & 0.997 & 1.000 \\ |
1324 |
> |
& 0.1 & 1.021 & 1.000 & 1.024 & 1.000 & 1.007 & 1.000 \\ |
1325 |
> |
& 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\ |
1326 |
> |
& 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\ |
1327 |
> |
\midrule |
1328 |
> |
PC & & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\ |
1329 |
> |
SP & 0.0 & 0.973 & 0.981 & 0.975 & 0.988 & 0.979 & 0.992 \\ |
1330 |
> |
& 0.1 & 0.987 & 0.992 & 0.993 & 0.998 & 0.997 & 0.999 \\ |
1331 |
> |
& 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\ |
1332 |
> |
& 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\ |
1333 |
> |
SF & 0.0 & 0.996 & 0.997 & 0.997 & 0.999 & 0.998 & 1.000 \\ |
1334 |
> |
& 0.1 & 1.000 & 0.997 & 1.001 & 0.999 & 1.000 & 1.000 \\ |
1335 |
> |
& 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\ |
1336 |
> |
& 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\ |
1337 |
> |
\bottomrule |
1338 |
> |
\end{tabular} |
1339 |
> |
\label{tab:melt} |
1340 |
> |
\end{table} |
1341 |
> |
|
1342 |
> |
\begin{table}[htbp] |
1343 |
> |
\centering |
1344 |
> |
\caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS |
1345 |
> |
OF THE FORCE VECTORS IN THE MOLTEN SODIUM CHLORIDE SYSTEM} |
1346 |
> |
|
1347 |
> |
\footnotesize |
1348 |
> |
\begin{tabular}{@{} ccrrrrrr @{}} |
1349 |
> |
\\ |
1350 |
> |
\toprule |
1351 |
> |
\toprule |
1352 |
> |
& & \multicolumn{3}{c}{Force $\sigma^2$} \\ |
1353 |
> |
\cmidrule(lr){3-5} |
1354 |
> |
\cmidrule(l){6-8} |
1355 |
> |
Method & $\alpha$ & 9\AA & 12\AA & 15\AA \\ |
1356 |
> |
\midrule |
1357 |
> |
PC & & 13.294 & 8.035 & 5.366 \\ |
1358 |
> |
SP & 0.0 & 13.316 & 8.037 & 5.385 \\ |
1359 |
> |
& 0.1 & 5.705 & 1.391 & 0.360 \\ |
1360 |
> |
& 0.2 & 2.415 & 7.534 & 13.927 \\ |
1361 |
> |
& 0.3 & 23.769 & 67.306 & 57.252 \\ |
1362 |
> |
SF & 0.0 & 1.693 & 0.603 & 0.256 \\ |
1363 |
> |
& 0.1 & 1.687 & 0.653 & 0.272 \\ |
1364 |
> |
& 0.2 & 2.598 & 7.523 & 13.930 \\ |
1365 |
> |
& 0.3 & 23.734 & 67.305 & 57.252 \\ |
1366 |
> |
\bottomrule |
1367 |
> |
\end{tabular} |
1368 |
> |
\label{tab:meltAng} |
1369 |
> |
\end{table} |
1370 |
> |
|
1371 |
> |
The molten NaCl system shows more sensitivity to the electrostatic |
1372 |
> |
damping than the water systems. The most noticeable point is that the |
1373 |
> |
undamped {\sc sf} method does very well at replicating the {\sc spme} |
1374 |
> |
configurational energy differences and forces. Light damping appears |
1375 |
> |
to minimally improve the dynamics, but this comes with a deterioration |
1376 |
> |
of the energy gap results. In contrast, this light damping improves |
1377 |
> |
the {\sc sp} energy gaps and forces. Moderate and heavy electrostatic |
1378 |
> |
damping reduce the agreement with {\sc spme} for both methods. From |
1379 |
> |
these observations, the undamped {\sc sf} method is the best choice |
1380 |
> |
for disordered systems of charges. |
1381 |
> |
|
1382 |
> |
\subsection{NaCl Crystal Results}\label{sec:SaltCrystalResults} |
1383 |
> |
|
1384 |
> |
Similar to the use of ice I$_\textrm{c}$ to investigate the role of |
1385 |
> |
order in molecular systems on the effectiveness of the pairwise |
1386 |
> |
methods, the 1000K NaCl crystal system was used to investigate the |
1387 |
> |
accuracy of the pairwise summation methods in an ordered system of |
1388 |
> |
charged particles. The results for the energy gap comparisons and the |
1389 |
> |
force vector magnitude comparisons are shown in table \ref{tab:salt}. |
1390 |
> |
The force vector directionality results are displayed separately in |
1391 |
> |
table \ref{tab:saltAng}. |
1392 |
> |
|
1393 |
> |
\begin{table}[htbp] |
1394 |
> |
\centering |
1395 |
> |
\caption{REGRESSION RESULTS OF THE CRYSTALLINE SODIUM CHLORIDE |
1396 |
> |
SYSTEM FOR $\Delta E$ VALUES ({\it upper}) AND FORCE VECTOR MAGNITUDES |
1397 |
> |
({\it lower})} |
1398 |
> |
|
1399 |
> |
\footnotesize |
1400 |
> |
\begin{tabular}{@{} ccrrrrrr @{}} |
1401 |
> |
\\ |
1402 |
> |
\toprule |
1403 |
> |
\toprule |
1404 |
> |
& & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\ |
1405 |
> |
\cmidrule(lr){3-4} |
1406 |
> |
\cmidrule(lr){5-6} |
1407 |
> |
\cmidrule(l){7-8} |
1408 |
> |
Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ |
1409 |
> |
\midrule |
1410 |
> |
PC & & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\ |
1411 |
> |
SP & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\ |
1412 |
> |
& 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\ |
1413 |
> |
& 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\ |
1414 |
> |
& 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\ |
1415 |
> |
SF & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\ |
1416 |
> |
& 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\ |
1417 |
> |
& 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\ |
1418 |
> |
& 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\ |
1419 |
> |
\midrule |
1420 |
> |
PC & & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\ |
1421 |
> |
SP & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\ |
1422 |
> |
& 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\ |
1423 |
> |
& 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\ |
1424 |
> |
& 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\ |
1425 |
> |
SF & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\ |
1426 |
> |
& 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\ |
1427 |
> |
& 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\ |
1428 |
> |
& 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\ |
1429 |
> |
\bottomrule |
1430 |
> |
\end{tabular} |
1431 |
> |
\label{tab:salt} |
1432 |
> |
\end{table} |
1433 |
> |
|
1434 |
> |
\begin{table}[htbp] |
1435 |
> |
\centering |
1436 |
> |
\caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR |
1437 |
> |
DISTRIBUTIONS OF THE FORCE VECTORS IN THE CRYSTALLINE SODIUM CHLORIDE |
1438 |
> |
SYSTEM} |
1439 |
> |
|
1440 |
> |
\footnotesize |
1441 |
> |
\begin{tabular}{@{} ccrrrrrr @{}} |
1442 |
> |
\\ |
1443 |
> |
\toprule |
1444 |
> |
\toprule |
1445 |
> |
& & \multicolumn{3}{c}{Force $\sigma^2$} \\ |
1446 |
> |
\cmidrule(lr){3-5} |
1447 |
> |
\cmidrule(l){6-8} |
1448 |
> |
Method & $\alpha$ & 9\AA & 12\AA & 15\AA \\ |
1449 |
> |
\midrule |
1450 |
> |
PC & & 111.945 & 111.824 & 111.866 \\ |
1451 |
> |
SP & 0.0 & 112.414 & 152.215 & 38.087 \\ |
1452 |
> |
& 0.1 & 52.361 & 42.574 & 2.819 \\ |
1453 |
> |
& 0.2 & 10.847 & 9.709 & 9.686 \\ |
1454 |
> |
& 0.3 & 31.128 & 31.104 & 31.029 \\ |
1455 |
> |
SF & 0.0 & 10.025 & 3.555 & 1.648 \\ |
1456 |
> |
& 0.1 & 9.462 & 3.303 & 1.721 \\ |
1457 |
> |
& 0.2 & 11.454 & 9.813 & 9.701 \\ |
1458 |
> |
& 0.3 & 31.120 & 31.105 & 31.029 \\ |
1459 |
> |
\bottomrule |
1460 |
> |
\end{tabular} |
1461 |
> |
\label{tab:saltAng} |
1462 |
> |
\end{table} |
1463 |
|
|
1464 |
+ |
The crystalline NaCl system is the most challenging test case for the |
1465 |
+ |
pairwise summation methods, as evidenced by the results in tables |
1466 |
+ |
\ref{tab:salt} and \ref{tab:saltAng}. The undamped and weakly damped |
1467 |
+ |
{\sc sf} methods seem to be the best choices. These methods match well |
1468 |
+ |
with {\sc spme} across the energy gap, force magnitude, and force |
1469 |
+ |
directionality tests. The {\sc sp} method struggles in all cases, |
1470 |
+ |
with the exception of good dynamics reproduction when using weak |
1471 |
+ |
electrostatic damping with a large cutoff radius. |
1472 |
+ |
|
1473 |
+ |
The moderate electrostatic damping case is not as good as we would |
1474 |
+ |
expect given the long-time dynamics results observed for this system |
1475 |
+ |
(see section \ref{sec:LongTimeDynamics}). Since the data tabulated in |
1476 |
+ |
tables \ref{tab:salt} and \ref{tab:saltAng} are a test of |
1477 |
+ |
instantaneous dynamics, this indicates that good long-time dynamics |
1478 |
+ |
comes in part at the expense of short-time dynamics. |
1479 |
+ |
|
1480 |
+ |
\subsection{0.11M NaCl Solution Results} |
1481 |
+ |
|
1482 |
+ |
In an effort to bridge the charged atomic and neutral molecular |
1483 |
+ |
systems, Na$^+$ and Cl$^-$ ion charge defects were incorporated into |
1484 |
+ |
the liquid water system. This low ionic strength system consists of 4 |
1485 |
+ |
ions in the 1000 SPC/E water solvent ($\approx$0.11 M). The results |
1486 |
+ |
for the energy gap comparisons and the force and torque vector |
1487 |
+ |
magnitude comparisons are shown in table \ref{tab:solnWeak}. The |
1488 |
+ |
force and torque vector directionality results are displayed |
1489 |
+ |
separately in table \ref{tab:solnWeakAng}, where the effect of |
1490 |
+ |
group-based cutoffs and switching functions on the {\sc sp} and {\sc |
1491 |
+ |
sf} potentials are investigated. |
1492 |
+ |
|
1493 |
+ |
\begin{table}[htbp] |
1494 |
+ |
\centering |
1495 |
+ |
\caption{REGRESSION RESULTS OF THE WEAK SODIUM CHLORIDE SOLUTION |
1496 |
+ |
SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES |
1497 |
+ |
({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})} |
1498 |
+ |
|
1499 |
+ |
\footnotesize |
1500 |
+ |
\begin{tabular}{@{} ccrrrrrr @{}} |
1501 |
+ |
\\ |
1502 |
+ |
\toprule |
1503 |
+ |
\toprule |
1504 |
+ |
& & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\ |
1505 |
+ |
\cmidrule(lr){3-4} |
1506 |
+ |
\cmidrule(lr){5-6} |
1507 |
+ |
\cmidrule(l){7-8} |
1508 |
+ |
Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ |
1509 |
+ |
\midrule |
1510 |
+ |
PC & & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\ |
1511 |
+ |
SP & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\ |
1512 |
+ |
& 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\ |
1513 |
+ |
& 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\ |
1514 |
+ |
& 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\ |
1515 |
+ |
SF & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\ |
1516 |
+ |
& 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\ |
1517 |
+ |
& 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\ |
1518 |
+ |
& 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\ |
1519 |
+ |
GSC & & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\ |
1520 |
+ |
RF & & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\ |
1521 |
+ |
\midrule |
1522 |
+ |
PC & & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\ |
1523 |
+ |
SP & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\ |
1524 |
+ |
& 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\ |
1525 |
+ |
& 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\ |
1526 |
+ |
& 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\ |
1527 |
+ |
SF & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\ |
1528 |
+ |
& 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\ |
1529 |
+ |
& 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\ |
1530 |
+ |
& 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\ |
1531 |
+ |
GSC & & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\ |
1532 |
+ |
RF & & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\ |
1533 |
+ |
\midrule |
1534 |
+ |
PC & & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\ |
1535 |
+ |
SP & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\ |
1536 |
+ |
& 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\ |
1537 |
+ |
& 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\ |
1538 |
+ |
& 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\ |
1539 |
+ |
SF & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\ |
1540 |
+ |
& 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\ |
1541 |
+ |
& 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\ |
1542 |
+ |
& 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\ |
1543 |
+ |
GSC & & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\ |
1544 |
+ |
RF & & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\ |
1545 |
+ |
\bottomrule |
1546 |
+ |
\end{tabular} |
1547 |
+ |
\label{tab:solnWeak} |
1548 |
+ |
\end{table} |
1549 |
+ |
|
1550 |
+ |
\begin{table}[htbp] |
1551 |
+ |
\centering |
1552 |
+ |
\caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR |
1553 |
+ |
DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE WEAK SODIUM |
1554 |
+ |
CHLORIDE SOLUTION SYSTEM} |
1555 |
+ |
|
1556 |
+ |
\footnotesize |
1557 |
+ |
\begin{tabular}{@{} ccrrrrrr @{}} |
1558 |
+ |
\\ |
1559 |
+ |
\toprule |
1560 |
+ |
\toprule |
1561 |
+ |
& & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\ |
1562 |
+ |
\cmidrule(lr){3-5} |
1563 |
+ |
\cmidrule(l){6-8} |
1564 |
+ |
Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\ |
1565 |
+ |
\midrule |
1566 |
+ |
PC & & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\ |
1567 |
+ |
SP & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\ |
1568 |
+ |
& 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\ |
1569 |
+ |
& 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\ |
1570 |
+ |
& 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\ |
1571 |
+ |
SF & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\ |
1572 |
+ |
& 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\ |
1573 |
+ |
& 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\ |
1574 |
+ |
& 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\ |
1575 |
+ |
GSC & & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\ |
1576 |
+ |
RF & & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\ |
1577 |
+ |
\midrule |
1578 |
+ |
GSSP & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\ |
1579 |
+ |
& 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\ |
1580 |
+ |
& 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\ |
1581 |
+ |
& 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\ |
1582 |
+ |
GSSF & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\ |
1583 |
+ |
& 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\ |
1584 |
+ |
& 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\ |
1585 |
+ |
& 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\ |
1586 |
+ |
\bottomrule |
1587 |
+ |
\end{tabular} |
1588 |
+ |
\label{tab:solnWeakAng} |
1589 |
+ |
\end{table} |
1590 |
+ |
|
1591 |
+ |
Because this system is a perturbation of the pure liquid water system, |
1592 |
+ |
comparisons are best drawn between these two sets. The {\sc sp} and |
1593 |
+ |
{\sc sf} methods are not significantly affected by the inclusion of a |
1594 |
+ |
few ions. The aspect of cutoff sphere neutralization aids in the |
1595 |
+ |
smooth incorporation of these ions; thus, all of the observations |
1596 |
+ |
regarding these methods carry over from section |
1597 |
+ |
\ref{sec:WaterResults}. The differences between these systems are more |
1598 |
+ |
visible for the {\sc rf} method. Though good force agreement is still |
1599 |
+ |
maintained, the energy gaps show a significant increase in the scatter |
1600 |
+ |
of the data. |
1601 |
+ |
|
1602 |
+ |
\subsection{1.1M NaCl Solution Results} |
1603 |
+ |
|
1604 |
+ |
The bridging of the charged atomic and neutral molecular systems was |
1605 |
+ |
further developed by considering a high ionic strength system |
1606 |
+ |
consisting of 40 ions in the 1000 SPC/E water solvent ($\approx$1.1 |
1607 |
+ |
M). The results for the energy gap comparisons and the force and |
1608 |
+ |
torque vector magnitude comparisons are shown in table |
1609 |
+ |
\ref{tab:solnStr}. The force and torque vector directionality |
1610 |
+ |
results are displayed separately in table \ref{tab:solnStrAng}, where |
1611 |
+ |
the effect of group-based cutoffs and switching functions on the {\sc |
1612 |
+ |
sp} and {\sc sf} potentials are investigated. |
1613 |
+ |
|
1614 |
+ |
\begin{table}[htbp] |
1615 |
+ |
\centering |
1616 |
+ |
\caption{REGRESSION RESULTS OF THE STRONG SODIUM CHLORIDE SOLUTION |
1617 |
+ |
SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES |
1618 |
+ |
({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})} |
1619 |
+ |
|
1620 |
+ |
\footnotesize |
1621 |
+ |
\begin{tabular}{@{} ccrrrrrr @{}} |
1622 |
+ |
\\ |
1623 |
+ |
\toprule |
1624 |
+ |
\toprule |
1625 |
+ |
& & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\ |
1626 |
+ |
\cmidrule(lr){3-4} |
1627 |
+ |
\cmidrule(lr){5-6} |
1628 |
+ |
\cmidrule(l){7-8} |
1629 |
+ |
Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ |
1630 |
+ |
\midrule |
1631 |
+ |
PC & & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\ |
1632 |
+ |
SP & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\ |
1633 |
+ |
& 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\ |
1634 |
+ |
& 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\ |
1635 |
+ |
& 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\ |
1636 |
+ |
SF & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\ |
1637 |
+ |
& 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\ |
1638 |
+ |
& 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\ |
1639 |
+ |
& 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\ |
1640 |
+ |
GSC & & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\ |
1641 |
+ |
RF & & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\ |
1642 |
+ |
\midrule |
1643 |
+ |
PC & & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\ |
1644 |
+ |
SP & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\ |
1645 |
+ |
& 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\ |
1646 |
+ |
& 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\ |
1647 |
+ |
& 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\ |
1648 |
+ |
SF & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\ |
1649 |
+ |
& 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\ |
1650 |
+ |
& 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\ |
1651 |
+ |
& 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\ |
1652 |
+ |
GSC & & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\ |
1653 |
+ |
RF & & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\ |
1654 |
+ |
\midrule |
1655 |
+ |
PC & & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\ |
1656 |
+ |
SP & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\ |
1657 |
+ |
& 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\ |
1658 |
+ |
& 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\ |
1659 |
+ |
& 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\ |
1660 |
+ |
SF & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\ |
1661 |
+ |
& 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\ |
1662 |
+ |
& 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\ |
1663 |
+ |
& 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\ |
1664 |
+ |
GSC & & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\ |
1665 |
+ |
RF & & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\ |
1666 |
+ |
\bottomrule |
1667 |
+ |
\end{tabular} |
1668 |
+ |
\label{tab:solnStr} |
1669 |
+ |
\end{table} |
1670 |
+ |
|
1671 |
+ |
\begin{table}[htbp] |
1672 |
+ |
\centering |
1673 |
+ |
\caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS |
1674 |
+ |
OF THE FORCE AND TORQUE VECTORS IN THE STRONG SODIUM CHLORIDE SOLUTION |
1675 |
+ |
SYSTEM} |
1676 |
+ |
|
1677 |
+ |
\footnotesize |
1678 |
+ |
\begin{tabular}{@{} ccrrrrrr @{}} |
1679 |
+ |
\\ |
1680 |
+ |
\toprule |
1681 |
+ |
\toprule |
1682 |
+ |
& & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\ |
1683 |
+ |
\cmidrule(lr){3-5} |
1684 |
+ |
\cmidrule(l){6-8} |
1685 |
+ |
Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\ |
1686 |
+ |
\midrule |
1687 |
+ |
PC & & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\ |
1688 |
+ |
SP & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\ |
1689 |
+ |
& 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\ |
1690 |
+ |
& 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\ |
1691 |
+ |
& 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\ |
1692 |
+ |
SF & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\ |
1693 |
+ |
& 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\ |
1694 |
+ |
& 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\ |
1695 |
+ |
& 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\ |
1696 |
+ |
GSC & & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\ |
1697 |
+ |
RF & & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\ |
1698 |
+ |
\midrule |
1699 |
+ |
GSSP & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\ |
1700 |
+ |
& 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\ |
1701 |
+ |
& 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\ |
1702 |
+ |
& 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\ |
1703 |
+ |
GSSF & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\ |
1704 |
+ |
& 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\ |
1705 |
+ |
& 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\ |
1706 |
+ |
& 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\ |
1707 |
+ |
\bottomrule |
1708 |
+ |
\end{tabular} |
1709 |
+ |
\label{tab:solnStrAng} |
1710 |
+ |
\end{table} |
1711 |
+ |
|
1712 |
+ |
The {\sc rf} method struggles with the jump in ionic strength. The |
1713 |
+ |
configuration energy differences degrade to unusable levels while the |
1714 |
+ |
forces and torques show a more modest reduction in the agreement with |
1715 |
+ |
{\sc spme}. The {\sc rf} method was designed for homogeneous systems, |
1716 |
+ |
and this attribute is apparent in these results. |
1717 |
+ |
|
1718 |
+ |
The {\sc sp} and {\sc sf} methods require larger cutoffs to maintain |
1719 |
+ |
their agreement with {\sc spme}. With these results, we still |
1720 |
+ |
recommend undamped to moderate damping for the {\sc sf} method and |
1721 |
+ |
moderate damping for the {\sc sp} method, both with cutoffs greater |
1722 |
+ |
than 12\AA. |
1723 |
+ |
|
1724 |
|
\subsection{6\AA\ Argon Sphere in SPC/E Water Results} |
1725 |
|
|
1726 |
< |
\section{Short-Time Dynamics: Velocity Autocorrelation Functions of NaCl Crystals} |
1726 |
> |
The final model system studied was a 6\AA\ sphere of Argon solvated |
1727 |
> |
by SPC/E water. This serves as a test case of a specifically sized |
1728 |
> |
electrostatic defect in a disordered molecular system. The results for |
1729 |
> |
the energy gap comparisons and the force and torque vector magnitude |
1730 |
> |
comparisons are shown in table \ref{tab:argon}. The force and torque |
1731 |
> |
vector directionality results are displayed separately in table |
1732 |
> |
\ref{tab:argonAng}, where the effect of group-based cutoffs and |
1733 |
> |
switching functions on the {\sc sp} and {\sc sf} potentials are |
1734 |
> |
investigated. |
1735 |
|
|
1736 |
+ |
\begin{table}[htbp] |
1737 |
+ |
\centering |
1738 |
+ |
\caption{REGRESSION RESULTS OF THE 6\AA\ ARGON SPHERE IN LIQUID |
1739 |
+ |
WATER SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR |
1740 |
+ |
MAGNITUDES ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})} |
1741 |
+ |
|
1742 |
+ |
\footnotesize |
1743 |
+ |
\begin{tabular}{@{} ccrrrrrr @{}} |
1744 |
+ |
\\ |
1745 |
+ |
\toprule |
1746 |
+ |
\toprule |
1747 |
+ |
& & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\ |
1748 |
+ |
\cmidrule(lr){3-4} |
1749 |
+ |
\cmidrule(lr){5-6} |
1750 |
+ |
\cmidrule(l){7-8} |
1751 |
+ |
Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\ |
1752 |
+ |
\midrule |
1753 |
+ |
PC & & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\ |
1754 |
+ |
SP & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\ |
1755 |
+ |
& 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\ |
1756 |
+ |
& 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\ |
1757 |
+ |
& 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\ |
1758 |
+ |
SF & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\ |
1759 |
+ |
& 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\ |
1760 |
+ |
& 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\ |
1761 |
+ |
& 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\ |
1762 |
+ |
GSC & & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\ |
1763 |
+ |
RF & & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\ |
1764 |
+ |
\midrule |
1765 |
+ |
PC & & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\ |
1766 |
+ |
SP & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\ |
1767 |
+ |
& 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\ |
1768 |
+ |
& 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\ |
1769 |
+ |
& 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\ |
1770 |
+ |
SF & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\ |
1771 |
+ |
& 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\ |
1772 |
+ |
& 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\ |
1773 |
+ |
& 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\ |
1774 |
+ |
GSC & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\ |
1775 |
+ |
RF & & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\ |
1776 |
+ |
\midrule |
1777 |
+ |
PC & & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\ |
1778 |
+ |
SP & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\ |
1779 |
+ |
& 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\ |
1780 |
+ |
& 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\ |
1781 |
+ |
& 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\ |
1782 |
+ |
SF & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\ |
1783 |
+ |
& 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\ |
1784 |
+ |
& 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\ |
1785 |
+ |
& 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\ |
1786 |
+ |
GSC & & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\ |
1787 |
+ |
RF & & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\ |
1788 |
+ |
\bottomrule |
1789 |
+ |
\end{tabular} |
1790 |
+ |
\label{tab:argon} |
1791 |
+ |
\end{table} |
1792 |
+ |
|
1793 |
+ |
\begin{table}[htbp] |
1794 |
+ |
\centering |
1795 |
+ |
\caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR |
1796 |
+ |
DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE 6\AA\ SPHERE OF |
1797 |
+ |
ARGON IN LIQUID WATER SYSTEM} |
1798 |
+ |
|
1799 |
+ |
\footnotesize |
1800 |
+ |
\begin{tabular}{@{} ccrrrrrr @{}} |
1801 |
+ |
\\ |
1802 |
+ |
\toprule |
1803 |
+ |
\toprule |
1804 |
+ |
& & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\ |
1805 |
+ |
\cmidrule(lr){3-5} |
1806 |
+ |
\cmidrule(l){6-8} |
1807 |
+ |
Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\ |
1808 |
+ |
\midrule |
1809 |
+ |
PC & & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\ |
1810 |
+ |
SP & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\ |
1811 |
+ |
& 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\ |
1812 |
+ |
& 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\ |
1813 |
+ |
& 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\ |
1814 |
+ |
SF & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\ |
1815 |
+ |
& 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\ |
1816 |
+ |
& 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\ |
1817 |
+ |
& 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\ |
1818 |
+ |
GSC & & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\ |
1819 |
+ |
RF & & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\ |
1820 |
+ |
\midrule |
1821 |
+ |
GSSP & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\ |
1822 |
+ |
& 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\ |
1823 |
+ |
& 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\ |
1824 |
+ |
& 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\ |
1825 |
+ |
GSSF & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\ |
1826 |
+ |
& 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\ |
1827 |
+ |
& 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\ |
1828 |
+ |
& 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\ |
1829 |
+ |
\bottomrule |
1830 |
+ |
\end{tabular} |
1831 |
+ |
\label{tab:argonAng} |
1832 |
+ |
\end{table} |
1833 |
+ |
|
1834 |
+ |
This system does not appear to show any significant deviations from |
1835 |
+ |
the previously observed results. The {\sc sp} and {\sc sf} methods |
1836 |
+ |
have aggrements similar to those observed in section |
1837 |
+ |
\ref{sec:WaterResults}. The only significant difference is the |
1838 |
+ |
improvement in the configuration energy differences for the {\sc rf} |
1839 |
+ |
method. This is surprising in that we are introducing an inhomogeneity |
1840 |
+ |
to the system; however, this inhomogeneity is charge-neutral and does |
1841 |
+ |
not result in charged cutoff spheres. The charge-neutrality of the |
1842 |
+ |
cutoff spheres, which the {\sc sp} and {\sc sf} methods explicitly |
1843 |
+ |
enforce, seems to play a greater role in the stability of the {\sc rf} |
1844 |
+ |
method than the required homogeneity of the environment. |
1845 |
+ |
|
1846 |
+ |
|
1847 |
+ |
\section{Short-Time Dynamics: Velocity Autocorrelation Functions of NaCl Crystals}\label{sec:ShortTimeDynamics} |
1848 |
+ |
|
1849 |
|
Zahn {\it et al.} investigated the structure and dynamics of water |
1850 |
|
using eqs. (\ref{eq:ZahnPot}) and |
1851 |
|
(\ref{eq:WolfForces}).\cite{Zahn02,Kast03} Their results indicated |
1871 |
|
\centering |
1872 |
|
\includegraphics[width = \linewidth]{./figures/vCorrPlot.pdf} |
1873 |
|
\caption{Velocity autocorrelation functions of NaCl crystals at |
1874 |
< |
1000K using {\sc spme}, {\sc sf} ($\alpha$ = 0.0, 0.1, \& 0.2), and {\sc |
1875 |
< |
sp} ($\alpha$ = 0.2). The inset is a magnification of the area around |
1876 |
< |
the first minimum. The times to first collision are nearly identical, |
1877 |
< |
but differences can be seen in the peaks and troughs, where the |
1878 |
< |
undamped and weakly damped methods are stiffer than the moderately |
1879 |
< |
damped and {\sc spme} methods.} |
1874 |
> |
1000K using {\sc spme}, {\sc sf} ($\alpha$ = 0.0, 0.1, \& |
1875 |
> |
0.2\AA$^{-1}$), and {\sc sp} ($\alpha$ = 0.2\AA$^{-1}$). The inset is |
1876 |
> |
a magnification of the area around the first minimum. The times to |
1877 |
> |
first collision are nearly identical, but differences can be seen in |
1878 |
> |
the peaks and troughs, where the undamped and weakly damped methods |
1879 |
> |
are stiffer than the moderately damped and {\sc spme} methods.} |
1880 |
|
\label{fig:vCorrPlot} |
1881 |
|
\end{figure} |
1882 |
|
|
1896 |
|
constructed out of the damped electrostatic interaction are less |
1897 |
|
important. |
1898 |
|
|
1899 |
< |
\section{Collective Motion: Power Spectra of NaCl Crystals} |
1899 |
> |
\section{Collective Motion: Power Spectra of NaCl Crystals}\label{sec:LongTimeDynamics} |
1900 |
|
|
1901 |
|
To evaluate how the differences between the methods affect the |
1902 |
|
collective long-time motion, we computed power spectra from long-time |
1912 |
|
\includegraphics[width = \linewidth]{./figures/spectraSquare.pdf} |
1913 |
|
\caption{Power spectra obtained from the velocity auto-correlation |
1914 |
|
functions of NaCl crystals at 1000K while using {\sc spme}, {\sc sf} |
1915 |
< |
($\alpha$ = 0, 0.1, \& 0.2), and {\sc sp} ($\alpha$ = 0.2). The inset |
1916 |
< |
shows the frequency region below 100 cm$^{-1}$ to highlight where the |
1917 |
< |
spectra differ.} |
1915 |
> |
($\alpha$ = 0, 0.1, \& 0.2\AA$^{-1}$), and {\sc sp} ($\alpha$ = |
1916 |
> |
0.2\AA$^{-1}$). The inset shows the frequency region below 100 |
1917 |
> |
cm$^{-1}$ to highlight where the spectra differ.} |
1918 |
|
\label{fig:methodPS} |
1919 |
|
\end{figure} |
1920 |
|
|
1959 |
|
\label{fig:dampInc} |
1960 |
|
\end{figure} |
1961 |
|
|
1962 |
+ |
\section{Synopsis of the Pairwise Method Evaluation}\label{sec:PairwiseSynopsis} |
1963 |
|
|
1964 |
+ |
The above investigation of pairwise electrostatic summation techniques |
1965 |
+ |
shows that there are viable and computationally efficient alternatives |
1966 |
+ |
to the Ewald summation. These methods are derived from the damped and |
1967 |
+ |
cutoff-neutralized Coulombic sum originally proposed by Wolf |
1968 |
+ |
\textit{et al.}\cite{Wolf99} In particular, the {\sc sf} |
1969 |
+ |
method, reformulated above as eqs. (\ref{eq:DSFPot}) and |
1970 |
+ |
(\ref{eq:DSFForces}), shows a remarkable ability to reproduce the |
1971 |
+ |
energetic and dynamic characteristics exhibited by simulations |
1972 |
+ |
employing lattice summation techniques. The cumulative energy |
1973 |
+ |
difference results showed the undamped {\sc sf} and moderately damped |
1974 |
+ |
{\sc sp} methods produced results nearly identical to {\sc spme}. |
1975 |
+ |
Similarly for the dynamic features, the undamped or moderately damped |
1976 |
+ |
{\sc sf} and moderately damped {\sc sp} methods produce force and |
1977 |
+ |
torque vector magnitude and directions very similar to the expected |
1978 |
+ |
values. These results translate into long-time dynamic behavior |
1979 |
+ |
equivalent to that produced in simulations using {\sc spme}. |
1980 |
+ |
|
1981 |
+ |
As in all purely-pairwise cutoff methods, these methods are expected |
1982 |
+ |
to scale approximately {\it linearly} with system size, and they are |
1983 |
+ |
easily parallelizable. This should result in substantial reductions |
1984 |
+ |
in the computational cost of performing large simulations. |
1985 |
+ |
|
1986 |
+ |
Aside from the computational cost benefit, these techniques have |
1987 |
+ |
applicability in situations where the use of the Ewald sum can prove |
1988 |
+ |
problematic. Of greatest interest is their potential use in |
1989 |
+ |
interfacial systems, where the unmodified lattice sum techniques |
1990 |
+ |
artificially accentuate the periodicity of the system in an |
1991 |
+ |
undesirable manner. There have been alterations to the standard Ewald |
1992 |
+ |
techniques, via corrections and reformulations, to compensate for |
1993 |
+ |
these systems; but the pairwise techniques discussed here require no |
1994 |
+ |
modifications, making them natural tools to tackle these problems. |
1995 |
+ |
Additionally, this transferability gives them benefits over other |
1996 |
+ |
pairwise methods, like reaction field, because estimations of physical |
1997 |
+ |
properties (e.g. the dielectric constant) are unnecessary. |
1998 |
+ |
|
1999 |
+ |
If a researcher is using Monte Carlo simulations of large chemical |
2000 |
+ |
systems containing point charges, most structural features will be |
2001 |
+ |
accurately captured using the undamped {\sc sf} method or the {\sc sp} |
2002 |
+ |
method with an electrostatic damping of 0.2\AA$^{-1}$. These methods |
2003 |
+ |
would also be appropriate for molecular dynamics simulations where the |
2004 |
+ |
data of interest is either structural or short-time dynamical |
2005 |
+ |
quantities. For long-time dynamics and collective motions, the safest |
2006 |
+ |
pairwise method we have evaluated is the {\sc sf} method with an |
2007 |
+ |
electrostatic damping between 0.2 and 0.25\AA$^{-1}$. |
2008 |
+ |
|
2009 |
+ |
We are not suggesting that there is any flaw with the Ewald sum; in |
2010 |
+ |
fact, it is the standard by which these simple pairwise sums have been |
2011 |
+ |
judged. However, these results do suggest that in the typical |
2012 |
+ |
simulations performed today, the Ewald summation may no longer be |
2013 |
+ |
required to obtain the level of accuracy most researchers have come to |
2014 |
+ |
expect. |
2015 |
+ |
|
2016 |
+ |
\section{An Application: TIP5P-E Water} |
2017 |
+ |
|
2018 |
+ |
|
2019 |
|
\chapter{\label{chap:water}SIMPLE MODELS FOR WATER} |
2020 |
|
|
2021 |
|
\chapter{\label{chap:ice}PHASE BEHAVIOR OF WATER IN COMPUTER SIMULATIONS} |
2028 |
|
\backmatter |
2029 |
|
|
2030 |
|
\bibliographystyle{ndthesis} |
2031 |
< |
\bibliography{dissertation} |
2031 |
> |
\bibliography{dissertation} |
2032 |
|
|
2033 |
|
\end{document} |
2034 |
|
|