ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/fennellDissertation/dissertation.tex
(Generate patch)

Comparing trunk/fennellDissertation/dissertation.tex (file contents):
Revision 2926 by chrisfen, Mon Jul 3 14:51:28 2006 UTC vs.
Revision 2927 by chrisfen, Sat Jul 8 13:13:27 2006 UTC

# Line 556 | Line 556 | Results and discussion for the individual analysis of
556   differences.
557  
558   Results and discussion for the individual analysis of each of the
559 < system types appear in sections \ref{sec:SystemResults}, while the
559 > system types appear in sections \ref{sec:IndividualResults}, while the
560   cumulative results over all the investigated systems appear below in
561   sections \ref{sec:EnergyResults}.
562  
# Line 721 | Line 721 | respectively.
721   0.3119, and 0.2476\AA$^{-1}$ for cutoff radii of 9, 12, and 15\AA\
722   respectively.
723  
724 < \section{Combined Configuration Energy Difference Results}\label{sec:EnergyResults}
724 > \section{Configuration Energy Difference Results}\label{sec:EnergyResults}
725   In order to evaluate the performance of the pairwise electrostatic
726   summation methods for Monte Carlo (MC) simulations, the energy
727   differences between configurations were compared to the values
# Line 757 | Line 757 | salt and salt solution systems contain non-neutral gro
757   function.\cite{Adams79,Steinbach94,Leach01} However, we do not see
758   significant improvement using the group-switched cutoff because the
759   salt and salt solution systems contain non-neutral groups.  Section
760 < \ref{sec:SystemResults} includes results for systems comprised entirely
760 > \ref{sec:IndividualResults} includes results for systems comprised entirely
761   of neutral groups.
762  
763   For the {\sc sp} method, inclusion of electrostatic damping improves
# Line 780 | Line 780 | those from an unmodified cutoff.
780   systems; although it does provide results that are an improvement over
781   those from an unmodified cutoff.
782  
783 < \section{Magnitude of the Force and Torque Vector Results}
783 > \section{Magnitude of the Force and Torque Vector Results}\label{sec:FTMagResults}
784  
785   Evaluation of pairwise methods for use in Molecular Dynamics
786   simulations requires consideration of effects on the forces and
# Line 856 | Line 856 | performs best of all of the methods on molecular torqu
856   molecular bodies. Therefore it is not surprising that reaction field
857   performs best of all of the methods on molecular torques.
858  
859 < \section{Directionality of the Force and Torque Vector Results}
859 > \section{Directionality of the Force and Torque Vector Results}\label{sec:FTDirResults}
860  
861   It is clearly important that a new electrostatic method can reproduce
862   the magnitudes of the force and torque vectors obtained via the Ewald
# Line 906 | Line 906 | charged bodies, and this observation is investigated f
906   particles in all seven systems, while torque vectors are only
907   available for neutral molecular groups.  Damping is more beneficial to
908   charged bodies, and this observation is investigated further in
909 < section \ref{SystemResults}.
909 > section \ref{IndividualResults}.
910  
911   Although not discussed previously, group based cutoffs can be applied
912   to both the {\sc sp} and {\sc sf} methods.  The group-based cutoffs
# Line 984 | Line 984 | but damping may be unnecessary when using the {\sc sf}
984   observations, empirical damping up to 0.2\AA$^{-1}$ is beneficial,
985   but damping may be unnecessary when using the {\sc sf} method.
986  
987 < \section{Individual System Analysis Results}
987 > \section{Individual System Analysis Results}\label{sec:IndividualResults}
988  
989   The combined results of the previous sections show how the pairwise
990   methods compare to the Ewald summation in the general sense over all
# Line 996 | Line 996 | system basis.
996   vector, and torque vector analyses are presented on an individual
997   system basis.
998  
999 < \subsection{SPC/E Water Results}
999 > \subsection{SPC/E Water Results}\label{sec:WaterResults}
1000 >
1001 > The first system considered was liquid water at 300K using the SPC/E
1002 > model of water.\cite{Berendsen87} The results for the energy gap
1003 > comparisons and the force and torque vector magnitude comparisons are
1004 > shown in table \ref{tab:spce}.  The force and torque vector
1005 > directionality results are displayed separately in table
1006 > \ref{tab:spceAng}, where the effect of group-based cutoffs and
1007 > switching functions on the {\sc sp} and {\sc sf} potentials are also
1008 > investigated.  In all of the individual results table, the method
1009 > abbreviations are as follows:
1010  
1011 < \subsection{SPC/E Ice I$_\textrm{c}$ Results}
1012 <
1013 < \subsection{NaCl Melt Results}
1014 <
1015 < \subsection{NaCl Crystal Results}
1011 > \begin{itemize}
1012 > \item PC = Pure Cutoff,
1013 > \item SP = Shifted Potential,
1014 > \item SF = Shifted Force,
1015 > \item GSC = Group Switched Cutoff,
1016 > \item RF = Reaction Field (where $\varepsilon \approx\infty$),
1017 > \item GSSP = Group Switched Shifted Potential, and
1018 > \item GSSF = Group Switched Shifted Force.
1019 > \end{itemize}
1020  
1021 < \subsection{0.1M NaCl Solution Results}
1021 > \begin{table}[htbp]
1022 > \centering
1023 > \caption{REGRESSION RESULTS OF THE LIQUID WATER SYSTEM FOR THE
1024 > $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES ({\it middle})
1025 > AND TORQUE VECTOR MAGNITUDES ({\it lower})}
1026 >
1027 > \footnotesize
1028 > \begin{tabular}{@{} ccrrrrrr @{}}
1029 > \\
1030 > \toprule
1031 > \toprule
1032 > & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1033 > \cmidrule(lr){3-4}
1034 > \cmidrule(lr){5-6}
1035 > \cmidrule(l){7-8}
1036 > Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1037 > \midrule
1038 > PC  &     & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\
1039 > SP  & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\
1040 >    & 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\
1041 >    & 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\
1042 >    & 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\
1043 > SF  & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\
1044 >    & 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\
1045 >    & 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\
1046 >    & 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\
1047 > GSC &     & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\
1048 > RF  &     & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\                
1049 > \midrule
1050 > PC  &     & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\
1051 > SP  & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\
1052 >    & 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\
1053 >    & 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\
1054 >    & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
1055 > SF  & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\
1056 >    & 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
1057 >    & 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\
1058 >    & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
1059 > GSC &     & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
1060 > RF  &     & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\          
1061 > \midrule
1062 > PC  &     & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\
1063 > SP  & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\
1064 >    & 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\
1065 >    & 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\
1066 >    & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
1067 > SF  & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\
1068 >    & 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\
1069 >    & 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\
1070 >    & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
1071 > GSC &     & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\
1072 > RF  &     & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\
1073 > \bottomrule
1074 > \end{tabular}
1075 > \label{tab:spce}
1076 > \end{table}
1077  
1078 < \subsection{1M NaCl Solution Results}
1078 > \begin{table}[htbp]
1079 > \centering
1080 > \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
1081 > DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE LIQUID WATER
1082 > SYSTEM}
1083 >
1084 > \footnotesize
1085 > \begin{tabular}{@{} ccrrrrrr @{}}
1086 > \\
1087 > \toprule
1088 > \toprule
1089 > & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
1090 > \cmidrule(lr){3-5}
1091 > \cmidrule(l){6-8}
1092 > Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\
1093 > \midrule
1094 > PC  &     & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\
1095 > SP  & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\
1096 >    & 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\
1097 >    & 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\
1098 >    & 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\
1099 > SF  & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\
1100 >    & 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\
1101 >    & 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\
1102 >    & 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\
1103 > GSC &     & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
1104 > RF  &     & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\      
1105 > \midrule
1106 > GSSP  & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
1107 >      & 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\
1108 >      & 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\
1109 >      & 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\
1110 > GSSF  & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\
1111 >      & 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\
1112 >      & 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\
1113 >      & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\
1114 > \bottomrule
1115 > \end{tabular}
1116 > \label{tab:spceAng}
1117 > \end{table}
1118 >
1119 > The water results parallel the combined results seen in sections
1120 > \ref{sec:EnergyResults} through \ref{sec:FTDirResults}.  There is good
1121 > agreement with {\sc spme} in both energetic and dynamic behavior when
1122 > using the {\sc sf} method with and without damping. The {\sc sp}
1123 > method does well with an $\alpha$ around 0.2\AA$^{-1}$, particularly
1124 > with cutoff radii greater than 12\AA. Overdamping the electrostatics
1125 > reduces the agreement between both these methods and {\sc spme}.
1126 >
1127 > The pure cutoff ({\sc pc}) method performs poorly, again mirroring the
1128 > observations from the combined results.  In contrast to these results, however, the use of a switching function and group
1129 > based cutoffs greatly improves the results for these neutral water
1130 > molecules.  The group switched cutoff ({\sc gsc}) does not mimic the
1131 > energetics of {\sc spme} as well as the {\sc sp} (with moderate
1132 > damping) and {\sc sf} methods, but the dynamics are quite good.  The
1133 > switching functions correct discontinuities in the potential and
1134 > forces, leading to these improved results.  Such improvements with the
1135 > use of a switching function have been recognized in previous
1136 > studies,\cite{Andrea83,Steinbach94} and this proves to be a useful
1137 > tactic for stably incorporating local area electrostatic effects.
1138 >
1139 > The reaction field ({\sc rf}) method simply extends upon the results
1140 > observed in the {\sc gsc} case.  Both methods are similar in form
1141 > (i.e. neutral groups, switching function), but {\sc rf} incorporates
1142 > an added effect from the external dielectric. This similarity
1143 > translates into the same good dynamic results and improved energetic
1144 > agreement with {\sc spme}.  Though this agreement is not to the level
1145 > of the moderately damped {\sc sp} and {\sc sf} methods, these results
1146 > show how incorporating some implicit properties of the surroundings
1147 > (i.e. $\epsilon_\textrm{S}$) can improve the solvent depiction.
1148 >
1149 > As a final note for the liquid water system, use of group cutoffs and a
1150 > switching function leads to noticeable improvements in the {\sc sp}
1151 > and {\sc sf} methods, primarily in directionality of the force and
1152 > torque vectors (table \ref{tab:spceAng}). The {\sc sp} method shows
1153 > significant narrowing of the angle distribution when using little to
1154 > no damping and only modest improvement for the recommended conditions
1155 > ($\alpha = 0.2$\AA$^{-1}$ and $R_\textrm{c}~\geqslant~12$\AA).  The
1156 > {\sc sf} method shows modest narrowing across all damping and cutoff
1157 > ranges of interest.  When overdamping these methods, group cutoffs and
1158 > the switching function do not improve the force and torque
1159 > directionalities.
1160 >
1161 > \subsection{SPC/E Ice I$_\textrm{c}$ Results}\label{sec:IceResults}
1162 >
1163 > In addition to the disordered molecular system above, the ordered
1164 > molecular system of ice I$_\textrm{c}$ was also considered.  Ice
1165 > polymorph could have been used to fit this role; however, ice
1166 > I$_\textrm{c}$ was chosen because it can form an ideal periodic
1167 > lattice with the same number of water molecules used in the disordered
1168 > liquid state case.  The results for the energy gap comparisons and the
1169 > force and torque vector magnitude comparisons are shown in table
1170 > \ref{tab:ice}.  The force and torque vector directionality results are
1171 > displayed separately in table \ref{tab:iceAng}, where the effect of
1172 > group-based cutoffs and switching functions on the {\sc sp} and {\sc
1173 > sf} potentials are also displayed.
1174 >
1175 > \begin{table}[htbp]
1176 > \centering
1177 > \caption{REGRESSION RESULTS OF THE ICE I$_\textrm{c}$ SYSTEM FOR
1178 > $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES ({\it
1179 > middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
1180 >
1181 > \footnotesize
1182 > \begin{tabular}{@{} ccrrrrrr @{}}
1183 > \\
1184 > \toprule
1185 > \toprule
1186 > & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1187 > \cmidrule(lr){3-4}
1188 > \cmidrule(lr){5-6}
1189 > \cmidrule(l){7-8}
1190 > Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1191 > \midrule
1192 > PC  &     & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\
1193 > SP  & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\
1194 >    & 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\
1195 >    & 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\
1196 >    & 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\
1197 > SF  & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\
1198 >    & 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\
1199 >    & 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\
1200 >    & 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\
1201 > GSC &     & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\
1202 > RF  &     & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\
1203 > \midrule
1204 > PC  &     & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\
1205 > SP  & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\
1206 >    & 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\
1207 >    & 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\
1208 >    & 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\
1209 > SF  & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\
1210 >    & 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\
1211 >    & 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\
1212 >    & 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\
1213 > GSC &     & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\
1214 > RF  &     & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\
1215 > \midrule
1216 > PC  &     & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\
1217 > SP  & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\
1218 >    & 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\
1219 >    & 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\
1220 >    & 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\
1221 > SF  & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\
1222 >    & 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\
1223 >    & 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\
1224 >    & 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\
1225 > GSC &     & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\
1226 > RF  &     & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\
1227 > \bottomrule
1228 > \end{tabular}
1229 > \label{tab:ice}
1230 > \end{table}
1231 >
1232 > \begin{table}[htbp]
1233 > \centering
1234 > \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS
1235 > OF THE FORCE AND TORQUE VECTORS IN THE ICE I$_\textrm{c}$ SYSTEM}      
1236 >
1237 > \footnotesize
1238 > \begin{tabular}{@{} ccrrrrrr @{}}
1239 > \\
1240 > \toprule
1241 > \toprule
1242 > & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque
1243 > $\sigma^2$} \\
1244 > \cmidrule(lr){3-5}
1245 > \cmidrule(l){6-8}
1246 > Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\
1247 > \midrule
1248 > PC  &     & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\
1249 > SP  & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\
1250 >    & 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\
1251 >    & 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\
1252 >    & 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\
1253 > SF  & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\
1254 >    & 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\
1255 >    & 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\
1256 >    & 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\
1257 > GSC &     & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
1258 > RF  &     & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\
1259 > \midrule
1260 > GSSP  & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
1261 >      & 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\
1262 >      & 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\
1263 >      & 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
1264 > GSSF  & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\
1265 >      & 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\
1266 >      & 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\
1267 >      & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
1268 > \bottomrule
1269 > \end{tabular}
1270 > \label{tab:iceAng}
1271 > \end{table}
1272 >
1273 > Highly ordered systems are a difficult test for the pairwise methods
1274 > in that they lack the implicit periodicity of the Ewald summation.  As
1275 > expected, the energy gap agreement with {\sc spme} is reduced for the
1276 > {\sc sp} and {\sc sf} methods with parameters that were ideal for the
1277 > disordered liquid system.  Moving to higher $R_\textrm{c}$ helps
1278 > improve the agreement, though at an increase in computational cost.
1279 > The dynamics of this crystalline system (both in magnitude and
1280 > direction) are little affected. Both methods still reproduce the Ewald
1281 > behavior with the same parameter recommendations from the previous
1282 > section.
1283 >
1284 > It is also worth noting that {\sc rf} exhibits improved energy gap
1285 > results over the liquid water system.  One possible explanation is
1286 > that the ice I$_\textrm{c}$ crystal is ordered such that the net
1287 > dipole moment of the crystal is zero.  With $\epsilon_\textrm{S} =
1288 > \infty$, the reaction field incorporates this structural organization
1289 > by actively enforcing a zeroed dipole moment within each cutoff
1290 > sphere.
1291 >
1292 > \subsection{NaCl Melt Results}\label{sec:SaltMeltResults}
1293 >
1294 > A high temperature NaCl melt was tested to gauge the accuracy of the
1295 > pairwise summation methods in a disordered system of charges. The
1296 > results for the energy gap comparisons and the force vector magnitude
1297 > comparisons are shown in table \ref{tab:melt}.  The force vector
1298 > directionality results are displayed separately in table
1299 > \ref{tab:meltAng}.
1300 >
1301 > \begin{table}[htbp]
1302 > \centering
1303 > \caption{REGRESSION RESULTS OF THE MOLTEN SODIUM CHLORIDE SYSTEM FOR
1304 > $\Delta E$ VALUES ({\it upper}) AND FORCE VECTOR MAGNITUDES ({\it
1305 > lower})}
1306 >
1307 > \footnotesize
1308 > \begin{tabular}{@{} ccrrrrrr @{}}
1309 > \\
1310 > \toprule
1311 > \toprule
1312 > & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1313 > \cmidrule(lr){3-4}
1314 > \cmidrule(lr){5-6}
1315 > \cmidrule(l){7-8}
1316 > Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1317 > \midrule
1318 > PC  &     & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\
1319 > SP  & 0.0 & 0.928 & 0.996 & 0.931 & 0.998 & 0.950 & 0.999 \\
1320 >    & 0.1 & 0.977 & 0.998 & 0.998 & 1.000 & 0.997 & 1.000 \\
1321 >    & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
1322 >    & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
1323 > SF  & 0.0 & 0.996 & 1.000 & 0.995 & 1.000 & 0.997 & 1.000 \\
1324 >    & 0.1 & 1.021 & 1.000 & 1.024 & 1.000 & 1.007 & 1.000 \\
1325 >    & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
1326 >    & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
1327 >            \midrule
1328 > PC  &     & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\
1329 > SP  & 0.0 & 0.973 & 0.981 & 0.975 & 0.988 & 0.979 & 0.992 \\
1330 >    & 0.1 & 0.987 & 0.992 & 0.993 & 0.998 & 0.997 & 0.999 \\
1331 >    & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
1332 >    & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
1333 > SF  & 0.0 & 0.996 & 0.997 & 0.997 & 0.999 & 0.998 & 1.000 \\
1334 >    & 0.1 & 1.000 & 0.997 & 1.001 & 0.999 & 1.000 & 1.000 \\
1335 >    & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
1336 >    & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
1337 > \bottomrule
1338 > \end{tabular}
1339 > \label{tab:melt}
1340 > \end{table}
1341 >
1342 > \begin{table}[htbp]
1343 > \centering
1344 > \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS
1345 > OF THE FORCE VECTORS IN THE MOLTEN SODIUM CHLORIDE SYSTEM}      
1346 >
1347 > \footnotesize
1348 > \begin{tabular}{@{} ccrrrrrr @{}}
1349 > \\
1350 > \toprule
1351 > \toprule
1352 > & & \multicolumn{3}{c}{Force $\sigma^2$} \\
1353 > \cmidrule(lr){3-5}
1354 > \cmidrule(l){6-8}
1355 > Method & $\alpha$ & 9\AA & 12\AA & 15\AA \\
1356 > \midrule
1357 > PC  &     & 13.294 & 8.035 & 5.366 \\
1358 > SP  & 0.0 & 13.316 & 8.037 & 5.385 \\
1359 >    & 0.1 & 5.705 & 1.391 & 0.360 \\
1360 >    & 0.2 & 2.415 & 7.534 & 13.927 \\
1361 >    & 0.3 & 23.769 & 67.306 & 57.252 \\
1362 > SF  & 0.0 & 1.693 & 0.603 & 0.256 \\
1363 >    & 0.1 & 1.687 & 0.653 & 0.272 \\
1364 >    & 0.2 & 2.598 & 7.523 & 13.930 \\
1365 >    & 0.3 & 23.734 & 67.305 & 57.252 \\
1366 > \bottomrule
1367 > \end{tabular}
1368 > \label{tab:meltAng}
1369 > \end{table}
1370 >
1371 > The molten NaCl system shows more sensitivity to the electrostatic
1372 > damping than the water systems. The most noticeable point is that the
1373 > undamped {\sc sf} method does very well at replicating the {\sc spme}
1374 > configurational energy differences and forces. Light damping appears
1375 > to minimally improve the dynamics, but this comes with a deterioration
1376 > of the energy gap results. In contrast, this light damping improves
1377 > the {\sc sp} energy gaps and forces. Moderate and heavy electrostatic
1378 > damping reduce the agreement with {\sc spme} for both methods. From
1379 > these observations, the undamped {\sc sf} method is the best choice
1380 > for disordered systems of charges.
1381 >
1382 > \subsection{NaCl Crystal Results}\label{sec:SaltCrystalResults}
1383 >
1384 > Similar to the use of ice I$_\textrm{c}$ to investigate the role of
1385 > order in molecular systems on the effectiveness of the pairwise
1386 > methods, the 1000K NaCl crystal system was used to investigate the
1387 > accuracy of the pairwise summation methods in an ordered system of
1388 > charged particles. The results for the energy gap comparisons and the
1389 > force vector magnitude comparisons are shown in table \ref{tab:salt}.
1390 > The force vector directionality results are displayed separately in
1391 > table \ref{tab:saltAng}.
1392 >
1393 > \begin{table}[htbp]
1394 > \centering
1395 > \caption{REGRESSION RESULTS OF THE CRYSTALLINE SODIUM CHLORIDE
1396 > SYSTEM FOR $\Delta E$ VALUES ({\it upper}) AND FORCE VECTOR MAGNITUDES
1397 > ({\it lower})}
1398 >
1399 > \footnotesize
1400 > \begin{tabular}{@{} ccrrrrrr @{}}
1401 > \\
1402 > \toprule
1403 > \toprule
1404 > & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1405 > \cmidrule(lr){3-4}
1406 > \cmidrule(lr){5-6}
1407 > \cmidrule(l){7-8}
1408 > Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1409 > \midrule
1410 > PC  &     & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\
1411 > SP  & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\
1412 >    & 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\
1413 >    & 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\
1414 >    & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\
1415 > SF  & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\
1416 >    & 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\
1417 >    & 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\
1418 >    & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\
1419 > \midrule
1420 > PC  &     & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\
1421 > SP  & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\
1422 >    & 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\
1423 >    & 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\
1424 >    & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
1425 > SF  & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\
1426 >    & 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\
1427 >    & 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\
1428 >    & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
1429 > \bottomrule
1430 > \end{tabular}
1431 > \label{tab:salt}
1432 > \end{table}
1433 >
1434 > \begin{table}[htbp]
1435 > \centering
1436 > \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
1437 > DISTRIBUTIONS OF THE FORCE VECTORS IN THE CRYSTALLINE SODIUM CHLORIDE
1438 > SYSTEM}
1439 >
1440 > \footnotesize
1441 > \begin{tabular}{@{} ccrrrrrr @{}}
1442 > \\
1443 > \toprule
1444 > \toprule
1445 > & & \multicolumn{3}{c}{Force $\sigma^2$} \\
1446 > \cmidrule(lr){3-5}
1447 > \cmidrule(l){6-8}
1448 > Method & $\alpha$ & 9\AA & 12\AA & 15\AA \\
1449 > \midrule
1450 > PC  &     & 111.945 & 111.824 & 111.866 \\
1451 > SP  & 0.0 & 112.414 & 152.215 & 38.087 \\
1452 >    & 0.1 & 52.361 & 42.574 & 2.819 \\
1453 >    & 0.2 & 10.847 & 9.709 & 9.686 \\
1454 >    & 0.3 & 31.128 & 31.104 & 31.029 \\
1455 > SF  & 0.0 & 10.025 & 3.555 & 1.648 \\
1456 >    & 0.1 & 9.462 & 3.303 & 1.721 \\
1457 >    & 0.2 & 11.454 & 9.813 & 9.701 \\
1458 >    & 0.3 & 31.120 & 31.105 & 31.029 \\
1459 > \bottomrule
1460 > \end{tabular}
1461 > \label{tab:saltAng}
1462 > \end{table}
1463  
1464 + The crystalline NaCl system is the most challenging test case for the
1465 + pairwise summation methods, as evidenced by the results in tables
1466 + \ref{tab:salt} and \ref{tab:saltAng}. The undamped and weakly damped
1467 + {\sc sf} methods seem to be the best choices. These methods match well
1468 + with {\sc spme} across the energy gap, force magnitude, and force
1469 + directionality tests.  The {\sc sp} method struggles in all cases,
1470 + with the exception of good dynamics reproduction when using weak
1471 + electrostatic damping with a large cutoff radius.
1472 +
1473 + The moderate electrostatic damping case is not as good as we would
1474 + expect given the long-time dynamics results observed for this system
1475 + (see section \ref{sec:LongTimeDynamics}). Since the data tabulated in
1476 + tables \ref{tab:salt} and \ref{tab:saltAng} are a test of
1477 + instantaneous dynamics, this indicates that good long-time dynamics
1478 + comes in part at the expense of short-time dynamics.
1479 +
1480 + \subsection{0.11M NaCl Solution Results}
1481 +
1482 + In an effort to bridge the charged atomic and neutral molecular
1483 + systems, Na$^+$ and Cl$^-$ ion charge defects were incorporated into
1484 + the liquid water system. This low ionic strength system consists of 4
1485 + ions in the 1000 SPC/E water solvent ($\approx$0.11 M). The results
1486 + for the energy gap comparisons and the force and torque vector
1487 + magnitude comparisons are shown in table \ref{tab:solnWeak}.  The
1488 + force and torque vector directionality results are displayed
1489 + separately in table \ref{tab:solnWeakAng}, where the effect of
1490 + group-based cutoffs and switching functions on the {\sc sp} and {\sc
1491 + sf} potentials are investigated.
1492 +
1493 + \begin{table}[htbp]
1494 + \centering
1495 + \caption{REGRESSION RESULTS OF THE WEAK SODIUM CHLORIDE SOLUTION
1496 + SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES
1497 + ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
1498 +
1499 + \footnotesize
1500 + \begin{tabular}{@{} ccrrrrrr @{}}
1501 + \\
1502 + \toprule
1503 + \toprule
1504 + & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1505 + \cmidrule(lr){3-4}
1506 + \cmidrule(lr){5-6}
1507 + \cmidrule(l){7-8}
1508 + Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1509 + \midrule
1510 + PC  &     & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\
1511 + SP  & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\
1512 +    & 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\
1513 +    & 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\
1514 +    & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
1515 + SF  & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\
1516 +    & 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\
1517 +    & 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\
1518 +    & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
1519 + GSC &     & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\
1520 + RF  &     & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\
1521 + \midrule
1522 + PC  &     & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\
1523 + SP  & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\
1524 +    & 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\
1525 +    & 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\
1526 +    & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
1527 + SF  & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\
1528 +    & 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\
1529 +    & 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\
1530 +    & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
1531 + GSC &     & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\
1532 + RF  &     & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\
1533 + \midrule
1534 + PC  &     & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\
1535 + SP  & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\
1536 +    & 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\
1537 +    & 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\
1538 +    & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
1539 + SF  & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\
1540 +    & 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\
1541 +    & 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\
1542 +    & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
1543 + GSC &     & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\
1544 + RF  &     & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\
1545 + \bottomrule
1546 + \end{tabular}
1547 + \label{tab:solnWeak}
1548 + \end{table}
1549 +
1550 + \begin{table}[htbp]
1551 + \centering
1552 + \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
1553 + DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE WEAK SODIUM
1554 + CHLORIDE SOLUTION SYSTEM}
1555 +
1556 + \footnotesize
1557 + \begin{tabular}{@{} ccrrrrrr @{}}
1558 + \\
1559 + \toprule
1560 + \toprule
1561 + & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
1562 + \cmidrule(lr){3-5}
1563 + \cmidrule(l){6-8}
1564 + Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\
1565 + \midrule
1566 + PC  &     & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\
1567 + SP  & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\
1568 +    & 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\
1569 +    & 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\
1570 +    & 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\
1571 + SF  & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\
1572 +    & 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\
1573 +    & 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\
1574 +    & 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\
1575 + GSC &     & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
1576 + RF  &     & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\
1577 + \midrule
1578 + GSSP  & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
1579 +      & 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\
1580 +      & 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\
1581 +      & 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\
1582 + GSSF  & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\
1583 +      & 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\
1584 +      & 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\
1585 +      & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\
1586 + \bottomrule
1587 + \end{tabular}
1588 + \label{tab:solnWeakAng}
1589 + \end{table}
1590 +
1591 + Because this system is a perturbation of the pure liquid water system,
1592 + comparisons are best drawn between these two sets. The {\sc sp} and
1593 + {\sc sf} methods are not significantly affected by the inclusion of a
1594 + few ions. The aspect of cutoff sphere neutralization aids in the
1595 + smooth incorporation of these ions; thus, all of the observations
1596 + regarding these methods carry over from section
1597 + \ref{sec:WaterResults}. The differences between these systems are more
1598 + visible for the {\sc rf} method. Though good force agreement is still
1599 + maintained, the energy gaps show a significant increase in the scatter
1600 + of the data.
1601 +
1602 + \subsection{1.1M NaCl Solution Results}
1603 +
1604 + The bridging of the charged atomic and neutral molecular systems was
1605 + further developed by considering a high ionic strength system
1606 + consisting of 40 ions in the 1000 SPC/E water solvent ($\approx$1.1
1607 + M). The results for the energy gap comparisons and the force and
1608 + torque vector magnitude comparisons are shown in table
1609 + \ref{tab:solnStr}.  The force and torque vector directionality
1610 + results are displayed separately in table \ref{tab:solnStrAng}, where
1611 + the effect of group-based cutoffs and switching functions on the {\sc
1612 + sp} and {\sc sf} potentials are investigated.
1613 +
1614 + \begin{table}[htbp]
1615 + \centering
1616 + \caption{REGRESSION RESULTS OF THE STRONG SODIUM CHLORIDE SOLUTION
1617 + SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES
1618 + ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
1619 +
1620 + \footnotesize
1621 + \begin{tabular}{@{} ccrrrrrr @{}}
1622 + \\
1623 + \toprule
1624 + \toprule
1625 + & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1626 + \cmidrule(lr){3-4}
1627 + \cmidrule(lr){5-6}
1628 + \cmidrule(l){7-8}
1629 + Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1630 + \midrule
1631 + PC  &     & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\
1632 + SP  & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\
1633 +    & 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\
1634 +    & 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\
1635 +    & 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\
1636 + SF  & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\
1637 +    & 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\
1638 +    & 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\
1639 +    & 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\
1640 + GSC &     & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\
1641 + RF  &     & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\
1642 + \midrule
1643 + PC  &     & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\
1644 + SP  & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\
1645 +    & 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\
1646 +    & 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\
1647 +    & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
1648 + SF  & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\
1649 +    & 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\
1650 +    & 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\
1651 +    & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
1652 + GSC &     & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\
1653 + RF  &     & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\
1654 + \midrule
1655 + PC  &     & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\
1656 + SP  & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\
1657 +    & 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\
1658 +    & 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\
1659 +    & 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\
1660 + SF  & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\
1661 +    & 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\
1662 +    & 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\
1663 +    & 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\
1664 + GSC &     & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\
1665 + RF  &     & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\
1666 + \bottomrule
1667 + \end{tabular}
1668 + \label{tab:solnStr}
1669 + \end{table}
1670 +
1671 + \begin{table}[htbp]
1672 + \centering
1673 + \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS
1674 + OF THE FORCE AND TORQUE VECTORS IN THE STRONG SODIUM CHLORIDE SOLUTION
1675 + SYSTEM}
1676 +
1677 + \footnotesize
1678 + \begin{tabular}{@{} ccrrrrrr @{}}
1679 + \\
1680 + \toprule
1681 + \toprule
1682 + & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
1683 + \cmidrule(lr){3-5}
1684 + \cmidrule(l){6-8}
1685 + Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\
1686 + \midrule
1687 + PC  &     & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\
1688 + SP  & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\
1689 +    & 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\
1690 +    & 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\
1691 +    & 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\
1692 + SF  & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\
1693 +    & 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\
1694 +    & 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\
1695 +    & 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\
1696 + GSC &     & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\
1697 + RF  &     & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\
1698 + \midrule
1699 + GSSP  & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\
1700 +      & 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\
1701 +      & 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\
1702 +      & 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\
1703 + GSSF  & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\
1704 +      & 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\
1705 +      & 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\
1706 +      & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\
1707 + \bottomrule
1708 + \end{tabular}
1709 + \label{tab:solnStrAng}
1710 + \end{table}
1711 +
1712 + The {\sc rf} method struggles with the jump in ionic strength. The
1713 + configuration energy differences degrade to unusable levels while the
1714 + forces and torques show a more modest reduction in the agreement with
1715 + {\sc spme}. The {\sc rf} method was designed for homogeneous systems,
1716 + and this attribute is apparent in these results.
1717 +
1718 + The {\sc sp} and {\sc sf} methods require larger cutoffs to maintain
1719 + their agreement with {\sc spme}. With these results, we still
1720 + recommend undamped to moderate damping for the {\sc sf} method and
1721 + moderate damping for the {\sc sp} method, both with cutoffs greater
1722 + than 12\AA.
1723 +
1724   \subsection{6\AA\ Argon Sphere in SPC/E Water Results}
1725  
1726 < \section{Short-Time Dynamics: Velocity Autocorrelation Functions of NaCl Crystals}
1726 > The final model system studied was a 6\AA\ sphere of Argon solvated
1727 > by SPC/E water. This serves as a test case of a specifically sized
1728 > electrostatic defect in a disordered molecular system. The results for
1729 > the energy gap comparisons and the force and torque vector magnitude
1730 > comparisons are shown in table \ref{tab:argon}.  The force and torque
1731 > vector directionality results are displayed separately in table
1732 > \ref{tab:argonAng}, where the effect of group-based cutoffs and
1733 > switching functions on the {\sc sp} and {\sc sf} potentials are
1734 > investigated.
1735  
1736 + \begin{table}[htbp]
1737 + \centering
1738 + \caption{REGRESSION RESULTS OF THE 6\AA\ ARGON SPHERE IN LIQUID
1739 + WATER SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR
1740 + MAGNITUDES ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
1741 +
1742 + \footnotesize
1743 + \begin{tabular}{@{} ccrrrrrr @{}}
1744 + \\
1745 + \toprule
1746 + \toprule
1747 + & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1748 + \cmidrule(lr){3-4}
1749 + \cmidrule(lr){5-6}
1750 + \cmidrule(l){7-8}
1751 + Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1752 + \midrule
1753 + PC  &     & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\
1754 + SP  & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\
1755 +    & 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\
1756 +    & 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\
1757 +    & 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\
1758 + SF  & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\
1759 +    & 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\
1760 +    & 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\
1761 +    & 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\
1762 + GSC &     & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\
1763 + RF  &     & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\
1764 + \midrule
1765 + PC  &     & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\
1766 + SP  & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\
1767 +    & 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\
1768 +    & 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\
1769 +    & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
1770 + SF  & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
1771 +    & 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
1772 +    & 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
1773 +    & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
1774 + GSC &     & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
1775 + RF  &     & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
1776 + \midrule
1777 + PC  &     & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\
1778 + SP  & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\
1779 +    & 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\
1780 +    & 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\
1781 +    & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
1782 + SF  & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\
1783 +    & 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\
1784 +    & 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\
1785 +    & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
1786 + GSC &     & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\
1787 + RF  &     & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\
1788 + \bottomrule
1789 + \end{tabular}
1790 + \label{tab:argon}
1791 + \end{table}
1792 +
1793 + \begin{table}[htbp]
1794 + \centering
1795 + \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
1796 + DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE 6\AA\ SPHERE OF
1797 + ARGON IN LIQUID WATER SYSTEM}  
1798 +
1799 + \footnotesize
1800 + \begin{tabular}{@{} ccrrrrrr @{}}
1801 + \\
1802 + \toprule
1803 + \toprule
1804 + & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
1805 + \cmidrule(lr){3-5}
1806 + \cmidrule(l){6-8}
1807 + Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\
1808 + \midrule
1809 + PC  &     & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\
1810 + SP  & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\
1811 +    & 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\
1812 +    & 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\
1813 +    & 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\
1814 + SF  & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\
1815 +    & 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\
1816 +    & 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\
1817 +    & 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\
1818 + GSC &     & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
1819 + RF  &     & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\
1820 + \midrule
1821 + GSSP  & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
1822 +      & 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\
1823 +      & 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\
1824 +      & 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\
1825 + GSSF  & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\
1826 +      & 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\
1827 +      & 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\
1828 +      & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\
1829 + \bottomrule
1830 + \end{tabular}
1831 + \label{tab:argonAng}
1832 + \end{table}
1833 +
1834 + This system does not appear to show any significant deviations from
1835 + the previously observed results. The {\sc sp} and {\sc sf} methods
1836 + have aggrements similar to those observed in section
1837 + \ref{sec:WaterResults}. The only significant difference is the
1838 + improvement in the configuration energy differences for the {\sc rf}
1839 + method. This is surprising in that we are introducing an inhomogeneity
1840 + to the system; however, this inhomogeneity is charge-neutral and does
1841 + not result in charged cutoff spheres. The charge-neutrality of the
1842 + cutoff spheres, which the {\sc sp} and {\sc sf} methods explicitly
1843 + enforce, seems to play a greater role in the stability of the {\sc rf}
1844 + method than the required homogeneity of the environment.
1845 +
1846 +
1847 + \section{Short-Time Dynamics: Velocity Autocorrelation Functions of NaCl Crystals}\label{sec:ShortTimeDynamics}
1848 +
1849   Zahn {\it et al.} investigated the structure and dynamics of water
1850   using eqs. (\ref{eq:ZahnPot}) and
1851   (\ref{eq:WolfForces}).\cite{Zahn02,Kast03} Their results indicated
# Line 1037 | Line 1871 | low-frequency portion of the power spectrum.
1871   \centering
1872   \includegraphics[width = \linewidth]{./figures/vCorrPlot.pdf}
1873   \caption{Velocity autocorrelation functions of NaCl crystals at
1874 < 1000K using {\sc spme}, {\sc sf} ($\alpha$ = 0.0, 0.1, \& 0.2), and {\sc
1875 < sp} ($\alpha$ = 0.2). The inset is a magnification of the area around
1876 < the first minimum.  The times to first collision are nearly identical,
1877 < but differences can be seen in the peaks and troughs, where the
1878 < undamped and weakly damped methods are stiffer than the moderately
1879 < damped and {\sc spme} methods.}
1874 > 1000K using {\sc spme}, {\sc sf} ($\alpha$ = 0.0, 0.1, \&
1875 > 0.2\AA$^{-1}$), and {\sc sp} ($\alpha$ = 0.2\AA$^{-1}$). The inset is
1876 > a magnification of the area around the first minimum.  The times to
1877 > first collision are nearly identical, but differences can be seen in
1878 > the peaks and troughs, where the undamped and weakly damped methods
1879 > are stiffer than the moderately damped and {\sc spme} methods.}
1880   \label{fig:vCorrPlot}
1881   \end{figure}
1882  
# Line 1062 | Line 1896 | important.
1896   constructed out of the damped electrostatic interaction are less
1897   important.
1898  
1899 < \section{Collective Motion: Power Spectra of NaCl Crystals}
1899 > \section{Collective Motion: Power Spectra of NaCl Crystals}\label{sec:LongTimeDynamics}
1900  
1901   To evaluate how the differences between the methods affect the
1902   collective long-time motion, we computed power spectra from long-time
# Line 1078 | Line 1912 | functions of NaCl crystals at 1000K while using {\sc s
1912   \includegraphics[width = \linewidth]{./figures/spectraSquare.pdf}
1913   \caption{Power spectra obtained from the velocity auto-correlation
1914   functions of NaCl crystals at 1000K while using {\sc spme}, {\sc sf}
1915 < ($\alpha$ = 0, 0.1, \& 0.2), and {\sc sp} ($\alpha$ = 0.2).  The inset
1916 < shows the frequency region below 100 cm$^{-1}$ to highlight where the
1917 < spectra differ.}
1915 > ($\alpha$ = 0, 0.1, \& 0.2\AA$^{-1}$), and {\sc sp} ($\alpha$ =
1916 > 0.2\AA$^{-1}$).  The inset shows the frequency region below 100
1917 > cm$^{-1}$ to highlight where the spectra differ.}
1918   \label{fig:methodPS}
1919   \end{figure}
1920  
# Line 1125 | Line 1959 | motions.}
1959   \label{fig:dampInc}
1960   \end{figure}
1961  
1962 + \section{Synopsis of the Pairwise Method Evaluation}\label{sec:PairwiseSynopsis}
1963  
1964 + The above investigation of pairwise electrostatic summation techniques
1965 + shows that there are viable and computationally efficient alternatives
1966 + to the Ewald summation.  These methods are derived from the damped and
1967 + cutoff-neutralized Coulombic sum originally proposed by Wolf
1968 + \textit{et al.}\cite{Wolf99} In particular, the {\sc sf}
1969 + method, reformulated above as eqs. (\ref{eq:DSFPot}) and
1970 + (\ref{eq:DSFForces}), shows a remarkable ability to reproduce the
1971 + energetic and dynamic characteristics exhibited by simulations
1972 + employing lattice summation techniques.  The cumulative energy
1973 + difference results showed the undamped {\sc sf} and moderately damped
1974 + {\sc sp} methods produced results nearly identical to {\sc spme}.
1975 + Similarly for the dynamic features, the undamped or moderately damped
1976 + {\sc sf} and moderately damped {\sc sp} methods produce force and
1977 + torque vector magnitude and directions very similar to the expected
1978 + values.  These results translate into long-time dynamic behavior
1979 + equivalent to that produced in simulations using {\sc spme}.
1980 +
1981 + As in all purely-pairwise cutoff methods, these methods are expected
1982 + to scale approximately {\it linearly} with system size, and they are
1983 + easily parallelizable.  This should result in substantial reductions
1984 + in the computational cost of performing large simulations.
1985 +
1986 + Aside from the computational cost benefit, these techniques have
1987 + applicability in situations where the use of the Ewald sum can prove
1988 + problematic.  Of greatest interest is their potential use in
1989 + interfacial systems, where the unmodified lattice sum techniques
1990 + artificially accentuate the periodicity of the system in an
1991 + undesirable manner.  There have been alterations to the standard Ewald
1992 + techniques, via corrections and reformulations, to compensate for
1993 + these systems; but the pairwise techniques discussed here require no
1994 + modifications, making them natural tools to tackle these problems.
1995 + Additionally, this transferability gives them benefits over other
1996 + pairwise methods, like reaction field, because estimations of physical
1997 + properties (e.g. the dielectric constant) are unnecessary.
1998 +
1999 + If a researcher is using Monte Carlo simulations of large chemical
2000 + systems containing point charges, most structural features will be
2001 + accurately captured using the undamped {\sc sf} method or the {\sc sp}
2002 + method with an electrostatic damping of 0.2\AA$^{-1}$.  These methods
2003 + would also be appropriate for molecular dynamics simulations where the
2004 + data of interest is either structural or short-time dynamical
2005 + quantities.  For long-time dynamics and collective motions, the safest
2006 + pairwise method we have evaluated is the {\sc sf} method with an
2007 + electrostatic damping between 0.2 and 0.25\AA$^{-1}$.
2008 +
2009 + We are not suggesting that there is any flaw with the Ewald sum; in
2010 + fact, it is the standard by which these simple pairwise sums have been
2011 + judged.  However, these results do suggest that in the typical
2012 + simulations performed today, the Ewald summation may no longer be
2013 + required to obtain the level of accuracy most researchers have come to
2014 + expect.
2015 +
2016 + \section{An Application: TIP5P-E Water}
2017 +
2018 +
2019   \chapter{\label{chap:water}SIMPLE MODELS FOR WATER}
2020  
2021   \chapter{\label{chap:ice}PHASE BEHAVIOR OF WATER IN COMPUTER SIMULATIONS}
# Line 1138 | Line 2028 | SIMULATIONS}
2028   \backmatter
2029  
2030   \bibliographystyle{ndthesis}
2031 < \bibliography{dissertation}          
2031 > \bibliography{dissertation}  
2032  
2033   \end{document}
2034  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines