ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/fennellDissertation/dissertation.tex
(Generate patch)

Comparing trunk/fennellDissertation/dissertation.tex (file contents):
Revision 2918 by chrisfen, Mon Jul 3 13:55:25 2006 UTC vs.
Revision 2968 by chrisfen, Sat Jul 29 13:10:15 2006 UTC

# Line 1 | Line 1
1 < \documentclass[12pt]{ndthesis}
1 > \documentclass[11pt]{ndthesis}
2  
3   % some packages for things like equations and graphics
4   \usepackage{amsmath,bm}
# Line 7 | Line 7
7   \usepackage{tabularx}
8   \usepackage{graphicx}
9   \usepackage{booktabs}
10 + \usepackage{cite}
11  
12   \begin{document}
13  
# Line 286 | Line 287 | properties obtained using the Ewald sum.
287   structural and dynamic properties of water compared the same
288   properties obtained using the Ewald sum.
289  
290 < \section{Simple Forms for Pairwise Electrostatics}
290 > \section{Simple Forms for Pairwise Electrostatics}\label{sec:PairwiseDerivation}
291  
292   The potentials proposed by Wolf \textit{et al.} and Zahn \textit{et
293   al.} are constructed using two different (and separable) computational
# Line 556 | Line 557 | Results and discussion for the individual analysis of
557   differences.
558  
559   Results and discussion for the individual analysis of each of the
560 < system types appear in sections \ref{sec:SystemResults}, while the
560 > system types appear in sections \ref{sec:IndividualResults}, while the
561   cumulative results over all the investigated systems appear below in
562   sections \ref{sec:EnergyResults}.
563  
# Line 720 | Line 721 | respectively.
721   in all {\sc spme} calculations, resulting in Ewald coefficients of 0.4200,
722   0.3119, and 0.2476\AA$^{-1}$ for cutoff radii of 9, 12, and 15\AA\
723   respectively.
723
724
725 \section{Discussion on the Pairwise Technique Evaluation}
724  
725 < \subsection{Configuration Energy Differences}\label{sec:EnergyResults}
725 > \section{Configuration Energy Difference Results}\label{sec:EnergyResults}
726   In order to evaluate the performance of the pairwise electrostatic
727 < summation methods for Monte Carlo simulations, the energy differences
728 < between configurations were compared to the values obtained when using
729 < {\sc spme}.  The results for the combined regression analysis of all
730 < of the systems are shown in figure \ref{fig:delE}.
727 > summation methods for Monte Carlo (MC) simulations, the energy
728 > differences between configurations were compared to the values
729 > obtained when using {\sc spme}.  The results for the combined
730 > regression analysis of all of the systems are shown in figure
731 > \ref{fig:delE}.
732  
733   \begin{figure}
734   \centering
# Line 759 | Line 758 | salt and salt solution systems contain non-neutral gro
758   function.\cite{Adams79,Steinbach94,Leach01} However, we do not see
759   significant improvement using the group-switched cutoff because the
760   salt and salt solution systems contain non-neutral groups.  Section
761 < \ref{sec:SystemResults} includes results for systems comprised entirely
761 > \ref{sec:IndividualResults} includes results for systems comprised entirely
762   of neutral groups.
763  
764   For the {\sc sp} method, inclusion of electrostatic damping improves
# Line 778 | Line 777 | The reaction field results illustrates some of that me
777   the complementary error function is required).
778  
779   The reaction field results illustrates some of that method's
780 < limitations, primarily that it was developed for use in homogenous
780 > limitations, primarily that it was developed for use in homogeneous
781   systems; although it does provide results that are an improvement over
782   those from an unmodified cutoff.
783  
784 < \sub
784 > \section{Magnitude of the Force and Torque Vector Results}\label{sec:FTMagResults}
785  
787 \subsection{Magnitudes of the Force and Torque Vectors}
788
786   Evaluation of pairwise methods for use in Molecular Dynamics
787   simulations requires consideration of effects on the forces and
788   torques.  Figures \ref{fig:frcMag} and \ref{fig:trqMag} show the
# Line 860 | Line 857 | performs best of all of the methods on molecular torqu
857   molecular bodies. Therefore it is not surprising that reaction field
858   performs best of all of the methods on molecular torques.
859  
860 < \subsection{Directionality of the Force and Torque Vectors}
860 > \section{Directionality of the Force and Torque Vector Results}\label{sec:FTDirResults}
861  
862   It is clearly important that a new electrostatic method can reproduce
863   the magnitudes of the force and torque vectors obtained via the Ewald
# Line 905 | Line 902 | angular behavior significantly for the {\sc sp} and mo
902   all do equivalently well at capturing the direction of both the force
903   and torque vectors.  Using the electrostatic damping improves the
904   angular behavior significantly for the {\sc sp} and moderately for the
905 < {\sc sf} methods.  Overdamping is detrimental to both methods.  Again
905 > {\sc sf} methods.  Over-damping is detrimental to both methods.  Again
906   it is important to recognize that the force vectors cover all
907   particles in all seven systems, while torque vectors are only
908   available for neutral molecular groups.  Damping is more beneficial to
909   charged bodies, and this observation is investigated further in
910 < section \ref{SystemResults}.
910 > section \ref{sec:IndividualResults}.
911  
912   Although not discussed previously, group based cutoffs can be applied
913   to both the {\sc sp} and {\sc sf} methods.  The group-based cutoffs
# Line 975 | Line 972 | the electrostatic interaction as the value of $\alpha$
972   increases, something that is more obvious with group-based cutoffs.
973   The complimentary error function inserted into the potential weakens
974   the electrostatic interaction as the value of $\alpha$ is increased.
975 < However, at larger values of $\alpha$, it is possible to overdamp the
975 > However, at larger values of $\alpha$, it is possible to over-damp the
976   electrostatic interaction and to remove it completely.  Kast
977   \textit{et al.}  developed a method for choosing appropriate $\alpha$
978   values for these types of electrostatic summation methods by fitting
# Line 988 | Line 985 | but damping may be unnecessary when using the {\sc sf}
985   observations, empirical damping up to 0.2\AA$^{-1}$ is beneficial,
986   but damping may be unnecessary when using the {\sc sf} method.
987  
988 < \subsection{Short-Time Dynamics: Velocity Autocorrelation Functions of NaCl Crystals}
988 > \section{Individual System Analysis Results}\label{sec:IndividualResults}
989  
990 + The combined results of the previous sections show how the pairwise
991 + methods compare to the Ewald summation in the general sense over all
992 + of the system types.  It is also useful to consider each of the
993 + studied systems in an individual fashion, so that we can identify
994 + conditions that are particularly difficult for a selected pairwise
995 + method to address. This allows us to further establish the limitations
996 + of these pairwise techniques.  Below, the energy difference, force
997 + vector, and torque vector analyses are presented on an individual
998 + system basis.
999 +
1000 + \subsection{SPC/E Water Results}\label{sec:WaterResults}
1001 +
1002 + The first system considered was liquid water at 300K using the SPC/E
1003 + model of water.\cite{Berendsen87} The results for the energy gap
1004 + comparisons and the force and torque vector magnitude comparisons are
1005 + shown in table \ref{tab:spce}.  The force and torque vector
1006 + directionality results are displayed separately in table
1007 + \ref{tab:spceAng}, where the effect of group-based cutoffs and
1008 + switching functions on the {\sc sp} and {\sc sf} potentials are also
1009 + investigated.  In all of the individual results table, the method
1010 + abbreviations are as follows:
1011 +
1012 + \begin{itemize}
1013 + \item PC = Pure Cutoff,
1014 + \item SP = Shifted Potential,
1015 + \item SF = Shifted Force,
1016 + \item GSC = Group Switched Cutoff,
1017 + \item RF = Reaction Field (where $\varepsilon \approx\infty$),
1018 + \item GSSP = Group Switched Shifted Potential, and
1019 + \item GSSF = Group Switched Shifted Force.
1020 + \end{itemize}
1021 +
1022 + \begin{table}[htbp]
1023 + \centering
1024 + \caption{REGRESSION RESULTS OF THE LIQUID WATER SYSTEM FOR THE
1025 + $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES ({\it middle})
1026 + AND TORQUE VECTOR MAGNITUDES ({\it lower})}
1027 +
1028 + \footnotesize
1029 + \begin{tabular}{@{} ccrrrrrr @{}}
1030 + \\
1031 + \toprule
1032 + \toprule
1033 + & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1034 + \cmidrule(lr){3-4}
1035 + \cmidrule(lr){5-6}
1036 + \cmidrule(l){7-8}
1037 + Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1038 + \midrule
1039 + PC  &     & 3.046 & 0.002 & -3.018 & 0.002 & 4.719 & 0.005 \\
1040 + SP  & 0.0 & 1.035 & 0.218 & 0.908 & 0.313 & 1.037 & 0.470 \\
1041 +    & 0.1 & 1.021 & 0.387 & 0.965 & 0.752 & 1.006 & 0.947 \\
1042 +    & 0.2 & 0.997 & 0.962 & 1.001 & 0.994 & 0.994 & 0.996 \\
1043 +    & 0.3 & 0.984 & 0.980 & 0.997 & 0.985 & 0.982 & 0.987 \\
1044 + SF  & 0.0 & 0.977 & 0.974 & 0.996 & 0.992 & 0.991 & 0.997 \\
1045 +    & 0.1 & 0.983 & 0.974 & 1.001 & 0.994 & 0.996 & 0.998 \\
1046 +    & 0.2 & 0.992 & 0.989 & 1.001 & 0.995 & 0.994 & 0.996 \\
1047 +    & 0.3 & 0.984 & 0.980 & 0.996 & 0.985 & 0.982 & 0.987 \\
1048 + GSC &     & 0.918 & 0.862 & 0.852 & 0.756 & 0.801 & 0.700 \\
1049 + RF  &     & 0.971 & 0.958 & 0.975 & 0.987 & 0.959 & 0.983 \\                
1050 + \midrule
1051 + PC  &     & -1.647 & 0.000 & -0.127 & 0.000 & -0.979 & 0.000 \\
1052 + SP  & 0.0 & 0.735 & 0.368 & 0.813 & 0.537 & 0.865 & 0.659 \\
1053 +    & 0.1 & 0.850 & 0.612 & 0.956 & 0.887 & 0.992 & 0.979 \\
1054 +    & 0.2 & 0.996 & 0.989 & 1.000 & 1.000 & 1.000 & 1.000 \\
1055 +    & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
1056 + SF  & 0.0 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 0.999 \\
1057 +    & 0.1 & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
1058 +    & 0.2 & 0.999 & 0.998 & 1.000 & 1.000 & 1.000 & 1.000 \\
1059 +    & 0.3 & 0.996 & 0.998 & 0.997 & 0.998 & 0.996 & 0.998 \\
1060 + GSC &     & 0.998 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\
1061 + RF  &     & 0.999 & 0.995 & 1.000 & 0.999 & 1.000 & 1.000 \\          
1062 + \midrule
1063 + PC  &     & 2.387 & 0.000 & 0.183 & 0.000 & 1.282 & 0.000 \\
1064 + SP  & 0.0 & 0.847 & 0.543 & 0.904 & 0.694 & 0.935 & 0.786 \\
1065 +    & 0.1 & 0.922 & 0.749 & 0.980 & 0.934 & 0.996 & 0.988 \\
1066 +    & 0.2 & 0.987 & 0.985 & 0.989 & 0.992 & 0.990 & 0.993 \\
1067 +    & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
1068 + SF  & 0.0 & 0.978 & 0.990 & 0.988 & 0.997 & 0.993 & 0.999 \\
1069 +    & 0.1 & 0.983 & 0.991 & 0.993 & 0.997 & 0.997 & 0.999 \\
1070 +    & 0.2 & 0.986 & 0.989 & 0.989 & 0.992 & 0.990 & 0.993 \\
1071 +    & 0.3 & 0.965 & 0.973 & 0.967 & 0.975 & 0.967 & 0.976 \\
1072 + GSC &     & 0.995 & 0.981 & 0.999 & 0.991 & 1.001 & 0.994 \\
1073 + RF  &     & 0.993 & 0.989 & 0.998 & 0.996 & 1.000 & 0.999 \\
1074 + \bottomrule
1075 + \end{tabular}
1076 + \label{tab:spce}
1077 + \end{table}
1078 +
1079 + \begin{table}[htbp]
1080 + \centering
1081 + \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
1082 + DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE LIQUID WATER
1083 + SYSTEM}
1084 +
1085 + \footnotesize
1086 + \begin{tabular}{@{} ccrrrrrr @{}}
1087 + \\
1088 + \toprule
1089 + \toprule
1090 + & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
1091 + \cmidrule(lr){3-5}
1092 + \cmidrule(l){6-8}
1093 + Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\
1094 + \midrule
1095 + PC  &     & 783.759 & 481.353 & 332.677 & 248.674 & 144.382 & 98.535 \\
1096 + SP  & 0.0 & 659.440 & 380.699 & 250.002 & 235.151 & 134.661 & 88.135 \\
1097 +    & 0.1 & 293.849 & 67.772 & 11.609 & 105.090 & 23.813 & 4.369 \\
1098 +    & 0.2 & 5.975 & 0.136 & 0.094 & 5.553 & 1.784 & 1.536 \\
1099 +    & 0.3 & 0.725 & 0.707 & 0.693 & 7.293 & 6.933 & 6.748 \\
1100 + SF  & 0.0 & 2.238 & 0.713 & 0.292 & 3.290 & 1.090 & 0.416 \\
1101 +    & 0.1 & 2.238 & 0.524 & 0.115 & 3.184 & 0.945 & 0.326 \\
1102 +    & 0.2 & 0.374 & 0.102 & 0.094 & 2.598 & 1.755 & 1.537 \\
1103 +    & 0.3 & 0.721 & 0.707 & 0.693 & 7.322 & 6.933 & 6.748 \\
1104 + GSC &     & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
1105 + RF  &     & 2.091 & 0.403 & 0.113 & 3.583 & 1.071 & 0.399 \\      
1106 + \midrule
1107 + GSSP  & 0.0 & 2.431 & 0.614 & 0.274 & 5.135 & 2.133 & 1.339 \\
1108 +      & 0.1 & 1.879 & 0.291 & 0.057 & 3.983 & 1.117 & 0.370 \\
1109 +      & 0.2 & 0.443 & 0.103 & 0.093 & 2.821 & 1.794 & 1.532 \\
1110 +      & 0.3 & 0.728 & 0.694 & 0.692 & 7.387 & 6.942 & 6.748 \\
1111 + GSSF  & 0.0 & 1.298 & 0.270 & 0.083 & 3.098 & 0.992 & 0.375 \\
1112 +      & 0.1 & 1.296 & 0.210 & 0.044 & 3.055 & 0.922 & 0.330 \\
1113 +      & 0.2 & 0.433 & 0.104 & 0.093 & 2.895 & 1.797 & 1.532 \\
1114 +      & 0.3 & 0.728 & 0.694 & 0.692 & 7.410 & 6.942 & 6.748 \\
1115 + \bottomrule
1116 + \end{tabular}
1117 + \label{tab:spceAng}
1118 + \end{table}
1119 +
1120 + The water results parallel the combined results seen in sections
1121 + \ref{sec:EnergyResults} through \ref{sec:FTDirResults}.  There is good
1122 + agreement with {\sc spme} in both energetic and dynamic behavior when
1123 + using the {\sc sf} method with and without damping. The {\sc sp}
1124 + method does well with an $\alpha$ around 0.2\AA$^{-1}$, particularly
1125 + with cutoff radii greater than 12\AA. Over-damping the electrostatics
1126 + reduces the agreement between both these methods and {\sc spme}.
1127 +
1128 + The pure cutoff ({\sc pc}) method performs poorly, again mirroring the
1129 + observations from the combined results.  In contrast to these results, however, the use of a switching function and group
1130 + based cutoffs greatly improves the results for these neutral water
1131 + molecules.  The group switched cutoff ({\sc gsc}) does not mimic the
1132 + energetics of {\sc spme} as well as the {\sc sp} (with moderate
1133 + damping) and {\sc sf} methods, but the dynamics are quite good.  The
1134 + switching functions correct discontinuities in the potential and
1135 + forces, leading to these improved results.  Such improvements with the
1136 + use of a switching function have been recognized in previous
1137 + studies,\cite{Andrea83,Steinbach94} and this proves to be a useful
1138 + tactic for stably incorporating local area electrostatic effects.
1139 +
1140 + The reaction field ({\sc rf}) method simply extends upon the results
1141 + observed in the {\sc gsc} case.  Both methods are similar in form
1142 + (i.e. neutral groups, switching function), but {\sc rf} incorporates
1143 + an added effect from the external dielectric. This similarity
1144 + translates into the same good dynamic results and improved energetic
1145 + agreement with {\sc spme}.  Though this agreement is not to the level
1146 + of the moderately damped {\sc sp} and {\sc sf} methods, these results
1147 + show how incorporating some implicit properties of the surroundings
1148 + (i.e. $\epsilon_\textrm{S}$) can improve the solvent depiction.
1149 +
1150 + As a final note for the liquid water system, use of group cutoffs and a
1151 + switching function leads to noticeable improvements in the {\sc sp}
1152 + and {\sc sf} methods, primarily in directionality of the force and
1153 + torque vectors (table \ref{tab:spceAng}). The {\sc sp} method shows
1154 + significant narrowing of the angle distribution when using little to
1155 + no damping and only modest improvement for the recommended conditions
1156 + ($\alpha = 0.2$\AA$^{-1}$ and $R_\textrm{c}~\geqslant~12$\AA).  The
1157 + {\sc sf} method shows modest narrowing across all damping and cutoff
1158 + ranges of interest.  When over-damping these methods, group cutoffs and
1159 + the switching function do not improve the force and torque
1160 + directionalities.
1161 +
1162 + \subsection{SPC/E Ice I$_\textrm{c}$ Results}\label{sec:IceResults}
1163 +
1164 + In addition to the disordered molecular system above, the ordered
1165 + molecular system of ice I$_\textrm{c}$ was also considered.  Ice
1166 + polymorph could have been used to fit this role; however, ice
1167 + I$_\textrm{c}$ was chosen because it can form an ideal periodic
1168 + lattice with the same number of water molecules used in the disordered
1169 + liquid state case.  The results for the energy gap comparisons and the
1170 + force and torque vector magnitude comparisons are shown in table
1171 + \ref{tab:ice}.  The force and torque vector directionality results are
1172 + displayed separately in table \ref{tab:iceAng}, where the effect of
1173 + group-based cutoffs and switching functions on the {\sc sp} and {\sc
1174 + sf} potentials are also displayed.
1175 +
1176 + \begin{table}[htbp]
1177 + \centering
1178 + \caption{REGRESSION RESULTS OF THE ICE I$_\textrm{c}$ SYSTEM FOR
1179 + $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES ({\it
1180 + middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
1181 +
1182 + \footnotesize
1183 + \begin{tabular}{@{} ccrrrrrr @{}}
1184 + \\
1185 + \toprule
1186 + \toprule
1187 + & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1188 + \cmidrule(lr){3-4}
1189 + \cmidrule(lr){5-6}
1190 + \cmidrule(l){7-8}
1191 + Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1192 + \midrule
1193 + PC  &     & 19.897 & 0.047 & -29.214 & 0.048 & -3.771 & 0.001 \\
1194 + SP  & 0.0 & -0.014 & 0.000 & 2.135 & 0.347 & 0.457 & 0.045 \\
1195 +    & 0.1 & 0.321 & 0.017 & 1.490 & 0.584 & 0.886 & 0.796 \\
1196 +    & 0.2 & 0.896 & 0.872 & 1.011 & 0.998 & 0.997 & 0.999 \\
1197 +    & 0.3 & 0.983 & 0.997 & 0.992 & 0.997 & 0.991 & 0.997 \\
1198 + SF  & 0.0 & 0.943 & 0.979 & 1.048 & 0.978 & 0.995 & 0.999 \\
1199 +    & 0.1 & 0.948 & 0.979 & 1.044 & 0.983 & 1.000 & 0.999 \\
1200 +    & 0.2 & 0.982 & 0.997 & 0.969 & 0.960 & 0.997 & 0.999 \\
1201 +    & 0.3 & 0.985 & 0.997 & 0.961 & 0.961 & 0.991 & 0.997 \\
1202 + GSC &     & 0.983 & 0.985 & 0.966 & 0.994 & 1.003 & 0.999 \\
1203 + RF  &     & 0.924 & 0.944 & 0.990 & 0.996 & 0.991 & 0.998 \\
1204 + \midrule
1205 + PC  &     & -4.375 & 0.000 & 6.781 & 0.000 & -3.369 & 0.000 \\
1206 + SP  & 0.0 & 0.515 & 0.164 & 0.856 & 0.426 & 0.743 & 0.478 \\
1207 +    & 0.1 & 0.696 & 0.405 & 0.977 & 0.817 & 0.974 & 0.964 \\
1208 +    & 0.2 & 0.981 & 0.980 & 1.001 & 1.000 & 1.000 & 1.000 \\
1209 +    & 0.3 & 0.996 & 0.998 & 0.997 & 0.999 & 0.997 & 0.999 \\
1210 + SF  & 0.0 & 0.991 & 0.995 & 1.003 & 0.998 & 0.999 & 1.000 \\
1211 +    & 0.1 & 0.992 & 0.995 & 1.003 & 0.998 & 1.000 & 1.000 \\
1212 +    & 0.2 & 0.998 & 0.998 & 0.981 & 0.962 & 1.000 & 1.000 \\
1213 +    & 0.3 & 0.996 & 0.998 & 0.976 & 0.957 & 0.997 & 0.999 \\
1214 + GSC &     & 0.997 & 0.996 & 0.998 & 0.999 & 1.000 & 1.000 \\
1215 + RF  &     & 0.988 & 0.989 & 1.000 & 0.999 & 1.000 & 1.000 \\
1216 + \midrule
1217 + PC  &     & -6.367 & 0.000 & -3.552 & 0.000 & -3.447 & 0.000 \\
1218 + SP  & 0.0 & 0.643 & 0.409 & 0.833 & 0.607 & 0.961 & 0.805 \\
1219 +    & 0.1 & 0.791 & 0.683 & 0.957 & 0.914 & 1.000 & 0.989 \\
1220 +    & 0.2 & 0.974 & 0.991 & 0.993 & 0.998 & 0.993 & 0.998 \\
1221 +    & 0.3 & 0.976 & 0.992 & 0.977 & 0.992 & 0.977 & 0.992 \\
1222 + SF  & 0.0 & 0.979 & 0.997 & 0.992 & 0.999 & 0.994 & 1.000 \\
1223 +    & 0.1 & 0.984 & 0.997 & 0.996 & 0.999 & 0.998 & 1.000 \\
1224 +    & 0.2 & 0.991 & 0.997 & 0.974 & 0.958 & 0.993 & 0.998 \\
1225 +    & 0.3 & 0.977 & 0.992 & 0.956 & 0.948 & 0.977 & 0.992 \\
1226 + GSC &     & 0.999 & 0.997 & 0.996 & 0.999 & 1.002 & 1.000 \\
1227 + RF  &     & 0.994 & 0.997 & 0.997 & 0.999 & 1.000 & 1.000 \\
1228 + \bottomrule
1229 + \end{tabular}
1230 + \label{tab:ice}
1231 + \end{table}
1232 +
1233 + \begin{table}[htbp]
1234 + \centering
1235 + \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS
1236 + OF THE FORCE AND TORQUE VECTORS IN THE ICE I$_\textrm{c}$ SYSTEM}      
1237 +
1238 + \footnotesize
1239 + \begin{tabular}{@{} ccrrrrrr @{}}
1240 + \\
1241 + \toprule
1242 + \toprule
1243 + & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque
1244 + $\sigma^2$} \\
1245 + \cmidrule(lr){3-5}
1246 + \cmidrule(l){6-8}
1247 + Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\
1248 + \midrule
1249 + PC  &     & 2128.921 & 603.197 & 715.579 & 329.056 & 221.397 & 81.042 \\
1250 + SP  & 0.0 & 1429.341 & 470.320 & 447.557 & 301.678 & 197.437 & 73.840 \\
1251 +    & 0.1 & 590.008 & 107.510 & 18.883 & 118.201 & 32.472 & 3.599 \\
1252 +    & 0.2 & 10.057 & 0.105 & 0.038 & 2.875 & 0.572 & 0.518 \\
1253 +    & 0.3 & 0.245 & 0.260 & 0.262 & 2.365 & 2.396 & 2.327 \\
1254 + SF  & 0.0 & 1.745 & 1.161 & 0.212 & 1.135 & 0.426 & 0.155 \\
1255 +    & 0.1 & 1.721 & 0.868 & 0.082 & 1.118 & 0.358 & 0.118 \\
1256 +    & 0.2 & 0.201 & 0.040 & 0.038 & 0.786 & 0.555 & 0.518 \\
1257 +    & 0.3 & 0.241 & 0.260 & 0.262 & 2.368 & 2.400 & 2.327 \\
1258 + GSC &     & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
1259 + RF  &     & 2.887 & 0.217 & 0.107 & 1.006 & 0.281 & 0.085 \\
1260 + \midrule
1261 + GSSP  & 0.0 & 1.483 & 0.261 & 0.099 & 0.926 & 0.295 & 0.095 \\
1262 +      & 0.1 & 1.341 & 0.123 & 0.037 & 0.835 & 0.234 & 0.085 \\
1263 +      & 0.2 & 0.558 & 0.040 & 0.037 & 0.823 & 0.557 & 0.519 \\
1264 +      & 0.3 & 0.250 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
1265 + GSSF  & 0.0 & 2.124 & 0.132 & 0.069 & 0.919 & 0.263 & 0.099 \\
1266 +      & 0.1 & 2.165 & 0.101 & 0.035 & 0.895 & 0.244 & 0.096 \\
1267 +      & 0.2 & 0.706 & 0.040 & 0.037 & 0.870 & 0.559 & 0.519 \\
1268 +      & 0.3 & 0.251 & 0.251 & 0.259 & 2.387 & 2.395 & 2.328 \\
1269 + \bottomrule
1270 + \end{tabular}
1271 + \label{tab:iceAng}
1272 + \end{table}
1273 +
1274 + Highly ordered systems are a difficult test for the pairwise methods
1275 + in that they lack the implicit periodicity of the Ewald summation.  As
1276 + expected, the energy gap agreement with {\sc spme} is reduced for the
1277 + {\sc sp} and {\sc sf} methods with parameters that were ideal for the
1278 + disordered liquid system.  Moving to higher $R_\textrm{c}$ helps
1279 + improve the agreement, though at an increase in computational cost.
1280 + The dynamics of this crystalline system (both in magnitude and
1281 + direction) are little affected. Both methods still reproduce the Ewald
1282 + behavior with the same parameter recommendations from the previous
1283 + section.
1284 +
1285 + It is also worth noting that {\sc rf} exhibits improved energy gap
1286 + results over the liquid water system.  One possible explanation is
1287 + that the ice I$_\textrm{c}$ crystal is ordered such that the net
1288 + dipole moment of the crystal is zero.  With $\epsilon_\textrm{S} =
1289 + \infty$, the reaction field incorporates this structural organization
1290 + by actively enforcing a zeroed dipole moment within each cutoff
1291 + sphere.
1292 +
1293 + \subsection{NaCl Melt Results}\label{sec:SaltMeltResults}
1294 +
1295 + A high temperature NaCl melt was tested to gauge the accuracy of the
1296 + pairwise summation methods in a disordered system of charges. The
1297 + results for the energy gap comparisons and the force vector magnitude
1298 + comparisons are shown in table \ref{tab:melt}.  The force vector
1299 + directionality results are displayed separately in table
1300 + \ref{tab:meltAng}.
1301 +
1302 + \begin{table}[htbp]
1303 + \centering
1304 + \caption{REGRESSION RESULTS OF THE MOLTEN SODIUM CHLORIDE SYSTEM FOR
1305 + $\Delta E$ VALUES ({\it upper}) AND FORCE VECTOR MAGNITUDES ({\it
1306 + lower})}
1307 +
1308 + \footnotesize
1309 + \begin{tabular}{@{} ccrrrrrr @{}}
1310 + \\
1311 + \toprule
1312 + \toprule
1313 + & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1314 + \cmidrule(lr){3-4}
1315 + \cmidrule(lr){5-6}
1316 + \cmidrule(l){7-8}
1317 + Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1318 + \midrule
1319 + PC  &     & -0.008 & 0.000 & -0.049 & 0.005 & -0.136 & 0.020 \\
1320 + SP  & 0.0 & 0.928 & 0.996 & 0.931 & 0.998 & 0.950 & 0.999 \\
1321 +    & 0.1 & 0.977 & 0.998 & 0.998 & 1.000 & 0.997 & 1.000 \\
1322 +    & 0.2 & 0.960 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
1323 +    & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
1324 + SF  & 0.0 & 0.996 & 1.000 & 0.995 & 1.000 & 0.997 & 1.000 \\
1325 +    & 0.1 & 1.021 & 1.000 & 1.024 & 1.000 & 1.007 & 1.000 \\
1326 +    & 0.2 & 0.966 & 1.000 & 0.813 & 0.996 & 0.811 & 0.954 \\
1327 +    & 0.3 & 0.671 & 0.994 & 0.439 & 0.929 & 0.535 & 0.831 \\
1328 +            \midrule
1329 + PC  &     & 1.103 & 0.000 & 0.989 & 0.000 & 0.802 & 0.000 \\
1330 + SP  & 0.0 & 0.973 & 0.981 & 0.975 & 0.988 & 0.979 & 0.992 \\
1331 +    & 0.1 & 0.987 & 0.992 & 0.993 & 0.998 & 0.997 & 0.999 \\
1332 +    & 0.2 & 0.993 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
1333 +    & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
1334 + SF  & 0.0 & 0.996 & 0.997 & 0.997 & 0.999 & 0.998 & 1.000 \\
1335 +    & 0.1 & 1.000 & 0.997 & 1.001 & 0.999 & 1.000 & 1.000 \\
1336 +    & 0.2 & 0.994 & 0.996 & 0.985 & 0.988 & 0.986 & 0.981 \\
1337 +    & 0.3 & 0.956 & 0.956 & 0.940 & 0.912 & 0.948 & 0.929 \\
1338 + \bottomrule
1339 + \end{tabular}
1340 + \label{tab:melt}
1341 + \end{table}
1342 +
1343 + \begin{table}[htbp]
1344 + \centering
1345 + \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS
1346 + OF THE FORCE VECTORS IN THE MOLTEN SODIUM CHLORIDE SYSTEM}      
1347 +
1348 + \footnotesize
1349 + \begin{tabular}{@{} ccrrrrrr @{}}
1350 + \\
1351 + \toprule
1352 + \toprule
1353 + & & \multicolumn{3}{c}{Force $\sigma^2$} \\
1354 + \cmidrule(lr){3-5}
1355 + \cmidrule(l){6-8}
1356 + Method & $\alpha$ & 9\AA & 12\AA & 15\AA \\
1357 + \midrule
1358 + PC  &     & 13.294 & 8.035 & 5.366 \\
1359 + SP  & 0.0 & 13.316 & 8.037 & 5.385 \\
1360 +    & 0.1 & 5.705 & 1.391 & 0.360 \\
1361 +    & 0.2 & 2.415 & 7.534 & 13.927 \\
1362 +    & 0.3 & 23.769 & 67.306 & 57.252 \\
1363 + SF  & 0.0 & 1.693 & 0.603 & 0.256 \\
1364 +    & 0.1 & 1.687 & 0.653 & 0.272 \\
1365 +    & 0.2 & 2.598 & 7.523 & 13.930 \\
1366 +    & 0.3 & 23.734 & 67.305 & 57.252 \\
1367 + \bottomrule
1368 + \end{tabular}
1369 + \label{tab:meltAng}
1370 + \end{table}
1371 +
1372 + The molten NaCl system shows more sensitivity to the electrostatic
1373 + damping than the water systems. The most noticeable point is that the
1374 + undamped {\sc sf} method does very well at replicating the {\sc spme}
1375 + configurational energy differences and forces. Light damping appears
1376 + to minimally improve the dynamics, but this comes with a deterioration
1377 + of the energy gap results. In contrast, this light damping improves
1378 + the {\sc sp} energy gaps and forces. Moderate and heavy electrostatic
1379 + damping reduce the agreement with {\sc spme} for both methods. From
1380 + these observations, the undamped {\sc sf} method is the best choice
1381 + for disordered systems of charges.
1382 +
1383 + \subsection{NaCl Crystal Results}\label{sec:SaltCrystalResults}
1384 +
1385 + Similar to the use of ice I$_\textrm{c}$ to investigate the role of
1386 + order in molecular systems on the effectiveness of the pairwise
1387 + methods, the 1000K NaCl crystal system was used to investigate the
1388 + accuracy of the pairwise summation methods in an ordered system of
1389 + charged particles. The results for the energy gap comparisons and the
1390 + force vector magnitude comparisons are shown in table \ref{tab:salt}.
1391 + The force vector directionality results are displayed separately in
1392 + table \ref{tab:saltAng}.
1393 +
1394 + \begin{table}[htbp]
1395 + \centering
1396 + \caption{REGRESSION RESULTS OF THE CRYSTALLINE SODIUM CHLORIDE
1397 + SYSTEM FOR $\Delta E$ VALUES ({\it upper}) AND FORCE VECTOR MAGNITUDES
1398 + ({\it lower})}
1399 +
1400 + \footnotesize
1401 + \begin{tabular}{@{} ccrrrrrr @{}}
1402 + \\
1403 + \toprule
1404 + \toprule
1405 + & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1406 + \cmidrule(lr){3-4}
1407 + \cmidrule(lr){5-6}
1408 + \cmidrule(l){7-8}
1409 + Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1410 + \midrule
1411 + PC  &     & -20.241 & 0.228 & -20.248 & 0.229 & -20.239 & 0.228 \\
1412 + SP  & 0.0 & 1.039 & 0.733 & 2.037 & 0.565 & 1.225 & 0.743 \\
1413 +    & 0.1 & 1.049 & 0.865 & 1.424 & 0.784 & 1.029 & 0.980 \\
1414 +    & 0.2 & 0.982 & 0.976 & 0.969 & 0.980 & 0.960 & 0.980 \\
1415 +    & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.945 \\
1416 + SF  & 0.0 & 1.041 & 0.967 & 0.994 & 0.989 & 0.957 & 0.993 \\
1417 +    & 0.1 & 1.050 & 0.968 & 0.996 & 0.991 & 0.972 & 0.995 \\
1418 +    & 0.2 & 0.982 & 0.975 & 0.959 & 0.980 & 0.960 & 0.980 \\
1419 +    & 0.3 & 0.873 & 0.944 & 0.872 & 0.945 & 0.872 & 0.944 \\
1420 + \midrule
1421 + PC  &     & 0.795 & 0.000 & 0.792 & 0.000 & 0.793 & 0.000 \\
1422 + SP  & 0.0 & 0.916 & 0.829 & 1.086 & 0.791 & 1.010 & 0.936 \\
1423 +    & 0.1 & 0.958 & 0.917 & 1.049 & 0.943 & 1.001 & 0.995 \\
1424 +    & 0.2 & 0.981 & 0.981 & 0.982 & 0.984 & 0.981 & 0.984 \\
1425 +    & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
1426 + SF  & 0.0 & 1.002 & 0.983 & 0.997 & 0.994 & 0.991 & 0.997 \\
1427 +    & 0.1 & 1.003 & 0.984 & 0.996 & 0.995 & 0.993 & 0.997 \\
1428 +    & 0.2 & 0.983 & 0.980 & 0.981 & 0.984 & 0.981 & 0.984 \\
1429 +    & 0.3 & 0.950 & 0.952 & 0.950 & 0.953 & 0.950 & 0.953 \\
1430 + \bottomrule
1431 + \end{tabular}
1432 + \label{tab:salt}
1433 + \end{table}
1434 +
1435 + \begin{table}[htbp]
1436 + \centering
1437 + \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
1438 + DISTRIBUTIONS OF THE FORCE VECTORS IN THE CRYSTALLINE SODIUM CHLORIDE
1439 + SYSTEM}
1440 +
1441 + \footnotesize
1442 + \begin{tabular}{@{} ccrrrrrr @{}}
1443 + \\
1444 + \toprule
1445 + \toprule
1446 + & & \multicolumn{3}{c}{Force $\sigma^2$} \\
1447 + \cmidrule(lr){3-5}
1448 + \cmidrule(l){6-8}
1449 + Method & $\alpha$ & 9\AA & 12\AA & 15\AA \\
1450 + \midrule
1451 + PC  &     & 111.945 & 111.824 & 111.866 \\
1452 + SP  & 0.0 & 112.414 & 152.215 & 38.087 \\
1453 +    & 0.1 & 52.361 & 42.574 & 2.819 \\
1454 +    & 0.2 & 10.847 & 9.709 & 9.686 \\
1455 +    & 0.3 & 31.128 & 31.104 & 31.029 \\
1456 + SF  & 0.0 & 10.025 & 3.555 & 1.648 \\
1457 +    & 0.1 & 9.462 & 3.303 & 1.721 \\
1458 +    & 0.2 & 11.454 & 9.813 & 9.701 \\
1459 +    & 0.3 & 31.120 & 31.105 & 31.029 \\
1460 + \bottomrule
1461 + \end{tabular}
1462 + \label{tab:saltAng}
1463 + \end{table}
1464 +
1465 + The crystalline NaCl system is the most challenging test case for the
1466 + pairwise summation methods, as evidenced by the results in tables
1467 + \ref{tab:salt} and \ref{tab:saltAng}. The undamped and weakly damped
1468 + {\sc sf} methods seem to be the best choices. These methods match well
1469 + with {\sc spme} across the energy gap, force magnitude, and force
1470 + directionality tests.  The {\sc sp} method struggles in all cases,
1471 + with the exception of good dynamics reproduction when using weak
1472 + electrostatic damping with a large cutoff radius.
1473 +
1474 + The moderate electrostatic damping case is not as good as we would
1475 + expect given the long-time dynamics results observed for this system
1476 + (see section \ref{sec:LongTimeDynamics}). Since the data tabulated in
1477 + tables \ref{tab:salt} and \ref{tab:saltAng} are a test of
1478 + instantaneous dynamics, this indicates that good long-time dynamics
1479 + comes in part at the expense of short-time dynamics.
1480 +
1481 + \subsection{0.11M NaCl Solution Results}
1482 +
1483 + In an effort to bridge the charged atomic and neutral molecular
1484 + systems, Na$^+$ and Cl$^-$ ion charge defects were incorporated into
1485 + the liquid water system. This low ionic strength system consists of 4
1486 + ions in the 1000 SPC/E water solvent ($\approx$0.11 M). The results
1487 + for the energy gap comparisons and the force and torque vector
1488 + magnitude comparisons are shown in table \ref{tab:solnWeak}.  The
1489 + force and torque vector directionality results are displayed
1490 + separately in table \ref{tab:solnWeakAng}, where the effect of
1491 + group-based cutoffs and switching functions on the {\sc sp} and {\sc
1492 + sf} potentials are investigated.
1493 +
1494 + \begin{table}[htbp]
1495 + \centering
1496 + \caption{REGRESSION RESULTS OF THE WEAK SODIUM CHLORIDE SOLUTION
1497 + SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES
1498 + ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
1499 +
1500 + \footnotesize
1501 + \begin{tabular}{@{} ccrrrrrr @{}}
1502 + \\
1503 + \toprule
1504 + \toprule
1505 + & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1506 + \cmidrule(lr){3-4}
1507 + \cmidrule(lr){5-6}
1508 + \cmidrule(l){7-8}
1509 + Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1510 + \midrule
1511 + PC  &     & 0.247 & 0.000 & -1.103 & 0.001 & 5.480 & 0.015 \\
1512 + SP  & 0.0 & 0.935 & 0.388 & 0.984 & 0.541 & 1.010 & 0.685 \\
1513 +    & 0.1 & 0.951 & 0.603 & 0.993 & 0.875 & 1.001 & 0.979 \\
1514 +    & 0.2 & 0.969 & 0.968 & 0.996 & 0.997 & 0.994 & 0.997 \\
1515 +    & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
1516 + SF  & 0.0 & 0.963 & 0.971 & 0.989 & 0.996 & 0.991 & 0.998 \\
1517 +    & 0.1 & 0.970 & 0.971 & 0.995 & 0.997 & 0.997 & 0.999 \\
1518 +    & 0.2 & 0.972 & 0.975 & 0.996 & 0.997 & 0.994 & 0.997 \\
1519 +    & 0.3 & 0.955 & 0.966 & 0.984 & 0.992 & 0.978 & 0.991 \\
1520 + GSC &     & 0.964 & 0.731 & 0.984 & 0.704 & 1.005 & 0.770 \\
1521 + RF  &     & 0.968 & 0.605 & 0.974 & 0.541 & 1.014 & 0.614 \\
1522 + \midrule
1523 + PC  &     & 1.354 & 0.000 & -1.190 & 0.000 & -0.314 & 0.000 \\
1524 + SP  & 0.0 & 0.720 & 0.338 & 0.808 & 0.523 & 0.860 & 0.643 \\
1525 +    & 0.1 & 0.839 & 0.583 & 0.955 & 0.882 & 0.992 & 0.978 \\
1526 +    & 0.2 & 0.995 & 0.987 & 0.999 & 1.000 & 0.999 & 1.000 \\
1527 +    & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
1528 + SF  & 0.0 & 0.998 & 0.994 & 1.000 & 0.998 & 1.000 & 0.999 \\
1529 +    & 0.1 & 0.997 & 0.994 & 1.000 & 0.999 & 1.000 & 1.000 \\
1530 +    & 0.2 & 0.999 & 0.998 & 0.999 & 1.000 & 0.999 & 1.000 \\
1531 +    & 0.3 & 0.995 & 0.996 & 0.996 & 0.998 & 0.996 & 0.998 \\
1532 + GSC &     & 0.995 & 0.990 & 0.998 & 0.997 & 0.998 & 0.996 \\
1533 + RF  &     & 0.998 & 0.993 & 0.999 & 0.998 & 0.999 & 0.996 \\
1534 + \midrule
1535 + PC  &     & 2.437 & 0.000 & -1.872 & 0.000 & 2.138 & 0.000 \\
1536 + SP  & 0.0 & 0.838 & 0.525 & 0.901 & 0.686 & 0.932 & 0.779 \\
1537 +    & 0.1 & 0.914 & 0.733 & 0.979 & 0.932 & 0.995 & 0.987 \\
1538 +    & 0.2 & 0.977 & 0.969 & 0.988 & 0.990 & 0.989 & 0.990 \\
1539 +    & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
1540 + SF  & 0.0 & 0.969 & 0.977 & 0.987 & 0.996 & 0.993 & 0.998 \\
1541 +    & 0.1 & 0.975 & 0.978 & 0.993 & 0.996 & 0.997 & 0.998 \\
1542 +    & 0.2 & 0.976 & 0.973 & 0.988 & 0.990 & 0.989 & 0.990 \\
1543 +    & 0.3 & 0.952 & 0.950 & 0.964 & 0.971 & 0.965 & 0.970 \\
1544 + GSC &     & 0.980 & 0.959 & 0.990 & 0.983 & 0.992 & 0.989 \\
1545 + RF  &     & 0.984 & 0.975 & 0.996 & 0.995 & 0.998 & 0.998 \\
1546 + \bottomrule
1547 + \end{tabular}
1548 + \label{tab:solnWeak}
1549 + \end{table}
1550 +
1551 + \begin{table}[htbp]
1552 + \centering
1553 + \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
1554 + DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE WEAK SODIUM
1555 + CHLORIDE SOLUTION SYSTEM}
1556 +
1557 + \footnotesize
1558 + \begin{tabular}{@{} ccrrrrrr @{}}
1559 + \\
1560 + \toprule
1561 + \toprule
1562 + & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
1563 + \cmidrule(lr){3-5}
1564 + \cmidrule(l){6-8}
1565 + Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\
1566 + \midrule
1567 + PC  &     & 882.863 & 510.435 & 344.201 & 277.691 & 154.231 & 100.131 \\
1568 + SP  & 0.0 & 732.569 & 405.704 & 257.756 & 261.445 & 142.245 & 91.497 \\
1569 +    & 0.1 & 329.031 & 70.746 & 12.014 & 118.496 & 25.218 & 4.711 \\
1570 +    & 0.2 & 6.772 & 0.153 & 0.118 & 9.780 & 2.101 & 2.102 \\
1571 +    & 0.3 & 0.951 & 0.774 & 0.784 & 12.108 & 7.673 & 7.851 \\
1572 + SF  & 0.0 & 2.555 & 0.762 & 0.313 & 6.590 & 1.328 & 0.558 \\
1573 +    & 0.1 & 2.561 & 0.560 & 0.123 & 6.464 & 1.162 & 0.457 \\
1574 +    & 0.2 & 0.501 & 0.118 & 0.118 & 5.698 & 2.074 & 2.099 \\
1575 +    & 0.3 & 0.943 & 0.774 & 0.784 & 12.118 & 7.674 & 7.851 \\
1576 + GSC &     & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
1577 + RF  &     & 2.415 & 0.452 & 0.130 & 6.915 & 1.423 & 0.507 \\
1578 + \midrule
1579 + GSSP  & 0.0 & 2.915 & 0.643 & 0.261 & 9.576 & 3.133 & 1.812 \\
1580 +      & 0.1 & 2.251 & 0.324 & 0.064 & 7.628 & 1.639 & 0.497 \\
1581 +      & 0.2 & 0.590 & 0.118 & 0.116 & 6.080 & 2.096 & 2.103 \\
1582 +      & 0.3 & 0.953 & 0.759 & 0.780 & 12.347 & 7.683 & 7.849 \\
1583 + GSSF  & 0.0 & 1.541 & 0.301 & 0.096 & 6.407 & 1.316 & 0.496 \\
1584 +      & 0.1 & 1.541 & 0.237 & 0.050 & 6.356 & 1.202 & 0.457 \\
1585 +      & 0.2 & 0.568 & 0.118 & 0.116 & 6.166 & 2.105 & 2.105 \\
1586 +      & 0.3 & 0.954 & 0.759 & 0.780 & 12.337 & 7.684 & 7.849 \\
1587 + \bottomrule
1588 + \end{tabular}
1589 + \label{tab:solnWeakAng}
1590 + \end{table}
1591 +
1592 + Because this system is a perturbation of the pure liquid water system,
1593 + comparisons are best drawn between these two sets. The {\sc sp} and
1594 + {\sc sf} methods are not significantly affected by the inclusion of a
1595 + few ions. The aspect of cutoff sphere neutralization aids in the
1596 + smooth incorporation of these ions; thus, all of the observations
1597 + regarding these methods carry over from section
1598 + \ref{sec:WaterResults}. The differences between these systems are more
1599 + visible for the {\sc rf} method. Though good force agreement is still
1600 + maintained, the energy gaps show a significant increase in the scatter
1601 + of the data.
1602 +
1603 + \subsection{1.1M NaCl Solution Results}
1604 +
1605 + The bridging of the charged atomic and neutral molecular systems was
1606 + further developed by considering a high ionic strength system
1607 + consisting of 40 ions in the 1000 SPC/E water solvent ($\approx$1.1
1608 + M). The results for the energy gap comparisons and the force and
1609 + torque vector magnitude comparisons are shown in table
1610 + \ref{tab:solnStr}.  The force and torque vector directionality
1611 + results are displayed separately in table \ref{tab:solnStrAng}, where
1612 + the effect of group-based cutoffs and switching functions on the {\sc
1613 + sp} and {\sc sf} potentials are investigated.
1614 +
1615 + \begin{table}[htbp]
1616 + \centering
1617 + \caption{REGRESSION RESULTS OF THE STRONG SODIUM CHLORIDE SOLUTION
1618 + SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR MAGNITUDES
1619 + ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
1620 +
1621 + \footnotesize
1622 + \begin{tabular}{@{} ccrrrrrr @{}}
1623 + \\
1624 + \toprule
1625 + \toprule
1626 + & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1627 + \cmidrule(lr){3-4}
1628 + \cmidrule(lr){5-6}
1629 + \cmidrule(l){7-8}
1630 + Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1631 + \midrule
1632 + PC  &     & -0.081 & 0.000 & 0.945 & 0.001 & 0.073 & 0.000 \\
1633 + SP  & 0.0 & 0.978 & 0.469 & 0.996 & 0.672 & 0.975 & 0.668 \\
1634 +    & 0.1 & 0.944 & 0.645 & 0.997 & 0.886 & 0.991 & 0.978 \\
1635 +    & 0.2 & 0.873 & 0.896 & 0.985 & 0.993 & 0.980 & 0.993 \\
1636 +    & 0.3 & 0.831 & 0.860 & 0.960 & 0.979 & 0.955 & 0.977 \\
1637 + SF  & 0.0 & 0.858 & 0.905 & 0.985 & 0.970 & 0.990 & 0.998 \\
1638 +    & 0.1 & 0.865 & 0.907 & 0.992 & 0.974 & 0.994 & 0.999 \\
1639 +    & 0.2 & 0.862 & 0.894 & 0.985 & 0.993 & 0.980 & 0.993 \\
1640 +    & 0.3 & 0.831 & 0.859 & 0.960 & 0.979 & 0.955 & 0.977 \\
1641 + GSC &     & 1.985 & 0.152 & 0.760 & 0.031 & 1.106 & 0.062 \\
1642 + RF  &     & 2.414 & 0.116 & 0.813 & 0.017 & 1.434 & 0.047 \\
1643 + \midrule
1644 + PC  &     & -7.028 & 0.000 & -9.364 & 0.000 & 0.925 & 0.865 \\
1645 + SP  & 0.0 & 0.701 & 0.319 & 0.909 & 0.773 & 0.861 & 0.665 \\
1646 +    & 0.1 & 0.824 & 0.565 & 0.970 & 0.930 & 0.990 & 0.979 \\
1647 +    & 0.2 & 0.988 & 0.981 & 0.995 & 0.998 & 0.991 & 0.998 \\
1648 +    & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
1649 + SF  & 0.0 & 0.993 & 0.988 & 0.992 & 0.984 & 0.998 & 0.999 \\
1650 +    & 0.1 & 0.993 & 0.989 & 0.993 & 0.986 & 0.998 & 1.000 \\
1651 +    & 0.2 & 0.993 & 0.992 & 0.995 & 0.998 & 0.991 & 0.998 \\
1652 +    & 0.3 & 0.983 & 0.985 & 0.985 & 0.991 & 0.978 & 0.990 \\
1653 + GSC &     & 0.964 & 0.897 & 0.970 & 0.917 & 0.925 & 0.865 \\
1654 + RF  &     & 0.994 & 0.864 & 0.988 & 0.865 & 0.980 & 0.784 \\
1655 + \midrule
1656 + PC  &     & -2.212 & 0.000 & -0.588 & 0.000 & 0.953 & 0.925 \\
1657 + SP  & 0.0 & 0.800 & 0.479 & 0.930 & 0.804 & 0.924 & 0.759 \\
1658 +    & 0.1 & 0.883 & 0.694 & 0.976 & 0.942 & 0.993 & 0.986 \\
1659 +    & 0.2 & 0.952 & 0.943 & 0.980 & 0.984 & 0.980 & 0.983 \\
1660 +    & 0.3 & 0.914 & 0.909 & 0.943 & 0.948 & 0.944 & 0.946 \\
1661 + SF  & 0.0 & 0.945 & 0.953 & 0.980 & 0.984 & 0.991 & 0.998 \\
1662 +    & 0.1 & 0.951 & 0.954 & 0.987 & 0.986 & 0.995 & 0.998 \\
1663 +    & 0.2 & 0.951 & 0.946 & 0.980 & 0.984 & 0.980 & 0.983 \\
1664 +    & 0.3 & 0.914 & 0.908 & 0.943 & 0.948 & 0.944 & 0.946 \\
1665 + GSC &     & 0.882 & 0.818 & 0.939 & 0.902 & 0.953 & 0.925 \\
1666 + RF  &     & 0.949 & 0.939 & 0.988 & 0.988 & 0.992 & 0.993 \\
1667 + \bottomrule
1668 + \end{tabular}
1669 + \label{tab:solnStr}
1670 + \end{table}
1671 +
1672 + \begin{table}[htbp]
1673 + \centering
1674 + \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR DISTRIBUTIONS
1675 + OF THE FORCE AND TORQUE VECTORS IN THE STRONG SODIUM CHLORIDE SOLUTION
1676 + SYSTEM}
1677 +
1678 + \footnotesize
1679 + \begin{tabular}{@{} ccrrrrrr @{}}
1680 + \\
1681 + \toprule
1682 + \toprule
1683 + & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
1684 + \cmidrule(lr){3-5}
1685 + \cmidrule(l){6-8}
1686 + Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\
1687 + \midrule
1688 + PC  &     & 957.784 & 513.373 & 2.260 & 340.043 & 179.443 & 13.079 \\
1689 + SP  & 0.0 & 786.244 & 139.985 & 259.289 & 311.519 & 90.280 & 105.187 \\
1690 +    & 0.1 & 354.697 & 38.614 & 12.274 & 144.531 & 23.787 & 5.401 \\
1691 +    & 0.2 & 7.674 & 0.363 & 0.215 & 16.655 & 3.601 & 3.634 \\
1692 +    & 0.3 & 1.745 & 1.456 & 1.449 & 23.669 & 14.376 & 14.240 \\
1693 + SF  & 0.0 & 3.282 & 8.567 & 0.369 & 11.904 & 6.589 & 0.717 \\
1694 +    & 0.1 & 3.263 & 7.479 & 0.142 & 11.634 & 5.750 & 0.591 \\
1695 +    & 0.2 & 0.686 & 0.324 & 0.215 & 10.809 & 3.580 & 3.635 \\
1696 +    & 0.3 & 1.749 & 1.456 & 1.449 & 23.635 & 14.375 & 14.240 \\
1697 + GSC &     & 6.181 & 2.904 & 2.263 & 44.349 & 19.442 & 12.873 \\
1698 + RF  &     & 3.891 & 0.847 & 0.323 & 18.628 & 3.995 & 2.072 \\
1699 + \midrule
1700 + GSSP  & 0.0 & 6.197 & 2.929 & 2.290 & 44.441 & 19.442 & 12.873 \\
1701 +      & 0.1 & 4.688 & 1.064 & 0.260 & 31.208 & 6.967 & 2.303 \\
1702 +      & 0.2 & 1.021 & 0.218 & 0.213 & 14.425 & 3.629 & 3.649 \\
1703 +      & 0.3 & 1.752 & 1.454 & 1.451 & 23.540 & 14.390 & 14.245 \\
1704 + GSSF  & 0.0 & 2.494 & 0.546 & 0.217 & 16.391 & 3.230 & 1.613 \\
1705 +      & 0.1 & 2.448 & 0.429 & 0.106 & 16.390 & 2.827 & 1.159 \\
1706 +      & 0.2 & 0.899 & 0.214 & 0.213 & 13.542 & 3.583 & 3.645 \\
1707 +      & 0.3 & 1.752 & 1.454 & 1.451 & 23.587 & 14.390 & 14.245 \\
1708 + \bottomrule
1709 + \end{tabular}
1710 + \label{tab:solnStrAng}
1711 + \end{table}
1712 +
1713 + The {\sc rf} method struggles with the jump in ionic strength. The
1714 + configuration energy differences degrade to unusable levels while the
1715 + forces and torques show a more modest reduction in the agreement with
1716 + {\sc spme}. The {\sc rf} method was designed for homogeneous systems,
1717 + and this attribute is apparent in these results.
1718 +
1719 + The {\sc sp} and {\sc sf} methods require larger cutoffs to maintain
1720 + their agreement with {\sc spme}. With these results, we still
1721 + recommend undamped to moderate damping for the {\sc sf} method and
1722 + moderate damping for the {\sc sp} method, both with cutoffs greater
1723 + than 12\AA.
1724 +
1725 + \subsection{6\AA\ Argon Sphere in SPC/E Water Results}
1726 +
1727 + The final model system studied was a 6\AA\ sphere of Argon solvated
1728 + by SPC/E water. This serves as a test case of a specifically sized
1729 + electrostatic defect in a disordered molecular system. The results for
1730 + the energy gap comparisons and the force and torque vector magnitude
1731 + comparisons are shown in table \ref{tab:argon}.  The force and torque
1732 + vector directionality results are displayed separately in table
1733 + \ref{tab:argonAng}, where the effect of group-based cutoffs and
1734 + switching functions on the {\sc sp} and {\sc sf} potentials are
1735 + investigated.
1736 +
1737 + \begin{table}[htbp]
1738 + \centering
1739 + \caption{REGRESSION RESULTS OF THE 6\AA\ ARGON SPHERE IN LIQUID
1740 + WATER SYSTEM FOR $\Delta E$ VALUES ({\it upper}), FORCE VECTOR
1741 + MAGNITUDES ({\it middle}) AND TORQUE VECTOR MAGNITUDES ({\it lower})}
1742 +
1743 + \footnotesize
1744 + \begin{tabular}{@{} ccrrrrrr @{}}
1745 + \\
1746 + \toprule
1747 + \toprule
1748 + & & \multicolumn{2}{c}{9\AA} & \multicolumn{2}{c}{12\AA} & \multicolumn{2}{c}{15\AA}\\
1749 + \cmidrule(lr){3-4}
1750 + \cmidrule(lr){5-6}
1751 + \cmidrule(l){7-8}
1752 + Method & $\alpha$ & slope & $R^2$ & slope & $R^2$ & slope & $R^2$ \\
1753 + \midrule
1754 + PC  &     & 2.320 & 0.008 & -0.650 & 0.001 & 3.848 & 0.029 \\
1755 + SP  & 0.0 & 1.053 & 0.711 & 0.977 & 0.820 & 0.974 & 0.882 \\
1756 +    & 0.1 & 1.032 & 0.846 & 0.989 & 0.965 & 0.992 & 0.994 \\
1757 +    & 0.2 & 0.993 & 0.995 & 0.982 & 0.998 & 0.986 & 0.998 \\
1758 +    & 0.3 & 0.968 & 0.995 & 0.954 & 0.992 & 0.961 & 0.994 \\
1759 + SF  & 0.0 & 0.982 & 0.996 & 0.992 & 0.999 & 0.993 & 1.000 \\
1760 +    & 0.1 & 0.987 & 0.996 & 0.996 & 0.999 & 0.997 & 1.000 \\
1761 +    & 0.2 & 0.989 & 0.998 & 0.984 & 0.998 & 0.989 & 0.998 \\
1762 +    & 0.3 & 0.971 & 0.995 & 0.957 & 0.992 & 0.965 & 0.994 \\
1763 + GSC &     & 1.002 & 0.983 & 0.992 & 0.973 & 0.996 & 0.971 \\
1764 + RF  &     & 0.998 & 0.995 & 0.999 & 0.998 & 0.998 & 0.998 \\
1765 + \midrule
1766 + PC  &     & -36.559 & 0.002 & -44.917 & 0.004 & -52.945 & 0.006 \\
1767 + SP  & 0.0 & 0.890 & 0.786 & 0.927 & 0.867 & 0.949 & 0.909 \\
1768 +    & 0.1 & 0.942 & 0.895 & 0.984 & 0.974 & 0.997 & 0.995 \\
1769 +    & 0.2 & 0.999 & 0.997 & 1.000 & 1.000 & 1.000 & 1.000 \\
1770 +    & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
1771 + SF  & 0.0 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
1772 +    & 0.1 & 1.000 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
1773 +    & 0.2 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 & 1.000 \\
1774 +    & 0.3 & 1.001 & 0.999 & 1.001 & 1.000 & 1.001 & 1.000 \\
1775 + GSC &     & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
1776 + RF  &     & 0.999 & 0.999 & 1.000 & 1.000 & 1.000 & 1.000 \\
1777 + \midrule
1778 + PC  &     & 1.984 & 0.000 & 0.012 & 0.000 & 1.357 & 0.000 \\
1779 + SP  & 0.0 & 0.850 & 0.552 & 0.907 & 0.703 & 0.938 & 0.793 \\
1780 +    & 0.1 & 0.924 & 0.755 & 0.980 & 0.936 & 0.995 & 0.988 \\
1781 +    & 0.2 & 0.985 & 0.983 & 0.986 & 0.988 & 0.987 & 0.988 \\
1782 +    & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
1783 + SF  & 0.0 & 0.977 & 0.989 & 0.987 & 0.995 & 0.992 & 0.998 \\
1784 +    & 0.1 & 0.982 & 0.989 & 0.992 & 0.996 & 0.997 & 0.998 \\
1785 +    & 0.2 & 0.984 & 0.987 & 0.986 & 0.987 & 0.987 & 0.988 \\
1786 +    & 0.3 & 0.961 & 0.966 & 0.959 & 0.964 & 0.960 & 0.966 \\
1787 + GSC &     & 0.995 & 0.981 & 0.999 & 0.990 & 1.000 & 0.993 \\
1788 + RF  &     & 0.993 & 0.988 & 0.997 & 0.995 & 0.999 & 0.998 \\
1789 + \bottomrule
1790 + \end{tabular}
1791 + \label{tab:argon}
1792 + \end{table}
1793 +
1794 + \begin{table}[htbp]
1795 + \centering
1796 + \caption{VARIANCE RESULTS FROM GAUSSIAN FITS TO ANGULAR
1797 + DISTRIBUTIONS OF THE FORCE AND TORQUE VECTORS IN THE 6\AA\ SPHERE OF
1798 + ARGON IN LIQUID WATER SYSTEM}  
1799 +
1800 + \footnotesize
1801 + \begin{tabular}{@{} ccrrrrrr @{}}
1802 + \\
1803 + \toprule
1804 + \toprule
1805 + & & \multicolumn{3}{c}{Force $\sigma^2$} & \multicolumn{3}{c}{Torque $\sigma^2$} \\
1806 + \cmidrule(lr){3-5}
1807 + \cmidrule(l){6-8}
1808 + Method & $\alpha$ & 9\AA & 12\AA & 15\AA & 9\AA & 12\AA & 15\AA \\
1809 + \midrule
1810 + PC  &     & 568.025 & 265.993 & 195.099 & 246.626 & 138.600 & 91.654 \\
1811 + SP  & 0.0 & 504.578 & 251.694 & 179.932 & 231.568 & 131.444 & 85.119 \\
1812 +    & 0.1 & 224.886 & 49.746 & 9.346 & 104.482 & 23.683 & 4.480 \\
1813 +    & 0.2 & 4.889 & 0.197 & 0.155 & 6.029 & 2.507 & 2.269 \\
1814 +    & 0.3 & 0.817 & 0.833 & 0.812 & 8.286 & 8.436 & 8.135 \\
1815 + SF  & 0.0 & 1.924 & 0.675 & 0.304 & 3.658 & 1.448 & 0.600 \\
1816 +    & 0.1 & 1.937 & 0.515 & 0.143 & 3.565 & 1.308 & 0.546 \\
1817 +    & 0.2 & 0.407 & 0.166 & 0.156 & 3.086 & 2.501 & 2.274 \\
1818 +    & 0.3 & 0.815 & 0.833 & 0.812 & 8.330 & 8.437 & 8.135 \\
1819 + GSC &     & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
1820 + RF  &     & 1.822 & 0.408 & 0.142 & 3.799 & 1.362 & 0.550 \\
1821 + \midrule
1822 + GSSP  & 0.0 & 2.098 & 0.584 & 0.284 & 5.391 & 2.414 & 1.501 \\
1823 +      & 0.1 & 1.652 & 0.309 & 0.087 & 4.197 & 1.401 & 0.590 \\
1824 +      & 0.2 & 0.465 & 0.165 & 0.153 & 3.323 & 2.529 & 2.273 \\
1825 +      & 0.3 & 0.813 & 0.825 & 0.816 & 8.316 & 8.447 & 8.132 \\
1826 + GSSF  & 0.0 & 1.173 & 0.292 & 0.113 & 3.452 & 1.347 & 0.583 \\
1827 +      & 0.1 & 1.166 & 0.240 & 0.076 & 3.381 & 1.281 & 0.575 \\
1828 +      & 0.2 & 0.459 & 0.165 & 0.153 & 3.430 & 2.542 & 2.273 \\
1829 +      & 0.3 & 0.814 & 0.825 & 0.816 & 8.325 & 8.447 & 8.132 \\
1830 + \bottomrule
1831 + \end{tabular}
1832 + \label{tab:argonAng}
1833 + \end{table}
1834 +
1835 + This system does not appear to show any significant deviations from
1836 + the previously observed results. The {\sc sp} and {\sc sf} methods
1837 + have agreements similar to those observed in section
1838 + \ref{sec:WaterResults}. The only significant difference is the
1839 + improvement in the configuration energy differences for the {\sc rf}
1840 + method. This is surprising in that we are introducing an inhomogeneity
1841 + to the system; however, this inhomogeneity is charge-neutral and does
1842 + not result in charged cutoff spheres. The charge-neutrality of the
1843 + cutoff spheres, which the {\sc sp} and {\sc sf} methods explicitly
1844 + enforce, seems to play a greater role in the stability of the {\sc rf}
1845 + method than the required homogeneity of the environment.
1846 +
1847 +
1848 + \section{Short-Time Dynamics: Velocity Autocorrelation Functions of NaCl Crystals}\label{sec:ShortTimeDynamics}
1849 +
1850   Zahn {\it et al.} investigated the structure and dynamics of water
1851   using eqs. (\ref{eq:ZahnPot}) and
1852   (\ref{eq:WolfForces}).\cite{Zahn02,Kast03} Their results indicated
# Line 1015 | Line 1872 | low-frequency portion of the power spectrum.
1872   \centering
1873   \includegraphics[width = \linewidth]{./figures/vCorrPlot.pdf}
1874   \caption{Velocity autocorrelation functions of NaCl crystals at
1875 < 1000K using {\sc spme}, {\sc sf} ($\alpha$ = 0.0, 0.1, \& 0.2), and {\sc
1876 < sp} ($\alpha$ = 0.2). The inset is a magnification of the area around
1877 < the first minimum.  The times to first collision are nearly identical,
1878 < but differences can be seen in the peaks and troughs, where the
1879 < undamped and weakly damped methods are stiffer than the moderately
1880 < damped and {\sc spme} methods.}
1875 > 1000K using {\sc spme}, {\sc sf} ($\alpha$ = 0.0, 0.1, \&
1876 > 0.2\AA$^{-1}$), and {\sc sp} ($\alpha$ = 0.2\AA$^{-1}$). The inset is
1877 > a magnification of the area around the first minimum.  The times to
1878 > first collision are nearly identical, but differences can be seen in
1879 > the peaks and troughs, where the undamped and weakly damped methods
1880 > are stiffer than the moderately damped and {\sc spme} methods.}
1881   \label{fig:vCorrPlot}
1882   \end{figure}
1883  
# Line 1040 | Line 1897 | important.
1897   constructed out of the damped electrostatic interaction are less
1898   important.
1899  
1900 < \subsection{Collective Motion: Power Spectra of NaCl Crystals}
1900 > \section{Collective Motion: Power Spectra of NaCl Crystals}\label{sec:LongTimeDynamics}
1901  
1902   To evaluate how the differences between the methods affect the
1903   collective long-time motion, we computed power spectra from long-time
# Line 1056 | Line 1913 | functions of NaCl crystals at 1000K while using {\sc s
1913   \includegraphics[width = \linewidth]{./figures/spectraSquare.pdf}
1914   \caption{Power spectra obtained from the velocity auto-correlation
1915   functions of NaCl crystals at 1000K while using {\sc spme}, {\sc sf}
1916 < ($\alpha$ = 0, 0.1, \& 0.2), and {\sc sp} ($\alpha$ = 0.2).  The inset
1917 < shows the frequency region below 100 cm$^{-1}$ to highlight where the
1918 < spectra differ.}
1916 > ($\alpha$ = 0, 0.1, \& 0.2\AA$^{-1}$), and {\sc sp} ($\alpha$ =
1917 > 0.2\AA$^{-1}$).  The inset shows the frequency region below 100
1918 > cm$^{-1}$ to highlight where the spectra differ.}
1919   \label{fig:methodPS}
1920   \end{figure}
1921  
# Line 1097 | Line 1954 | electrostatic damping to 0.25\AA$^{-1}$ gives quantita
1954   the NaCl crystal at 1000K.  The undamped shifted force ({\sc sf})
1955   method is off by less than 10 cm$^{-1}$, and increasing the
1956   electrostatic damping to 0.25\AA$^{-1}$ gives quantitative agreement
1957 < with the power spectrum obtained using the Ewald sum.  Overdamping can
1957 > with the power spectrum obtained using the Ewald sum.  Over-damping can
1958   result in underestimates of frequencies of the long-wavelength
1959   motions.}
1960   \label{fig:dampInc}
1961   \end{figure}
1962  
1963 + \section{An Application: TIP5P-E Water}\label{sec:t5peApplied}
1964  
1965 + The above sections focused on the energetics and dynamics of a variety
1966 + of systems when utilizing the {\sc sp} and {\sc sf} pairwise
1967 + techniques.  A unitary correlation with results obtained using the
1968 + Ewald summation should result in a successful reproduction of both the
1969 + static and dynamic properties of any selected system.  To test this,
1970 + we decided to calculate a series of properties for the TIP5P-E water
1971 + model when using the {\sc sf} technique.
1972 +
1973 + The TIP5P-E water model is a variant of Mahoney and Jorgensen's
1974 + five-point transferable intermolecular potential (TIP5P) model for
1975 + water.\cite{Mahoney00} TIP5P was developed to reproduce the density
1976 + maximum anomaly present in liquid water near 4$^\circ$C. As with many
1977 + previous point charge water models (such as ST2, TIP3P, TIP4P, SPC,
1978 + and SPC/E), TIP5P was parametrized using a simple cutoff with no
1979 + long-range electrostatic
1980 + correction.\cite{Stillinger74,Jorgensen83,Berendsen81,Berendsen87}
1981 + Without this correction, the pressure term on the central particle
1982 + from the surroundings is missing. Because they expand to compensate
1983 + for this added pressure term when this correction is included, systems
1984 + composed of these particles tend to underpredict the density of water
1985 + under standard conditions. When using any form of long-range
1986 + electrostatic correction, it has become common practice to develop or
1987 + utilize a reparametrized water model that corrects for this
1988 + effect.\cite{vanderSpoel98,Fennell04,Horn04} The TIP5P-E model follows
1989 + this practice and was optimized specifically for use with the Ewald
1990 + summation.\cite{Rick04} In his publication, Rick preserved the
1991 + geometry and point charge magnitudes in TIP5P and focused on altering
1992 + the Lennard-Jones parameters to correct the density at
1993 + 298K.\cite{Rick04} With the density corrected, he compared common
1994 + water properties for TIP5P-E using the Ewald sum with TIP5P using a
1995 + 9\AA\ cutoff.
1996 +
1997 + In the following sections, we compared these same water properties
1998 + calculated from TIP5P-E using the Ewald sum with TIP5P-E using the
1999 + {\sc sf} technique.  In the above evaluation of the pairwise
2000 + techniques, we observed some flexibility in the choice of parameters.
2001 + Because of this, the following comparisons include the {\sc sf}
2002 + technique with a 12\AA\ cutoff and an $\alpha$ = 0.0, 0.1, and
2003 + 0.2\AA$^{-1}$, as well as a 9\AA\ cutoff with an $\alpha$ =
2004 + 0.2\AA$^{-1}$.
2005 +
2006 + \subsection{Density}\label{sec:t5peDensity}
2007 +
2008 + As stated previously, the property that prompted the development of
2009 + TIP5P-E was the density at 1 atm.  The density depends upon the
2010 + internal pressure of the system in the $NPT$ ensemble, and the
2011 + calculation of the pressure includes a components from both the
2012 + kinetic energy and the virial. More specifically, the instantaneous
2013 + molecular pressure ($P(t)$) is given by
2014 + \begin{equation}
2015 + P(t) =  \frac{1}{\textrm{d}V}\sum_\mu
2016 +        \left[\frac{\mathbf{P}_{\mu}^2}{M_{\mu}}
2017 +        + \mathbf{R}_{\mu}\cdot\sum_i\mathbf{F}_{\mu i}\right],
2018 + \label{eq:MolecularPressure}
2019 + \end{equation}
2020 + where $V$ is the volume, $\mathbf{P}_{\mu}$ is the momentum of
2021 + molecule $\mu$, $\mathbf{R}_\mu$ is the position of the center of mass
2022 + ($M_\mu$) of molecule $\mu$, and $\mathbf{F}_{\mu i}$ is the force on
2023 + atom $i$ of molecule $\mu$.\cite{Melchionna93} The virial term (the
2024 + right term in the brackets of eq. \ref{eq:MolecularPressure}) is
2025 + directly dependent on the interatomic forces.  Since the {\sc sp}
2026 + method does not modify the forces (see
2027 + sec. \ref{sec:PairwiseDerivation}), the pressure using {\sc sp} will
2028 + be identical to that obtained without an electrostatic correction.
2029 + The {\sc sf} method does alter the virial component and, by way of the
2030 + modified pressures, should provide densities more in line with those
2031 + obtained using the Ewald summation.
2032 +
2033 + To compare densities, $NPT$ simulations were performed with the same
2034 + temperatures as those selected by Rick in his Ewald summation
2035 + simulations.\cite{Rick04} In order to improve statistics around the
2036 + density maximum, 3ns trajectories were accumulated at 0, 12.5, and
2037 + 25$^\circ$C, while 2ns trajectories were obtained at all other
2038 + temperatures. The average densities were calculated from the later
2039 + three-fourths of each trajectory. Similar to Mahoney and Jorgensen's
2040 + method for accumulating statistics, these sequences were spliced into
2041 + 200 segments to calculate the average density and standard deviation
2042 + at each temperature.\cite{Mahoney00}
2043 +
2044 + \begin{figure}
2045 + \includegraphics[width=\linewidth]{./figures/tip5peDensities.pdf}
2046 + \caption{Density versus temperature for the TIP5P-E water model when
2047 + using the Ewald summation (Ref. \cite{Rick04}) and the {\sc sf} method
2048 + with various parameters. The pressure term from the image-charge shell
2049 + is larger than that provided by the reciprocal-space portion of the
2050 + Ewald summation, leading to slightly lower densities. This effect is
2051 + more visible with the 9\AA\ cutoff, where the image charges exert a
2052 + greater force on the central particle. The error bars for the {\sc sf}
2053 + methods show plus or minus the standard deviation of the density
2054 + measurement at each temperature.}
2055 + \label{fig:t5peDensities}
2056 + \end{figure}
2057 +
2058 + Figure \ref{fig:t5peDensities} shows the densities calculated for
2059 + TIP5P-E using differing electrostatic corrections overlaid on the
2060 + experimental values.\cite{CRC80} The densities when using the {\sc sf}
2061 + technique are close to, though typically lower than, those calculated
2062 + while using the Ewald summation. These slightly reduced densities
2063 + indicate that the pressure component from the image charges at
2064 + R$_\textrm{c}$ is larger than that exerted by the reciprocal-space
2065 + portion of the Ewald summation. Bringing the image charges closer to
2066 + the central particle by choosing a 9\AA\ R$_\textrm{c}$ (rather than
2067 + the preferred 12\AA\ R$_\textrm{c}$) increases the strength of their
2068 + interactions, resulting in a further reduction of the densities.
2069 +
2070 + Because the strength of the image charge interactions has a noticable
2071 + effect on the density, we would expect the use of electrostatic
2072 + damping to also play a role in these calculations. Larger values of
2073 + $\alpha$ weaken the pair-interactions; and since electrostatic damping
2074 + is distance-dependent, force components from the image charges will be
2075 + reduced more than those from particles close the the central
2076 + charge. This effect is visible in figure \ref{fig:t5peDensities} with
2077 + the damped {\sc sf} sums showing slightly higher densities; however,
2078 + it is apparent that the choice of cutoff radius plays a much more
2079 + important role in the resulting densities.
2080 +
2081 + As a final note, all of the above density calculations were performed
2082 + with systems of 512 water molecules. Rick observed a system sized
2083 + dependence of the computed densities when using the Ewald summation,
2084 + most likely due to his tying of the convergence parameter to the box
2085 + dimensions.\cite{Rick04} For systems of 256 water molecules, the
2086 + calculated densities were on average 0.002 to 0.003 g/cm$^3$ lower. A
2087 + system size of 256 molecules would force the use of a shorter
2088 + R$_\textrm{c}$ when using the {\sc sf} technique, and this would also
2089 + lower the densities. Moving to larger systems, as long as the
2090 + R$_\textrm{c}$ remains at a fixed value, we would expect the densities
2091 + to remain constant.
2092 +
2093 + \subsection{Liquid Structure}\label{sec:t5peLiqStructure}
2094 +
2095 + A common function considered when developing and comparing water
2096 + models is the oxygen-oxygen radial distribution function
2097 + ($g_\textrm{OO}(r)$). The $g_\textrm{OO}(r)$ is the probability of
2098 + finding a pair of oxygen atoms some distance ($r$) apart relative to a
2099 + random distribution at the same density.\cite{Allen87} It is
2100 + calculated via
2101 + \begin{equation}
2102 + g_\textrm{OO}(r) = \frac{V}{N^2}\left\langle\sum_i\sum_{j\ne i}
2103 +        \delta(\mathbf{r}-\mathbf{r}_{ij})\right\rangle,
2104 + \label{eq:GOOofR}
2105 + \end{equation}
2106 + where the double sum is over all $i$ and $j$ pairs of $N$ oxygen
2107 + atoms. The $g_\textrm{OO}(r)$ can be directly compared to X-ray or
2108 + neutron scattering experiments through the oxygen-oxygen structure
2109 + factor ($S_\textrm{OO}(k)$) by the following relationship:
2110 + \begin{equation}
2111 + S_\textrm{OO}(k) = 1 + 4\pi\rho
2112 +        \int_0^\infty r^2\frac{\sin kr}{kr}g_\textrm{OO}(r)\textrm{d}r.
2113 + \label{eq:SOOofK}
2114 + \end{equation}
2115 + Thus, $S_\textrm{OO}(k)$ is related to the Fourier transform of
2116 + $g_\textrm{OO}(r)$.
2117 +
2118 + The expermentally determined $g_\textrm{OO}(r)$ for liquid water has
2119 + been compared in great detail with the various common water models,
2120 + and TIP5P was found to be in better agreement than other rigid,
2121 + non-polarizable models.\cite{Sorenson00} This excellent agreement with
2122 + experiment was maintained when Rick developed TIP5P-E.\cite{Rick04} To
2123 + check whether the choice of using the Ewald summation or the {\sc sf}
2124 + technique alters the liquid structure, the $g_\textrm{OO}(r)$s at 298K
2125 + and 1atm were determined for the systems compared in the previous
2126 + section.
2127 +
2128 + \begin{figure}
2129 + \includegraphics[width=\linewidth]{./figures/tip5peGofR.pdf}
2130 + \caption{The $g_\textrm{OO}(r)$s calculated for TIP5P-E at 298K and
2131 + 1atm while using the Ewald summation (Ref. \cite{Rick04}) and the {\sc
2132 + sf} technique with varying parameters. Even with the reduced densities
2133 + using the {\sc sf} technique, the $g_\textrm{OO}(r)$s are essentially
2134 + identical.}
2135 + \label{fig:t5peGofRs}
2136 + \end{figure}
2137 +
2138 + The $g_\textrm{OO}(r)$s calculated for TIP5P-E while using the {\sc
2139 + sf} technique with a various parameters are overlaid on the
2140 + $g_\textrm{OO}(r)$ while using the Ewald summation. The differences in
2141 + density do not appear to have any effect on the liquid structure as
2142 + the $g_\textrm{OO}(r)$s are indistinquishable. These results indicate
2143 + that the $g_\textrm{OO}(r)$ is insensitive to the choice of
2144 + electrostatic correction.
2145 +
2146 + \subsection{Thermodynamic Properties}
2147 +
2148 + \subsection{Dynamic Properties}
2149 +
2150 + \section{Damping of Point Multipoles}
2151 +
2152 + \section{Damping and Dielectric Constants}
2153 +
2154 + \section{Conclusions}\label{sec:PairwiseConclusions}
2155 +
2156 + The above investigation of pairwise electrostatic summation techniques
2157 + shows that there are viable and computationally efficient alternatives
2158 + to the Ewald summation.  These methods are derived from the damped and
2159 + cutoff-neutralized Coulombic sum originally proposed by Wolf
2160 + \textit{et al.}\cite{Wolf99} In particular, the {\sc sf}
2161 + method, reformulated above as eqs. (\ref{eq:DSFPot}) and
2162 + (\ref{eq:DSFForces}), shows a remarkable ability to reproduce the
2163 + energetic and dynamic characteristics exhibited by simulations
2164 + employing lattice summation techniques.  The cumulative energy
2165 + difference results showed the undamped {\sc sf} and moderately damped
2166 + {\sc sp} methods produced results nearly identical to {\sc spme}.
2167 + Similarly for the dynamic features, the undamped or moderately damped
2168 + {\sc sf} and moderately damped {\sc sp} methods produce force and
2169 + torque vector magnitude and directions very similar to the expected
2170 + values.  These results translate into long-time dynamic behavior
2171 + equivalent to that produced in simulations using {\sc spme}.
2172 +
2173 + As in all purely-pairwise cutoff methods, these methods are expected
2174 + to scale approximately {\it linearly} with system size, and they are
2175 + easily parallelizable.  This should result in substantial reductions
2176 + in the computational cost of performing large simulations.
2177 +
2178 + Aside from the computational cost benefit, these techniques have
2179 + applicability in situations where the use of the Ewald sum can prove
2180 + problematic.  Of greatest interest is their potential use in
2181 + interfacial systems, where the unmodified lattice sum techniques
2182 + artificially accentuate the periodicity of the system in an
2183 + undesirable manner.  There have been alterations to the standard Ewald
2184 + techniques, via corrections and reformulations, to compensate for
2185 + these systems; but the pairwise techniques discussed here require no
2186 + modifications, making them natural tools to tackle these problems.
2187 + Additionally, this transferability gives them benefits over other
2188 + pairwise methods, like reaction field, because estimations of physical
2189 + properties (e.g. the dielectric constant) are unnecessary.
2190 +
2191 + If a researcher is using Monte Carlo simulations of large chemical
2192 + systems containing point charges, most structural features will be
2193 + accurately captured using the undamped {\sc sf} method or the {\sc sp}
2194 + method with an electrostatic damping of 0.2\AA$^{-1}$.  These methods
2195 + would also be appropriate for molecular dynamics simulations where the
2196 + data of interest is either structural or short-time dynamical
2197 + quantities.  For long-time dynamics and collective motions, the safest
2198 + pairwise method we have evaluated is the {\sc sf} method with an
2199 + electrostatic damping between 0.2 and 0.25\AA$^{-1}$.
2200 +
2201 + We are not suggesting that there is any flaw with the Ewald sum; in
2202 + fact, it is the standard by which these simple pairwise sums have been
2203 + judged.  However, these results do suggest that in the typical
2204 + simulations performed today, the Ewald summation may no longer be
2205 + required to obtain the level of accuracy most researchers have come to
2206 + expect.
2207 +
2208   \chapter{\label{chap:water}SIMPLE MODELS FOR WATER}
2209  
2210   \chapter{\label{chap:ice}PHASE BEHAVIOR OF WATER IN COMPUTER SIMULATIONS}
# Line 1116 | Line 2217 | SIMULATIONS}
2217   \backmatter
2218  
2219   \bibliographystyle{ndthesis}
2220 < \bibliography{dissertation}          
2220 > \bibliography{dissertation}  
2221  
2222   \end{document}
2223  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines