ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/iceWater2/Supplemental_Information.tex
Revision: 4261
Committed: Tue Dec 16 21:01:15 2014 UTC (9 years, 6 months ago) by gezelter
Content type: application/x-tex
File size: 12776 byte(s)
Log Message:
Latest version

File Contents

# User Rev Content
1 plouden 4259 %load any "/usepackage" here...
2     \documentclass{pnastwo}
3    
4     %% ADDITIONAL OPTIONAL STYLE FILES Font specification
5    
6     %\usepackage{PNASTWOF}
7     \usepackage[version=3]{mhchem}
8     \usepackage[round,numbers,sort&compress]{natbib}
9     \usepackage{fixltx2e}
10     \usepackage{booktabs}
11     \usepackage{multirow}
12 gezelter 4261 \usepackage{tablefootnote}
13    
14 plouden 4259 \bibpunct{(}{)}{,}{n}{,}{,}
15     \bibliographystyle{pnas2011}
16    
17 gezelter 4261 \renewcommand{\thefigure}{S\arabic{figure}}
18     \renewcommand{\thetable}{S\arabic{table}}
19     \renewcommand{\theequation}{S\arabic{equation}}
20     \renewcommand{\thesection}{S\arabic{section}}
21    
22     %% OPTIONAL MACRO DEFINITIONS
23     \def\s{\sigma}
24     %%%%%%%%%%%%
25     %% For PNAS Only:
26     %\url{www.pnas.org/cgi/doi/10.1073/pnas.0709640104}
27     \copyrightyear{2014}
28     \issuedate{Issue Date}
29     \volume{Volume}
30     \issuenumber{Issue Number}
31     %\setcounter{page}{2687} %Set page number here if desired
32     %%%%%%%%%%%%
33    
34 plouden 4259 \begin{document}
35    
36 gezelter 4261 \title{Supporting Information for: \\
37     The different facets of ice have different hydrophilicities: Friction at water /
38     ice-I\textsubscript{h} interfaces}
39    
40     \author{Patrick B. Louden\affil{1}{Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame,
41     IN 46556}
42     \and
43     J. Daniel Gezelter\affil{1}{}}
44    
45     \contributor{Submitted to Proceedings of the National Academy of Sciences
46     of the United States of America}
47    
48     \maketitle
49    
50     \begin{article}
51    
52     \section{Overview}
53     The supporting information contains further details about the model
54     construction, analysis methods, and supplies figures that support the
55     data presented in the main text.
56    
57     \section{Construction of the Ice / Water interfaces}
58     Ice I$_\mathrm{h}$ crystallizes in the hexagonal space group
59     P$6_3/mmc$, and common ice crystals form hexagonal plates with the
60     basal face $\{0~0~0~1\}$ forming the top and bottom of each plate, and
61     the prismatic facet $\{1~0~\bar{1}~0\}$ forming the sides. In extreme
62     temperatures or low water saturation conditions, ice crystals can
63     easily form as hollow columns, needles and dendrites. These are
64     structures that expose other crystalline facets of the ice to the
65     surroundings. Among the more common facets are the secondary prism,
66     $\{1~1~\bar{2}~0\}$, and pyramidal, $\{2~0~\bar{2}~1\}$, faces.
67    
68     We found it most useful to work with proton-ordered, zero-dipole
69     crystals that expose strips of dangling H-atoms and lone
70     pairs.\cite{Buch:2008fk} Our structures were created starting from
71     Structure 6 of Hirsch and Ojam\"{a}e's set of orthorhombic
72     representations for ice-I$_{h}$~\cite{Hirsch04}. This crystal
73     structure was cleaved along the four different facets. The exposed
74     face was reoriented normal to the $z$-axis of the simulation cell, and
75     the structures were and extended to form large exposed facets in
76     rectangular box geometries. Liquid water boxes were created with
77     identical dimensions (in $x$ and $y$) as the ice, with a $z$ dimension
78     of three times that of the ice block, and a density corresponding to 1
79     g / cm$^3$. Each of the ice slabs and water boxes were independently
80     equilibrated at a pressure of 1 atm, and the resulting systems were
81     merged by carving out any liquid water molecules within 3 \AA\ of any
82     atoms in the ice slabs. Each of the combined ice/water systems were
83     then equilibrated at 225K, which is the liquid-ice coexistence
84     temperature for SPC/E water~\cite{Bryk02}. Reference
85     \citealp{Louden13} contains a more detailed explanation of the
86     construction of similar ice/water interfaces. The resulting dimensions
87     as well as the number of ice and liquid water molecules contained in
88     each of these systems are shown in Table S1.
89    
90     \section{A second method for computing contact angles}
91     In addition to the spherical cap method outlined in the main text, a
92     second method for obtaining the contact angle was described by
93     Ruijter, Blake, and Coninck~\cite{Ruijter99}. This method uses a
94     cylindrical averaging of the droplet's density profile. A threshold
95     density of 0.5 g cm\textsuperscript{-3} is used to estimate the
96     location of the edge of the droplet. The $r$ and $z$-dependence of
97     the droplet's edge is then fit to a circle, and the contact angle is
98     computed from the intersection of the fit circle with the $z$-axis
99     location of the solid surface. Again, for each stored configuration,
100     the density profile in a set of annular shells was computed. Due to
101     large density fluctuations close to the ice, all shells located within
102     2 \AA\ of the ice surface were left out of the circular fits. The
103     height of the solid surface ($z_\mathrm{suface}$) along with the best
104     fitting origin ($z_\mathrm{droplet}$) and radius
105     ($r_\mathrm{droplet}$) of the droplet can then be used to compute the
106     contact angle,
107     \begin{equation}
108     \theta = 90 + \frac{180}{\pi} \sin^{-1}\left(\frac{z_\mathrm{droplet} -
109     z_\mathrm{surface}}{r_\mathrm{droplet}} \right).
110     \end{equation}
111    
112     \section{Determining interfacial widths using structural information}
113     To determine the structural widths of the interfaces under shear, each
114     of the systems was divided into 100 bins along the $z$-dimension, and
115     the local tetrahedral order parameter (Eq. 5 in Reference
116     \citealp{Louden13}) was time-averaged in each bin for the duration of
117     the shearing simulation. The spatial dependence of this order
118     parameter, $q(z)$, is the tetrahedrality profile of the interface.
119     The lower panels in figures S2-S5 in the SI show tetrahedrality
120     profiles (in circles) for each of the four interfaces. The $q(z)$
121     function has a range of $(0,1)$, where a value of unity indicates a
122     perfectly tetrahedral environment. The $q(z)$ for the bulk liquid was
123     found to be $\approx~0.77$, while values of $\approx~0.92$ were more
124     common in the ice. The tetrahedrality profiles were fit using a
125     hyperbolic tangent function (see Eq. 6 in Reference
126     \citealp{Louden13}) designed to smoothly fit the bulk to ice
127     transition while accounting for the weak thermal gradient. In panels
128     $b$ and $c$ of the same figures, the resulting thermal and velocity
129     gradients from an imposed kinetic energy and momentum fluxes can be
130     seen. The vertical dotted lines traversing these figures indicate the
131     midpoints of the interfaces as determined by the tetrahedrality
132     profiles.
133    
134     \section{Determining interfacial widths using dynamic information}
135     To determine the dynamic widths of the interfaces under shear, each of
136     the systems was divided into bins along the $z$-dimension ($\approx$ 3
137     \AA\ wide) and $C_2(z,t)$ was computed using only those molecules that
138     were in the bin at the initial time. The time-dependence was fit to a
139     triexponential decay, with three time constants: $\tau_{short}$,
140     measuring the librational motion of the water molecules,
141     $\tau_{middle}$, measuring the timescale for breaking and making of
142     hydrogen bonds, and $\tau_{long}$, corresponding to the translational
143     motion of the water molecules. An additional constant was introduced
144     in the fits to describe molecules in the crystal which do not
145     experience long-time orientational decay.
146    
147     In Figures S6-S9 in the supporting information, the $z$-coordinate
148     profiles for the three decay constants, $\tau_{short}$,
149     $\tau_{middle}$, and $\tau_{long}$ for the different interfaces are
150     shown. (Figures S6 \& S7 are new results, and Figures S8 \& S9 are
151     updated plots from Ref \citealp{Louden13}.) In the liquid regions of
152     all four interfaces, we observe $\tau_{middle}$ and $\tau_{long}$ to
153     have approximately consistent values of $3-6$ ps and $30-40$ ps,
154     respectively. Both of these times increase in value approaching the
155     interface. Approaching the interface, we also observe that
156     $\tau_{short}$ decreases from its liquid-state value of $72-76$ fs.
157     The approximate values for the decay constants and the trends
158     approaching the interface match those reported previously for the
159     basal and prismatic interfaces.
160    
161     We have estimated the dynamic interfacial width $d_\mathrm{dyn}$ by
162     fitting the profiles of all the three orientational time constants
163     with an exponential decay to the bulk-liquid behavior,
164     \begin{equation}\label{tauFit}
165     \tau(z)\approx\tau_{liquid}+(\tau_{wall}-\tau_{liquid})e^{-(z-z_{wall})/d_\mathrm{dyn}}
166     \end{equation}
167     where $\tau_{liquid}$ and $\tau_{wall}$ are the liquid and projected
168     wall values of the decay constants, $z_{wall}$ is the location of the
169     interface, as measured by the structural order parameter. These
170     values are shown in table \ref{tab:kappa}. Because the bins must be
171     quite wide to obtain reasonable profiles of $C_2(z,t)$, the error
172     estimates for the dynamic widths of the interface are significantly
173     larger than for the structural widths. However, all four interfaces
174     exhibit dynamic widths that are significantly below 1~nm, and are in
175     reasonable agreement with the structural width above.
176    
177     \end{article}
178    
179     \begin{table}[h]
180     \centering
181     \caption{Sizes of the droplet and shearing simulations. Cell
182     dimensions are measured in \AA. \label{tab:method}}
183     \begin{tabular}{r|cccc|ccccc}
184     \toprule
185     \multirow{2}{*}{Interface} & \multicolumn{4}{c|}{Droplet} & \multicolumn{5}{c}{Shearing} \\
186     & $N_\mathrm{ice}$ & $N_\mathrm{droplet}$ & $L_x$ & $L_y$ & $N_\mathrm{ice}$ & $N_\mathrm{liquid}$ & $L_x$ & $L_y$ & $L_z$ \\
187     \midrule
188     Basal $\{0001\}$ & 12960 & 2048 & 134.70 & 140.04 & 900 & 1846 & 23.87 & 35.83 & 98.64 \\
189     Pyramidal $\{2~0~\bar{2}~1\}$ & 11136 & 2048 & 143.75 & 121.41 & 1216 & 2203 & 37.47 & 29.50 & 93.02 \\
190     Prismatic $\{1~0~\bar{1}~0\}$ & 9900 & 2048 & 110.04 & 115.00 & 3000 & 5464 & 35.95 & 35.65 & 205.77 \\
191     Secondary Prism $\{1~1~\bar{2}~0\}$ & 11520 & 2048 & 146.72 & 124.48 & 3840 & 8176 & 71.87 & 31.66 & 161.55 \\
192     \bottomrule
193     \end{tabular}
194     \end{table}
195    
196     %S1: contact angle
197 plouden 4259 \begin{figure}
198 gezelter 4261 \includegraphics[width=\linewidth]{ContactAngle}
199     \caption{\label{fig:ContactAngle} The dynamic contact angle of a
200     droplet after approaching each of the four ice facets. The decay to
201     an equilibrium contact angle displays similar dynamics. Although
202     all the surfaces are hydrophilic, the long-time behavior stabilizes
203     to significantly flatter droplets for the basal and pyramidal
204     facets. This suggests a difference in hydrophilicity for these
205     facets compared with the two prismatic facets.}
206     \end{figure}
207    
208    
209     %S2-S5 are the z-rnemd profiles
210     \begin{figure}
211 plouden 4259 \includegraphics[width=\linewidth]{Pyr_comic_strip}
212     \caption{\label{fig:pyrComic} Properties of the pyramidal interface
213     being sheared through water at 3.8 ms\textsuperscript{-1}. Lower
214     panel: the local tetrahedral order parameter, $q(z)$, (circles) and
215     the hyperbolic tangent fit (turquoise line). Middle panel: the
216     imposed thermal gradient required to maintain a fixed interfacial
217     temperature of 225 K. Upper panel: the transverse velocity gradient
218     that develops in response to an imposed momentum flux. The vertical
219     dotted lines indicate the locations of the midpoints of the two
220     interfaces.}
221     \end{figure}
222    
223     \begin{figure}
224     \includegraphics[width=\linewidth]{SP_comic_strip}
225     \caption{\label{fig:spComic} The secondary prism interface with a shear
226     rate of 3.5 \
227     ms\textsuperscript{-1}. Panel descriptions match those in figure \ref{fig:pyrComic}.}
228     \end{figure}
229    
230     \begin{figure}
231 gezelter 4261 \includegraphics[width=\linewidth]{B_comic_strip}
232     \caption{\label{fig:bComic} The basal interface with a shear
233 plouden 4259 rate of 1.3 \
234     ms\textsuperscript{-1}. Panel descriptions match those in figure \ref{fig:pyrComic}.}
235     \end{figure}
236    
237     \begin{figure}
238 gezelter 4261 \includegraphics[width=\linewidth]{prismatic_comic_strip}
239     \caption{\label{fig:pComic} The prismatic interface with a shear
240 plouden 4259 rate of 2 \
241     ms\textsuperscript{-1}. Panel descriptions match those in figure \ref{fig:pyrComic}.}
242     \end{figure}
243    
244 gezelter 4261 %Figures S6-S9 are the z-orientation times
245 plouden 4259 \begin{figure}
246     \includegraphics[width=\linewidth]{Pyr-orient}
247     \caption{\label{fig:PyrOrient} The three decay constants of the
248     orientational time correlation function, $C_2(z,t)$, for water as a
249     function of distance from the center of the ice slab. The vertical
250     dashed line indicates the edge of the pyramidal ice slab determined
251     by the local order tetrahedral parameter. The control (circles) and
252     sheared (squares) simulations were fit using shifted-exponential
253     decay (see Eq. 9 in Ref. \citealp{Louden13}).}
254     \end{figure}
255    
256     \begin{figure}
257     \includegraphics[width=\linewidth]{SP-orient}
258     \caption{\label{fig:SPorient} Decay constants for $C_2(z,t)$ at the secondary
259     prism face. Panel descriptions match those in \ref{fig:PyrOrient}.}
260     \end{figure}
261    
262    
263     \begin{figure}
264 gezelter 4261 \includegraphics[width=\linewidth]{B-orient}
265     \caption{\label{fig:Borient} Decay constants for $C_2(z,t)$ at the basal face. Panel descriptions match those in \ref{fig:PyrOrient}.}
266 plouden 4259 \end{figure}
267    
268     \begin{figure}
269 gezelter 4261 \includegraphics[width=\linewidth]{prismatic-orient}
270     \caption{\label{fig:Porient} Decay constants for $C_2(z,t)$ at the
271 plouden 4259 prismatic face. Panel descriptions match those in \ref{fig:PyrOrient}.}
272     \end{figure}
273    
274 gezelter 4261 \bibliography{iceWater}
275    
276     \end{document}