ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/iceiPaper/iceiPaper.tex
Revision: 1454
Committed: Mon Sep 13 21:28:16 2004 UTC (19 years, 9 months ago) by chrisfen
Content type: application/x-tex
File size: 3794 byte(s)
Log Message:
started methods section

File Contents

# User Rev Content
1 chrisfen 1453 %\documentclass[prb,aps,twocolumn,tabularx]{revtex4}
2     \documentclass[preprint,aps,endfloats]{revtex4}
3     %\documentclass[11pt]{article}
4     %\usepackage{endfloat}
5     \usepackage{amsmath}
6     \usepackage{epsf}
7     \usepackage{berkeley}
8     %\usepackage{setspace}
9     %\usepackage{tabularx}
10     \usepackage{graphicx}
11     %\usepackage[ref]{overcite}
12     %\pagestyle{plain}
13     %\pagenumbering{arabic}
14     %\oddsidemargin 0.0cm \evensidemargin 0.0cm
15     %\topmargin -21pt \headsep 10pt
16     %\textheight 9.0in \textwidth 6.5in
17     %\brokenpenalty=10000
18    
19     %\renewcommand\citemid{\ } % no comma in optional reference note
20    
21     \begin{document}
22    
23     \title{A Free Energy Study of Low Temperature and Anomolous Ice}
24    
25     \author{Christopher J. Fennell and J. Daniel Gezelter{\thefootnote}
26     \footnote[1]{Corresponding author. \ Electronic mail: gezelter@nd.edu}}
27    
28     \address{Department of Chemistry and Biochemistry\\ University of Notre Dame\\
29     Notre Dame, Indiana 46556}
30    
31     \date{\today}
32    
33     %\maketitle
34     %\doublespacing
35    
36     \begin{abstract}
37     \end{abstract}
38    
39     \maketitle
40    
41     \newpage
42    
43     %\narrowtext
44    
45     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
46     % BODY OF TEXT
47     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
48    
49     \section{Introduction}
50    
51     \section{Methods}
52    
53 chrisfen 1454 Canonical ensemble (NVT) molecular dynamics calculations were
54     performed using the OOPSE (Object-Oriented Parallel Simulation Engine)
55     molecular mechanics package. All molecules were treated as rigid
56     bodies, with orientational motion propogated using the symplectic DLM
57     integration method. Details about the implementation of these
58     techniques can be found in a recent publication.\cite{Meineke05}
59    
60     Thermodynamic integration was utilized to calculate the free energy of
61     several ice crystals using the TIP3P, TIP4P, TIP5P, SPC/E, and SSD/E
62     water models. Liquid state free energies at 300 and 400 K for all of
63     these water models were also determined using this same technique, in
64     order to determine melting points and generate phase diagrams.
65    
66     For the thermodynamic integration of molecular crystals, the Einstein
67     Crystal is chosen as the reference state that the system is converted
68     to over the course of the simulation. In an Einstein Crystal, the
69     molecules are harmonically restrained at their ideal lattice locations
70     and orientations. The partition function for a molecular crystal
71     restrained in this fashion has been evaluated, and the Helmholtz Free
72     Energy ({\it A}) is given by
73     \begin{eqnarray}
74     A = E_m\ -\ kT\ln \left (\frac{kT}{h\nu}\right )^3&-&kT\ln \left
75     [\pi^\frac{1}{2}\left (\frac{8\pi^2I_\mathrm{A}kT}{h^2}\right
76     )^\frac{1}{2}\left (\frac{8\pi^2I_\mathrm{B}kT}{h^2}\right
77     )^\frac{1}{2}\left (\frac{8\pi^2I_\mathrm{C}kT}{h^2}\right
78     )^\frac{1}{2}\right ] \nonumber \\ &-& kT\ln \left [\frac{kT}{2(\pi
79     K_\omega K_\theta)^{\frac{1}{2}}}\exp\left
80     (-\frac{kT}{2K_\theta}\right)\int_0^{\left (\frac{kT}{2K_\theta}\right
81     )^\frac{1}{2}}\exp(t^2)\mathrm{d}t\right ],
82     \label{ecFreeEnergy}
83     \end{eqnarray}
84     where $2\pi\nu = (K_\mathrm{v}/m)^{1/2}$.\cite{Baez95a} In equation
85     \ref{ecFreeEnergy}, $K_\mathrm{v}$, $K_\mathrm{\theta}$, and
86     $K_\mathrm{\omega}$ are the spring constants restraining translational
87     motion and deflection of and rotation around the principle axis of the
88     molecule respectively (Fig. \ref{waterSpring}), and $E_m$ is the
89     minimum potential energy of the ideal crystal. In the case of
90     molecular liquids, the ideal vapor is chosen as the target reference
91     state.
92    
93    
94    
95    
96 chrisfen 1453 \section{Results and discussion}
97    
98     \section{Conclusions}
99    
100     \section{Acknowledgments}
101     Support for this project was provided by the National Science
102     Foundation under grant CHE-0134881. Computation time was provided by
103     the Notre Dame Bunch-of-Boxes (B.o.B) computer cluster under NSF grant
104     DMR-0079647.
105    
106     \newpage
107    
108     \bibliographystyle{jcp}
109     \bibliography{iceiPaper}
110    
111    
112     \end{document}