ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/iceiPaper/iceiPaper.tex
(Generate patch)

Comparing trunk/iceiPaper/iceiPaper.tex (file contents):
Revision 1811 by chrisfen, Tue Nov 30 22:18:09 2004 UTC vs.
Revision 1812 by chrisfen, Wed Dec 1 17:35:14 2004 UTC

# Line 84 | Line 84 | constant pressure and temperature conditions. Crystall
84   crystalline water polymorphs in the low pressure regime.  This work is
85   unique in that one of the crystal lattices was arrived at through
86   crystallization of a computationally efficient water model under
87 < constant pressure and temperature conditions. Crystallization events
87 > constant pressure and temperature conditions.  Crystallization events
88   are interesting in and of themselves;\cite{Matsumoto02,Yamada02}
89   however, the crystal structure obtained in this case is different from
90   any previously observed ice polymorphs in experiment or
91   simulation.\cite{Fennell04} We have named this structure Ice-{\it i}
92   to indicate its origin in computational simulation. The unit cell
93   (Fig. \ref{iceiCell}A) consists of eight water molecules that stack in
94 < rows of interlocking water tetramers. Proton ordering can be
94 > rows of interlocking water tetramers.  This crystal structure has a
95 > limited resemblence to a recent two-dimensional ice tessellation
96 > simulated on a silica surface.\cite{Yang04} Proton ordering can be
97   accomplished by orienting two of the molecules so that both of their
98   donated hydrogen bonds are internal to their tetramer
99 < (Fig. \ref{protOrder}). As expected in an ice crystal constructed of
99 > (Fig. \ref{protOrder}).  As expected in an ice crystal constructed of
100   water tetramers, the hydrogen bonds are not as linear as those
101   observed in ice $I_h$, however the interlocking of these subunits
102 < appears to provide significant stabilization to the overall
103 < crystal. The arrangement of these tetramers results in surrounding
104 < open octagonal cavities that are typically greater than 6.3 \AA\ in
105 < diameter. This relatively open overall structure leads to crystals
102 > appears to provide significant stabilization to the overall crystal.
103 > The arrangement of these tetramers results in surrounding open
104 > octagonal cavities that are typically greater than 6.3 \AA\ in
105 > diameter.  This relatively open overall structure leads to crystals
106   that are 0.07 g/cm$^3$ less dense on average than ice $I_h$.
107  
108   \begin{figure}
# Line 128 | Line 130 | contributions to the overall free energy. To address t
130   see our previous work and related
131   articles).\cite{Fennell04,Liu96,Bratko85} Those results only
132   considered energetic stabilization and neglected entropic
133 < contributions to the overall free energy. To address this issue, we
133 > contributions to the overall free energy.  To address this issue, we
134   have calculated the absolute free energy of this crystal using
135   thermodynamic integration and compared to the free energies of cubic
136   and hexagonal ice $I$ (the experimental low density ice polymorphs)
# Line 139 | Line 141 | was used in calculations involving SPC/E, TIP4P, and T
141   common water models (TIP3P, TIP4P, TIP5P, and SPC/E) and a reaction
142   field parametrized single point dipole water model (SSD/RF). It should
143   be noted that a second version of Ice-{\it i} (Ice-{\it i}$^\prime$)
144 < was used in calculations involving SPC/E, TIP4P, and TIP5P. The unit
144 > was used in calculations involving SPC/E, TIP4P, and TIP5P.  The unit
145   cell of this crystal (Fig. \ref{iceiCell}B) is similar to the Ice-{\it
146   i} unit it is extended in the direction of the (001) face and
147   compressed along the other two faces.  There is typically a small
# Line 154 | Line 156 | propagated using the symplectic DLM integration method
156   Canonical ensemble (NVT) molecular dynamics calculations were
157   performed using the OOPSE molecular mechanics package.\cite{Meineke05}
158   All molecules were treated as rigid bodies, with orientational motion
159 < propagated using the symplectic DLM integration method. Details about
159 > propagated using the symplectic DLM integration method.  Details about
160   the implementation of this technique can be found in a recent
161   publication.\cite{Dullweber1997}
162  
# Line 167 | Line 169 | generate phase diagrams. All simulations were carried
169   SSD/E water models.\cite{Baez95a} Liquid state free energies at 300
170   and 400 K for all of these water models were also determined using
171   this same technique in order to determine melting points and to
172 < generate phase diagrams. All simulations were carried out at densities
173 < which correspond to a pressure of approximately 1 atm at their
174 < respective temperatures.
172 > generate phase diagrams.  All simulations were carried out at
173 > densities which correspond to a pressure of approximately 1 atm at
174 > their respective temperatures.
175  
176   Thermodynamic integration involves a sequence of simulations during
177   which the system of interest is converted into a reference system for
178 < which the free energy is known analytically. This transformation path
178 > which the free energy is known analytically.  This transformation path
179   is then integrated in order to determine the free energy difference
180   between the two states:
181   \begin{equation}
# Line 181 | Line 183 | transformation parameter that scales the overall
183   )}{\partial\lambda}\right\rangle_\lambda d\lambda,
184   \end{equation}
185   where $V$ is the interaction potential and $\lambda$ is the
186 < transformation parameter that scales the overall
187 < potential. Simulations are distributed strategically along this path
188 < in order to sufficiently sample the regions of greatest change in the
189 < potential. Typical integrations in this study consisted of $\sim$25
190 < simulations ranging from 300 ps (for the unaltered system) to 75 ps
191 < (near the reference state) in length.
186 > transformation parameter that scales the overall potential.
187 > Simulations are distributed strategically along this path in order to
188 > sufficiently sample the regions of greatest change in the potential.
189 > Typical integrations in this study consisted of $\sim$25 simulations
190 > ranging from 300 ps (for the unaltered system) to 75 ps (near the
191 > reference state) in length.
192  
193   For the thermodynamic integration of molecular crystals, the Einstein
194 < crystal was chosen as the reference system. In an Einstein crystal,
194 > crystal was chosen as the reference system.  In an Einstein crystal,
195   the molecules are restrained at their ideal lattice locations and
196   orientations. Using harmonic restraints, as applied by B\`{a}ez and
197   Clancy, the total potential for this reference crystal
# Line 249 | Line 251 | cubic switching between 100\% and 85\% of the cutoff v
251   methods.\cite{Baez95b}
252  
253   Charge, dipole, and Lennard-Jones interactions were modified by a
254 < cubic switching between 100\% and 85\% of the cutoff value (9 \AA
255 < ). By applying this function, these interactions are smoothly
256 < truncated, thereby avoiding the poor energy conservation which results
257 < from harsher truncation schemes. The effect of a long-range correction
258 < was also investigated on select model systems in a variety of
259 < manners. For the SSD/RF model, a reaction field with a fixed
260 < dielectric constant of 80 was applied in all
261 < simulations.\cite{Onsager36} For a series of the least computationally
262 < expensive models (SSD/E, SSD/RF, and TIP3P), simulations were
263 < performed with longer cutoffs of 12 and 15 \AA\ to compare with the 9
264 < \AA\ cutoff results. Finally, the effects of utilizing an Ewald
265 < summation were estimated for TIP3P and SPC/E by performing single
266 < configuration calculations with Particle-Mesh Ewald (PME) in the
267 < TINKER molecular mechanics software package.\cite{Tinker} The
268 < calculated energy difference in the presence and absence of PME was
269 < applied to the previous results in order to predict changes to the
268 < free energy landscape.
254 > cubic switching between 100\% and 85\% of the cutoff value (9 \AA).
255 > By applying this function, these interactions are smoothly truncated,
256 > thereby avoiding the poor energy conservation which results from
257 > harsher truncation schemes.  The effect of a long-range correction was
258 > also investigated on select model systems in a variety of manners.
259 > For the SSD/RF model, a reaction field with a fixed dielectric
260 > constant of 80 was applied in all simulations.\cite{Onsager36} For a
261 > series of the least computationally expensive models (SSD/E, SSD/RF,
262 > and TIP3P), simulations were performed with longer cutoffs of 12 and
263 > 15 \AA\ to compare with the 9 \AA\ cutoff results.  Finally, the
264 > effects of utilizing an Ewald summation were estimated for TIP3P and
265 > SPC/E by performing single configuration calculations with
266 > Particle-Mesh Ewald (PME) in the TINKER molecular mechanics software
267 > package.\cite{Tinker} The calculated energy difference in the presence
268 > and absence of PME was applied to the previous results in order to
269 > predict changes to the free energy landscape.
270  
271   \section{Results and discussion}
272  
# Line 277 | Line 278 | as proton disordered or antiferroelectric variants of
278   model at ambient conditions (Table \ref{freeEnergy}).\cite{Baez95b}
279   Ice XI, the experimentally-observed proton-ordered variant of ice
280   $I_h$, was investigated initially, but was found to be not as stable
281 < as proton disordered or antiferroelectric variants of ice $I_h$. The
281 > as proton disordered or antiferroelectric variants of ice $I_h$.  The
282   proton ordered variant of ice $I_h$ used here is a simple
283   antiferroelectric version that we devised, and it has an 8 molecule
284   unit cell similar to other predicted antiferroelectric $I_h$
285   crystals.\cite{Davidson84} The crystals contained 648 or 1728
286   molecules for ice B, 1024 or 1280 molecules for ice $I_h$, 1000
287 < molecules for ice $I_c$, or 1024 molecules for Ice-{\it i}. The larger
288 < crystal sizes were necessary for simulations involving larger cutoff
289 < values.
287 > molecules for ice $I_c$, or 1024 molecules for Ice-{\it i}.  The
288 > larger crystal sizes were necessary for simulations involving larger
289 > cutoff values.
290  
291   \begin{table*}
292   \begin{minipage}{\linewidth}
# Line 314 | Line 315 | models studied. With the calculated free energy at the
315  
316   The free energy values computed for the studied polymorphs indicate
317   that Ice-{\it i} is the most stable state for all of the common water
318 < models studied. With the calculated free energy at these state points,
319 < the Gibbs-Helmholtz equation was used to project to other state points
320 < and to build phase diagrams.  Figures
321 < \ref{tp3phasedia} and \ref{ssdrfphasedia} are example diagrams built
322 < from the free energy results. All other models have similar structure,
323 < although the crossing points between the phases move to slightly
324 < different temperatures and pressures. It is interesting to note that
325 < ice $I$ does not exist in either cubic or hexagonal form in any of the
326 < phase diagrams for any of the models. For purposes of this study, ice
327 < B is representative of the dense ice polymorphs. A recent study by
328 < Sanz {\it et al.} goes into detail on the phase diagrams for SPC/E and
318 > models studied.  With the calculated free energy at these state
319 > points, the Gibbs-Helmholtz equation was used to project to other
320 > state points and to build phase diagrams.  Figures \ref{tp3phasedia}
321 > and \ref{ssdrfphasedia} are example diagrams built from the free
322 > energy results.  All other models have similar structure, although the
323 > crossing points between the phases move to slightly different
324 > temperatures and pressures.  It is interesting to note that ice $I$
325 > does not exist in either cubic or hexagonal form in any of the phase
326 > diagrams for any of the models.  For purposes of this study, ice B is
327 > representative of the dense ice polymorphs.  A recent study by Sanz
328 > {\it et al.} goes into detail on the phase diagrams for SPC/E and
329   TIP4P at higher pressures than those studied here.\cite{Sanz04}
330  
331   \begin{figure}
332   \includegraphics[width=\linewidth]{tp3PhaseDia.eps}
333   \caption{Phase diagram for the TIP3P water model in the low pressure
334 < regime. The displayed $T_m$ and $T_b$ values are good predictions of
334 > regime.  The displayed $T_m$ and $T_b$ values are good predictions of
335   the experimental values; however, the solid phases shown are not the
336 < experimentally observed forms. Both cubic and hexagonal ice $I$ are
336 > experimentally observed forms.  Both cubic and hexagonal ice $I$ are
337   higher in energy and don't appear in the phase diagram.}
338   \label{tp3phasedia}
339   \end{figure}
# Line 340 | Line 341 | regime. Calculations producing these results were done
341   \begin{figure}
342   \includegraphics[width=\linewidth]{ssdrfPhaseDia.eps}
343   \caption{Phase diagram for the SSD/RF water model in the low pressure
344 < regime. Calculations producing these results were done under an
345 < applied reaction field. It is interesting to note that this
344 > regime.  Calculations producing these results were done under an
345 > applied reaction field.  It is interesting to note that this
346   computationally efficient model (over 3 times more efficient than
347   TIP3P) exhibits phase behavior similar to the less computationally
348   conservative charge based models.}
# Line 354 | Line 355 | experiment. The $T_m$ and $T_s$ values from simulation
355  
356   \caption{Melting ($T_m$), boiling ($T_b$), and sublimation ($T_s$)
357   temperatures at 1 atm for several common water models compared with
358 < experiment. The $T_m$ and $T_s$ values from simulation correspond to a
359 < transition between Ice-{\it i} (or Ice-{\it i}$^\prime$) and the
358 > experiment.  The $T_m$ and $T_s$ values from simulation correspond to
359 > a transition between Ice-{\it i} (or Ice-{\it i}$^\prime$) and the
360   liquid or gas state.}
361  
362   \begin{tabular}{lccccccc}
# Line 372 | Line 373 | calculated from this work. Surprisingly, most of these
373   \end{table*}
374  
375   Table \ref{meltandboil} lists the melting and boiling temperatures
376 < calculated from this work. Surprisingly, most of these models have
377 < melting points that compare quite favorably with experiment. The
376 > calculated from this work.  Surprisingly, most of these models have
377 > melting points that compare quite favorably with experiment.  The
378   unfortunate aspect of this result is that this phase change occurs
379   between Ice-{\it i} and the liquid state rather than ice $I_h$ and the
380 < liquid state. These results are actually not contrary to other
381 < studies. Studies of ice $I_h$ using TIP4P predict a $T_m$ ranging from
382 < 214 to 238 K (differences being attributed to choice of interaction
383 < truncation and different ordered and disordered molecular
380 > liquid state.  These results are actually not contrary to other
381 > studies.  Studies of ice $I_h$ using TIP4P predict a $T_m$ ranging
382 > from 214 to 238 K (differences being attributed to choice of
383 > interaction truncation and different ordered and disordered molecular
384   arrangements).\cite{Vlot99,Gao00,Sanz04} If the presence of ice B and
385   Ice-{\it i} were omitted, a $T_m$ value around 210 K would be
386 < predicted from this work. However, the $T_m$ from Ice-{\it i} is
386 > predicted from this work.  However, the $T_m$ from Ice-{\it i} is
387   calculated to be 265 K, indicating that these simulation based
388   structures ought to be included in studies probing phase transitions
389 < with this model. Also of interest in these results is that SSD/E does
389 > with this model.  Also of interest in these results is that SSD/E does
390   not exhibit a melting point at 1 atm, but it shows a sublimation point
391 < at 355 K. This is due to the significant stability of Ice-{\it i} over
392 < all other polymorphs for this particular model under these
393 < conditions. While troubling, this behavior resulted in spontaneous
394 < crystallization of Ice-{\it i} and led us to investigate this
395 < structure. These observations provide a warning that simulations of
391 > at 355 K.  This is due to the significant stability of Ice-{\it i}
392 > over all other polymorphs for this particular model under these
393 > conditions.  While troubling, this behavior resulted in spontaneous
394 > crystallization of Ice-{\it i} and led us to investigate this
395 > structure.  These observations provide a warning that simulations of
396   SSD/E as a ``liquid'' near 300 K are actually metastable and run the
397 < risk of spontaneous crystallization. However, this risk lessens when
397 > risk of spontaneous crystallization.  However, this risk lessens when
398   applying a longer cutoff.
399  
400   \begin{figure}
401   \includegraphics[width=\linewidth]{cutoffChange.eps}
402   \caption{Free energy as a function of cutoff radius for SSD/E, TIP3P,
403   SPC/E, SSD/RF with a reaction field, and the TIP3P and SPC/E models
404 < with an added Ewald correction term. Calculations performed without a
404 > with an added Ewald correction term.  Calculations performed without a
405   long-range correction show noticable free energy dependence on the
406 < cutoff radius and show some degree of converge at large cutoff
407 < radii. Inclusion of a long-range correction reduces the cutoff radius
408 < dependence of the free energy for all the models. Data for ice I$_c$
406 > cutoff radius and show some degree of converge at large cutoff radii.
407 > Inclusion of a long-range correction reduces the cutoff radius
408 > dependence of the free energy for all the models.  Data for ice I$_c$
409   with TIP3P using 12 and 13.5 \AA\ cutoff radii were omitted being that
410   the crystal was prone to distortion and melting at 200 K.}
411   \label{incCutoff}
# Line 413 | Line 414 | involve potential truncation. As seen in Fig. \ref{inc
414   Increasing the cutoff radius in simulations of the more
415   computationally efficient water models was done in order to evaluate
416   the trend in free energy values when moving to systems that do not
417 < involve potential truncation. As seen in Fig. \ref{incCutoff}, the
417 > involve potential truncation.  As seen in Fig. \ref{incCutoff}, the
418   free energy of the ice polymorphs with water models lacking a
419 < long-range correction show a cutoff radius dependence. In general,
420 < there is a narrowing of the free energy differences while moving to
421 < greater cutoff radii.  As the free energies for the polymorphs
422 < converge, the stability advantage that Ice-{\it i} exhibits is
423 < reduced; however, it remains the most stable polymorph for both of
423 < these models over the depicted range for both models. This narrowing
424 < trend is not significant in the case of SSD/RF, indicating that the
425 < free energies calculated with a reaction field present provide, at
426 < minimal computational cost, a more accurate picture of the free energy
427 < landscape in the absence of potential truncation.  Interestingly,
428 < increasing the cutoff radius a mere 1.5
419 > long-range correction show a significant cutoff radius dependence.  In
420 > general, there is a narrowing of the free energy differences while
421 > moving to greater cutoff radii.  As the free energies for the
422 > polymorphs converge, the stability advantage that Ice-{\it i} exhibits
423 > is reduced.  Interestingly, increasing the cutoff radius a mere 1.5
424   \AA\ with the SSD/E model destabilizes the Ice-{\it i} polymorph
425   enough that the liquid state is preferred under standard simulation
426 < conditions (298 K and 1 atm). Thus, it is recommended that simulations
427 < using this model choose interaction truncation radii greater than 9
428 < \AA. Considering this stabilization provided by smaller cutoffs, it is
429 < not surprising that crystallization into Ice-{\it i} was observed with
430 < SSD/E.  The choice of a 9 \AA\ cutoff in the previous simulations
431 < gives the Ice-{\it i} polymorph a greater than 1 kcal/mol lower free
432 < energy than the ice $I_\textrm{h}$ starting configurations.
426 > conditions (298 K and 1 atm).  Thus, it is recommended that
427 > simulations using this model choose interaction truncation radii
428 > greater than 9 \AA.  Considering the stabilization of Ice-{\it i} with
429 > smaller cutoffs, it is not surprising that crystallization was
430 > observed with SSD/E.  The choice of a 9 \AA\ cutoff in the previous
431 > simulations gives the Ice-{\it i} polymorph a greater than 1 kcal/mol
432 > lower free energy than the ice $I_\textrm{h}$ starting configurations.
433 > Additionally, it should be noted that ice $I_c$ is not stable with
434 > cutoff radii of 12 and 13.5 \AA\ using the TIP3P water model.  These
435 > simulations showed bulk distortions of the simulation cell that
436 > rapidly deteriorated crystal integrity.
437  
438 < To further study the changes resulting to the inclusion of a
439 < long-range interaction correction, the effect of an Ewald summation
440 < was estimated by applying the potential energy difference do to its
441 < inclusion in systems in the presence and absence of the correction.
442 < This was accomplished by calculation of the potential energy of
443 < identical crystals both with and without PME.  The free energies for
444 < the investigated polymorphs using the TIP3P and SPC/E water models are
445 < shown in Table \ref{pmeShift}.  The same trend pointed out through
446 < increase of cutoff radius is observed in these PME results. Ice-{\it
447 < i} is the preferred polymorph at ambient conditions for both the TIP3P
448 < and SPC/E water models; however, the narrowing of the free energy
449 < differences between the various solid forms with the SPC/E model is
450 < significant enough that it becomes less clear that it is the most
451 < stable polymorph.  The free energies of Ice-{\it i} and $I_\textrm{c}$
452 < overlap within error, while ice B and $I_\textrm{h}$ are just outside
453 < at t slightly higher free energy.  This indicates that with SPC/E,
454 < Ice-{\it i} might be metastable with all the studied polymorphs,
455 < particularly ice $I_\textrm{c}$. However, these results do not
456 < significantly alter the finding that the Ice-{\it i} polymorph is a
457 < stable crystal structure that should be considered when studying the
458 < phase behavior of water models.
438 > Adjacent to each of these model plots is a system with an applied or
439 > estimated long-range correction.  SSD/RF was parametrized for use with
440 > a reaction field, and the benefit provided by this computationally
441 > inexpensive correction is apparent.  Due to the relative independence
442 > of the resultant free energies, calculations performed with a small
443 > cutoff radius provide resultant properties similar to what one would
444 > expect for the bulk material.  In the cases of TIP3P and SPC/E, the
445 > effect of an Ewald summation was estimated by applying the potential
446 > energy difference do to its inclusion in systems in the presence and
447 > absence of the correction.  This was accomplished by calculation of
448 > the potential energy of identical crystals both with and without
449 > particle mesh Ewald (PME).  Similar behavior to that observed with
450 > reaction field is seen for both of these models.  The free energies
451 > show less dependence on cutoff radius and span a more narrowed range
452 > for the various polymorphs.  Like the dipolar water models, TIP3P
453 > displays a relatively constant preference for the Ice-{\it i}
454 > polymorph.  Crystal preference is much more difficult to determine for
455 > SPC/E.  Without a long-range correction, each of the polymorphs
456 > studied assumes the role of the preferred polymorph under different
457 > cutoff conditions.  The inclusion of the Ewald correction flattens and
458 > narrows the sequences of free energies so much that they often overlap
459 > within error, indicating that other conditions, such as cell volume in
460 > microcanonical simulations, can influence the chosen polymorph upon
461 > crystallization.  All of these results support the finding that the
462 > Ice-{\it i} polymorph is a stable crystal structure that should be
463 > considered when studying the phase behavior of water models.
464  
465   \begin{table*}
466   \begin{minipage}{\linewidth}
467   \begin{center}
468  
469 < \caption{The free energy of the studied ice polymorphs after applying
470 < the energy difference attributed to the inclusion of the PME
471 < long-range interaction correction. Units are kcal/mol.}
469 > \caption{The free energy versus cutoff radius for the studied ice
470 > polymorphs using SPC/E after the inclusion of the PME long-range
471 > interaction correction. Units are kcal/mol.}
472  
473   \begin{tabular}{ccccc}
474   \hline
475 < Water Model &  $I_h$ & $I_c$ &  B & Ice-{\it i} \\
475 > Cutoff (\AA) &  $I_h$ & $I_c$ &  B & Ice-{\it i} \\
476   \hline
477 < TIP3P  & -11.53(2) & -11.24(3) & -11.51(3) & -11.67(3) \\
478 < SPC/E  & -12.97(2) & -13.00(2) & -12.96(3) & -13.02(2) \\
477 > 9.0   & -12.98(2) & -13.00(2) & -12.97(3) & -13.02(2) \\
478 > 10.5  & -13.13(3) & -13.09(4) & -13.17(3) & -13.11(2) \\
479 > 12.0  & -13.06(2) & -13.09(2) & -13.15(4) & -13.12(2) \\
480 > 13.5  & -13.02(2) & -13.02(2) & -13.08(2) & -13.07(2) \\
481 > 15.0  & -13.11(4) & -12.97(2) & -13.09(2) & -12.95(2) \\
482   \end{tabular}
483   \label{pmeShift}
484   \end{center}
# Line 483 | Line 490 | via thermodynamic integration. All the water models st
490   The free energy for proton ordered variants of hexagonal and cubic ice
491   $I$, ice B, and our recently discovered Ice-{\it i} structure were
492   calculated under standard conditions for several common water models
493 < via thermodynamic integration. All the water models studied show
493 > via thermodynamic integration.  All the water models studied show
494   Ice-{\it i} to be the minimum free energy crystal structure with a 9
495 < \AA\ switching function cutoff. Calculated melting and boiling points
495 > \AA\ switching function cutoff.  Calculated melting and boiling points
496   show surprisingly good agreement with the experimental values;
497 < however, the solid phase at 1 atm is Ice-{\it i}, not ice $I_h$. The
497 > however, the solid phase at 1 atm is Ice-{\it i}, not ice $I_h$.  The
498   effect of interaction truncation was investigated through variation of
499   the cutoff radius, use of a reaction field parameterized model, and
500 < estimation of the results in the presence of the Ewald
501 < summation. Interaction truncation has a significant effect on the
502 < computed free energy values, and may significantly alter the free
503 < energy landscape for the more complex multipoint water models. Despite
504 < these effects, these results show Ice-{\it i} to be an important ice
505 < polymorph that should be considered in simulation studies.
500 > estimation of the results in the presence of the Ewald summation.
501 > Interaction truncation has a significant effect on the computed free
502 > energy values, and may significantly alter the free energy landscape
503 > for the more complex multipoint water models.  Despite these effects,
504 > these results show Ice-{\it i} to be an important ice polymorph that
505 > should be considered in simulation studies.
506  
507   Due to this relative stability of Ice-{\it i} in all of the
508   investigated simulation conditions, the question arises as to possible

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines