ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/langevin/langevin.tex
Revision: 3302
Committed: Tue Jan 8 22:02:06 2008 UTC (16 years, 7 months ago) by gezelter
Content type: application/x-tex
File size: 50822 byte(s)
Log Message:
Updating paper

File Contents

# User Rev Content
1 tim 2746 %\documentclass[prb,aps,twocolumn,tabularx]{revtex4}
2     %\documentclass[aps,prb,preprint]{revtex4}
3     \documentclass[11pt]{article}
4     \usepackage{endfloat}
5     \usepackage{amsmath,bm}
6     \usepackage{amssymb}
7     \usepackage{times}
8     \usepackage{mathptmx}
9     \usepackage{setspace}
10     \usepackage{tabularx}
11     \usepackage{graphicx}
12     \usepackage{booktabs}
13     \usepackage{bibentry}
14     \usepackage{mathrsfs}
15     \usepackage[ref]{overcite}
16     \pagestyle{plain} \pagenumbering{arabic} \oddsidemargin 0.0cm
17     \evensidemargin 0.0cm \topmargin -21pt \headsep 10pt \textheight
18     9.0in \textwidth 6.5in \brokenpenalty=10000
19     \renewcommand{\baselinestretch}{1.2}
20 gezelter 3299 \renewcommand\citemid{\ } % no comma in optional referenc note
21 tim 2746
22     \begin{document}
23    
24 gezelter 3205 \title{An algorithm for performing Langevin dynamics on rigid bodies of arbitrary shape }
25 tim 2746
26 gezelter 3299 \author{Xiuquan Sun, Teng Lin and J. Daniel Gezelter\footnote{Corresponding author. \ Electronic mail:
27 tim 2746 gezelter@nd.edu} \\
28     Department of Chemistry and Biochemistry\\
29     University of Notre Dame\\
30     Notre Dame, Indiana 46556}
31    
32     \date{\today}
33    
34     \maketitle \doublespacing
35    
36     \begin{abstract}
37    
38     \end{abstract}
39    
40     \newpage
41    
42     %\narrowtext
43    
44     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
45     % BODY OF TEXT
46     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
47    
48     \section{Introduction}
49    
50     %applications of langevin dynamics
51 tim 2999 As alternative to Newtonian dynamics, Langevin dynamics, which
52     mimics a simple heat bath with stochastic and dissipative forces,
53     has been applied in a variety of studies. The stochastic treatment
54     of the solvent enables us to carry out substantially longer time
55     simulations. Implicit solvent Langevin dynamics simulations of
56     met-enkephalin not only outperform explicit solvent simulations for
57     computational efficiency, but also agrees very well with explicit
58     solvent simulations for dynamical properties.\cite{Shen2002}
59     Recently, applying Langevin dynamics with the UNRES model, Liow and
60     his coworkers suggest that protein folding pathways can be possibly
61     explored within a reasonable amount of time.\cite{Liwo2005} The
62     stochastic nature of the Langevin dynamics also enhances the
63     sampling of the system and increases the probability of crossing
64     energy barriers.\cite{Banerjee2004, Cui2003} Combining Langevin
65     dynamics with Kramers's theory, Klimov and Thirumalai identified
66     free-energy barriers by studying the viscosity dependence of the
67     protein folding rates.\cite{Klimov1997} In order to account for
68     solvent induced interactions missing from implicit solvent model,
69     Kaya incorporated desolvation free energy barrier into implicit
70     coarse-grained solvent model in protein folding/unfolding studies
71     and discovered a higher free energy barrier between the native and
72     denatured states. Because of its stability against noise, Langevin
73     dynamics is very suitable for studying remagnetization processes in
74     various systems.\cite{Palacios1998,Berkov2002,Denisov2003} For
75 tim 2746 instance, the oscillation power spectrum of nanoparticles from
76     Langevin dynamics simulation has the same peak frequencies for
77 tim 2999 different wave vectors, which recovers the property of magnetic
78     excitations in small finite structures.\cite{Berkov2005a}
79 tim 2746
80     %review rigid body dynamics
81     Rigid bodies are frequently involved in the modeling of different
82     areas, from engineering, physics, to chemistry. For example,
83     missiles and vehicle are usually modeled by rigid bodies. The
84     movement of the objects in 3D gaming engine or other physics
85     simulator is governed by the rigid body dynamics. In molecular
86     simulation, rigid body is used to simplify the model in
87     protein-protein docking study{\cite{Gray2003}}.
88    
89     It is very important to develop stable and efficient methods to
90 tim 2999 integrate the equations of motion for orientational degrees of
91     freedom. Euler angles are the natural choice to describe the
92     rotational degrees of freedom. However, due to $\frac {1}{sin
93     \theta}$ singularities, the numerical integration of corresponding
94     equations of these motion is very inefficient and inaccurate.
95     Although an alternative integrator using multiple sets of Euler
96     angles can overcome this difficulty\cite{Barojas1973}, the
97     computational penalty and the loss of angular momentum conservation
98     still remain. A singularity-free representation utilizing
99     quaternions was developed by Evans in 1977.\cite{Evans1977}
100     Unfortunately, this approach used a nonseparable Hamiltonian
101     resulting from the quaternion representation, which prevented the
102     symplectic algorithm from being utilized. Another different approach
103     is to apply holonomic constraints to the atoms belonging to the
104     rigid body. Each atom moves independently under the normal forces
105     deriving from potential energy and constraint forces which are used
106     to guarantee the rigidness. However, due to their iterative nature,
107     the SHAKE and Rattle algorithms also converge very slowly when the
108     number of constraints increases.\cite{Ryckaert1977, Andersen1983}
109 tim 2746
110 tim 2999 A break-through in geometric literature suggests that, in order to
111 tim 2746 develop a long-term integration scheme, one should preserve the
112 tim 2999 symplectic structure of the propagator. By introducing a conjugate
113     momentum to the rotation matrix $Q$ and re-formulating Hamiltonian's
114     equation, a symplectic integrator, RSHAKE\cite{Kol1997}, was
115     proposed to evolve the Hamiltonian system in a constraint manifold
116     by iteratively satisfying the orthogonality constraint $Q^T Q = 1$.
117     An alternative method using the quaternion representation was
118     developed by Omelyan.\cite{Omelyan1998} However, both of these
119     methods are iterative and inefficient. In this section, we descibe a
120     symplectic Lie-Poisson integrator for rigid bodies developed by
121     Dullweber and his coworkers\cite{Dullweber1997} in depth.
122 tim 2746
123     %review langevin/browninan dynamics for arbitrarily shaped rigid body
124     Combining Langevin or Brownian dynamics with rigid body dynamics,
125 tim 2999 one can study slow processes in biomolecular systems. Modeling DNA
126     as a chain of rigid beads, which are subject to harmonic potentials
127     as well as excluded volume potentials, Mielke and his coworkers
128     discovered rapid superhelical stress generations from the stochastic
129     simulation of twin supercoiling DNA with response to induced
130     torques.\cite{Mielke2004} Membrane fusion is another key biological
131     process which controls a variety of physiological functions, such as
132     release of neurotransmitters \textit{etc}. A typical fusion event
133     happens on the time scale of a millisecond, which is impractical to
134     study using atomistic models with newtonian mechanics. With the help
135     of coarse-grained rigid body model and stochastic dynamics, the
136     fusion pathways were explored by many
137     researchers.\cite{Noguchi2001,Noguchi2002,Shillcock2005} Due to the
138     difficulty of numerical integration of anisotropic rotation, most of
139     the rigid body models are simply modeled using spheres, cylinders,
140     ellipsoids or other regular shapes in stochastic simulations. In an
141     effort to account for the diffusion anisotropy of arbitrary
142 tim 2746 particles, Fernandes and de la Torre improved the original Brownian
143     dynamics simulation algorithm\cite{Ermak1978,Allison1991} by
144     incorporating a generalized $6\times6$ diffusion tensor and
145     introducing a simple rotation evolution scheme consisting of three
146 tim 2999 consecutive rotations.\cite{Fernandes2002} Unfortunately, unexpected
147     errors and biases are introduced into the system due to the
148     arbitrary order of applying the noncommuting rotation
149     operators.\cite{Beard2003} Based on the observation the momentum
150 tim 2746 relaxation time is much less than the time step, one may ignore the
151 tim 2999 inertia in Brownian dynamics. However, the assumption of zero
152 tim 2746 average acceleration is not always true for cooperative motion which
153     is common in protein motion. An inertial Brownian dynamics (IBD) was
154     proposed to address this issue by adding an inertial correction
155 tim 2999 term.\cite{Beard2000} As a complement to IBD which has a lower bound
156 tim 2746 in time step because of the inertial relaxation time, long-time-step
157     inertial dynamics (LTID) can be used to investigate the inertial
158     behavior of the polymer segments in low friction
159 tim 2999 regime.\cite{Beard2000} LTID can also deal with the rotational
160 tim 2746 dynamics for nonskew bodies without translation-rotation coupling by
161     separating the translation and rotation motion and taking advantage
162     of the analytical solution of hydrodynamics properties. However,
163 tim 2999 typical nonskew bodies like cylinders and ellipsoids are inadequate
164     to represent most complex macromolecule assemblies. These intricate
165 tim 2746 molecules have been represented by a set of beads and their
166 tim 2999 hydrodynamic properties can be calculated using variants on the
167     standard hydrodynamic interaction tensors.
168 tim 2746
169     The goal of the present work is to develop a Langevin dynamics
170 tim 2999 algorithm for arbitrary-shaped rigid particles by integrating the
171     accurate estimation of friction tensor from hydrodynamics theory
172     into the sophisticated rigid body dynamics algorithms.
173 tim 2746
174 tim 2999 \section{Computational Methods{\label{methodSec}}}
175 tim 2746
176 tim 2999 \subsection{\label{introSection:frictionTensor}Friction Tensor}
177     Theoretically, the friction kernel can be determined using the
178     velocity autocorrelation function. However, this approach becomes
179     impractical when the system becomes more and more complicated.
180     Instead, various approaches based on hydrodynamics have been
181     developed to calculate the friction coefficients. In general, the
182     friction tensor $\Xi$ is a $6\times 6$ matrix given by
183     \[
184     \Xi = \left( {\begin{array}{*{20}c}
185     {\Xi _{}^{tt} } & {\Xi _{}^{rt} } \\
186     {\Xi _{}^{tr} } & {\Xi _{}^{rr} } \\
187     \end{array}} \right).
188     \]
189     Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are $3 \times 3$
190     translational friction tensor and rotational resistance (friction)
191     tensor respectively, while ${\Xi^{tr} }$ is translation-rotation
192     coupling tensor and $ {\Xi^{rt} }$ is rotation-translation coupling
193     tensor. When a particle moves in a fluid, it may experience friction
194     force or torque along the opposite direction of the velocity or
195     angular velocity,
196     \[
197 tim 2746 \left( \begin{array}{l}
198 tim 2999 F_R \\
199     \tau _R \\
200 tim 2746 \end{array} \right) = - \left( {\begin{array}{*{20}c}
201 tim 2999 {\Xi ^{tt} } & {\Xi ^{rt} } \\
202     {\Xi ^{tr} } & {\Xi ^{rr} } \\
203 tim 2746 \end{array}} \right)\left( \begin{array}{l}
204 tim 2999 v \\
205     w \\
206 tim 2746 \end{array} \right)
207 tim 2999 \]
208     where $F_r$ is the friction force and $\tau _R$ is the friction
209     torque.
210 tim 2746
211 tim 2999 \subsubsection{\label{introSection:resistanceTensorRegular}\textbf{The Resistance Tensor for Regular Shapes}}
212 tim 2746
213 tim 2999 For a spherical particle with slip boundary conditions, the
214     translational and rotational friction constant can be calculated
215     from Stoke's law,
216 tim 2746 \[
217 tim 2999 \Xi ^{tt} = \left( {\begin{array}{*{20}c}
218     {6\pi \eta R} & 0 & 0 \\
219     0 & {6\pi \eta R} & 0 \\
220     0 & 0 & {6\pi \eta R} \\
221     \end{array}} \right)
222 tim 2746 \]
223 tim 2999 and
224 tim 2746 \[
225 tim 2999 \Xi ^{rr} = \left( {\begin{array}{*{20}c}
226     {8\pi \eta R^3 } & 0 & 0 \\
227     0 & {8\pi \eta R^3 } & 0 \\
228     0 & 0 & {8\pi \eta R^3 } \\
229     \end{array}} \right)
230 tim 2746 \]
231 tim 2999 where $\eta$ is the viscosity of the solvent and $R$ is the
232     hydrodynamic radius.
233    
234     Other non-spherical shapes, such as cylinders and ellipsoids, are
235     widely used as references for developing new hydrodynamics theory,
236     because their properties can be calculated exactly. In 1936, Perrin
237     extended Stokes's law to general ellipsoids, also called a triaxial
238     ellipsoid, which is given in Cartesian coordinates
239     by\cite{Perrin1934, Perrin1936}
240 tim 2746 \[
241 tim 2999 \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
242     }} = 1
243 tim 2746 \]
244 tim 2999 where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
245     due to the complexity of the elliptic integral, only the ellipsoid
246     with the restriction of two axes being equal, \textit{i.e.}
247     prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
248     exactly. Introducing an elliptic integral parameter $S$ for prolate
249     ellipsoids :
250     \[
251     S = \frac{2}{{\sqrt {a^2 - b^2 } }}\ln \frac{{a + \sqrt {a^2 - b^2
252     } }}{b},
253     \]
254     and oblate ellipsoids:
255     \[
256     S = \frac{2}{{\sqrt {b^2 - a^2 } }}arctg\frac{{\sqrt {b^2 - a^2 }
257     }}{a},
258     \]
259     one can write down the translational and rotational resistance
260     tensors
261     \begin{eqnarray*}
262     \Xi _a^{tt} & = & 16\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - b^2 )S - 2a}}. \\
263     \Xi _b^{tt} & = & \Xi _c^{tt} = 32\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - 3b^2 )S +
264     2a}},
265     \end{eqnarray*}
266     and
267     \begin{eqnarray*}
268     \Xi _a^{rr} & = & \frac{{32\pi }}{3}\eta \frac{{(a^2 - b^2 )b^2 }}{{2a - b^2 S}}, \\
269     \Xi _b^{rr} & = & \Xi _c^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^4 - b^4 )}}{{(2a^2 - b^2 )S - 2a}}.
270     \end{eqnarray*}
271 tim 2746
272 tim 2999 \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}\textbf{The Resistance Tensor for Arbitrary Shapes}}
273    
274     Unlike spherical and other simply shaped molecules, there is no
275     analytical solution for the friction tensor for arbitrarily shaped
276     rigid molecules. The ellipsoid of revolution model and general
277     triaxial ellipsoid model have been used to approximate the
278     hydrodynamic properties of rigid bodies. However, since the mapping
279     from all possible ellipsoidal spaces, $r$-space, to all possible
280     combination of rotational diffusion coefficients, $D$-space, is not
281     unique\cite{Wegener1979} as well as the intrinsic coupling between
282     translational and rotational motion of rigid bodies, general
283     ellipsoids are not always suitable for modeling arbitrarily shaped
284     rigid molecules. A number of studies have been devoted to
285     determining the friction tensor for irregularly shaped rigid bodies
286     using more advanced methods where the molecule of interest was
287     modeled by a combinations of spheres\cite{Carrasco1999} and the
288     hydrodynamics properties of the molecule can be calculated using the
289     hydrodynamic interaction tensor. Let us consider a rigid assembly of
290     $N$ beads immersed in a continuous medium. Due to hydrodynamic
291     interaction, the ``net'' velocity of $i$th bead, $v'_i$ is different
292     than its unperturbed velocity $v_i$,
293 tim 2746 \[
294 tim 2999 v'_i = v_i - \sum\limits_{j \ne i} {T_{ij} F_j }
295 tim 2746 \]
296 tim 2999 where $F_i$ is the frictional force, and $T_{ij}$ is the
297     hydrodynamic interaction tensor. The friction force of $i$th bead is
298     proportional to its ``net'' velocity
299 tim 2746 \begin{equation}
300 tim 2999 F_i = \zeta _i v_i - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
301     \label{introEquation:tensorExpression}
302 tim 2746 \end{equation}
303 tim 2999 This equation is the basis for deriving the hydrodynamic tensor. In
304     1930, Oseen and Burgers gave a simple solution to
305     Eq.~\ref{introEquation:tensorExpression}
306 tim 2746 \begin{equation}
307 tim 2999 T_{ij} = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
308     R_{ij}^T }}{{R_{ij}^2 }}} \right). \label{introEquation:oseenTensor}
309 tim 2746 \end{equation}
310 tim 2999 Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
311     A second order expression for element of different size was
312     introduced by Rotne and Prager\cite{Rotne1969} and improved by
313     Garc\'{i}a de la Torre and Bloomfield,\cite{Torre1977}
314 tim 2746 \begin{equation}
315 tim 2999 T_{ij} = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
316     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
317     _i^2 + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
318     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
319     \label{introEquation:RPTensorNonOverlapped}
320 tim 2746 \end{equation}
321 tim 2999 Both of the Eq.~\ref{introEquation:oseenTensor} and
322     Eq.~\ref{introEquation:RPTensorNonOverlapped} have an assumption
323     $R_{ij} \ge \sigma _i + \sigma _j$. An alternative expression for
324     overlapping beads with the same radius, $\sigma$, is given by
325 tim 2746 \begin{equation}
326 tim 2999 T_{ij} = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
327     \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
328     \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
329     \label{introEquation:RPTensorOverlapped}
330 tim 2746 \end{equation}
331 tim 2999 To calculate the resistance tensor at an arbitrary origin $O$, we
332     construct a $3N \times 3N$ matrix consisting of $N \times N$
333     $B_{ij}$ blocks
334     \begin{equation}
335     B = \left( {\begin{array}{*{20}c}
336     {B_{11} } & \ldots & {B_{1N} } \\
337     \vdots & \ddots & \vdots \\
338     {B_{N1} } & \cdots & {B_{NN} } \\
339     \end{array}} \right),
340     \end{equation}
341     where $B_{ij}$ is given by
342 tim 2746 \[
343 tim 2999 B_{ij} = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
344     )T_{ij}
345 tim 2746 \]
346 tim 2999 where $\delta _{ij}$ is the Kronecker delta function. Inverting the
347     $B$ matrix, we obtain
348 tim 2746 \[
349 tim 2999 C = B^{ - 1} = \left( {\begin{array}{*{20}c}
350     {C_{11} } & \ldots & {C_{1N} } \\
351     \vdots & \ddots & \vdots \\
352     {C_{N1} } & \cdots & {C_{NN} } \\
353     \end{array}} \right),
354 tim 2746 \]
355 tim 2999 which can be partitioned into $N \times N$ $3 \times 3$ block
356     $C_{ij}$. With the help of $C_{ij}$ and the skew matrix $U_i$
357 tim 2746 \[
358 tim 2999 U_i = \left( {\begin{array}{*{20}c}
359     0 & { - z_i } & {y_i } \\
360     {z_i } & 0 & { - x_i } \\
361     { - y_i } & {x_i } & 0 \\
362     \end{array}} \right)
363 tim 2746 \]
364 tim 2999 where $x_i$, $y_i$, $z_i$ are the components of the vector joining
365     bead $i$ and origin $O$, the elements of resistance tensor at
366     arbitrary origin $O$ can be written as
367     \begin{eqnarray}
368     \Xi _{}^{tt} & = & \sum\limits_i {\sum\limits_j {C_{ij} } } \notag , \\
369     \Xi _{}^{tr} & = & \Xi _{}^{rt} = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
370     \Xi _{}^{rr} & = & - \sum\limits_i {\sum\limits_j {U_i C_{ij} } } U_j. \notag \\
371     \label{introEquation:ResistanceTensorArbitraryOrigin}
372     \end{eqnarray}
373     The resistance tensor depends on the origin to which they refer. The
374     proper location for applying the friction force is the center of
375     resistance (or center of reaction), at which the trace of rotational
376     resistance tensor, $ \Xi ^{rr}$ reaches a minimum value.
377     Mathematically, the center of resistance is defined as an unique
378     point of the rigid body at which the translation-rotation coupling
379     tensors are symmetric,
380     \begin{equation}
381     \Xi^{tr} = \left( {\Xi^{tr} } \right)^T
382     \label{introEquation:definitionCR}
383     \end{equation}
384     From Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
385     we can easily derive that the translational resistance tensor is
386     origin independent, while the rotational resistance tensor and
387     translation-rotation coupling resistance tensor depend on the
388     origin. Given the resistance tensor at an arbitrary origin $O$, and
389     a vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
390     obtain the resistance tensor at $P$ by
391     \begin{equation}
392     \begin{array}{l}
393     \Xi _P^{tt} = \Xi _O^{tt} \\
394     \Xi _P^{tr} = \Xi _P^{rt} = \Xi _O^{tr} - U_{OP} \Xi _O^{tt} \\
395     \Xi _P^{rr} = \Xi _O^{rr} - U_{OP} \Xi _O^{tt} U_{OP} + \Xi _O^{tr} U_{OP} - U_{OP} \Xi _O^{{tr} ^{^T }} \\
396     \end{array}
397     \label{introEquation:resistanceTensorTransformation}
398     \end{equation}
399     where
400 tim 2746 \[
401 tim 2999 U_{OP} = \left( {\begin{array}{*{20}c}
402     0 & { - z_{OP} } & {y_{OP} } \\
403     {z_i } & 0 & { - x_{OP} } \\
404     { - y_{OP} } & {x_{OP} } & 0 \\
405     \end{array}} \right)
406 tim 2746 \]
407 tim 2999 Using Eq.~\ref{introEquation:definitionCR} and
408     Eq.~\ref{introEquation:resistanceTensorTransformation}, one can
409     locate the position of center of resistance,
410     \begin{eqnarray*}
411     \left( \begin{array}{l}
412     x_{OR} \\
413     y_{OR} \\
414     z_{OR} \\
415     \end{array} \right) & = &\left( {\begin{array}{*{20}c}
416     {(\Xi _O^{rr} )_{yy} + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} } \\
417     { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz} + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} } \\
418     { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx} + (\Xi _O^{rr} )_{yy} } \\
419     \end{array}} \right)^{ - 1} \\
420     & & \left( \begin{array}{l}
421     (\Xi _O^{tr} )_{yz} - (\Xi _O^{tr} )_{zy} \\
422     (\Xi _O^{tr} )_{zx} - (\Xi _O^{tr} )_{xz} \\
423     (\Xi _O^{tr} )_{xy} - (\Xi _O^{tr} )_{yx} \\
424     \end{array} \right) \\
425     \end{eqnarray*}
426     where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
427     joining center of resistance $R$ and origin $O$.
428 tim 2746
429 tim 2999 \subsection{Langevin Dynamics for Rigid Particles of Arbitrary Shape\label{LDRB}}
430 tim 2746
431 tim 2999 Consider the Langevin equations of motion in generalized coordinates
432 tim 2746 \begin{equation}
433     M_i \dot V_i (t) = F_{s,i} (t) + F_{f,i(t)} + F_{r,i} (t)
434     \label{LDGeneralizedForm}
435     \end{equation}
436     where $M_i$ is a $6\times6$ generalized diagonal mass (include mass
437     and moment of inertial) matrix and $V_i$ is a generalized velocity,
438 tim 2999 $V_i = V_i(v_i,\omega _i)$. The right side of
439     Eq.~\ref{LDGeneralizedForm} consists of three generalized forces in
440 tim 2746 lab-fixed frame, systematic force $F_{s,i}$, dissipative force
441     $F_{f,i}$ and stochastic force $F_{r,i}$. While the evolution of the
442     system in Newtownian mechanics typically refers to lab-fixed frame,
443     it is also convenient to handle the rotation of rigid body in
444     body-fixed frame. Thus the friction and random forces are calculated
445     in body-fixed frame and converted back to lab-fixed frame by:
446     \[
447     \begin{array}{l}
448 tim 2999 F_{f,i}^l (t) = Q^T F_{f,i}^b (t), \\
449     F_{r,i}^l (t) = Q^T F_{r,i}^b (t). \\
450     \end{array}
451 tim 2746 \]
452     Here, the body-fixed friction force $F_{r,i}^b$ is proportional to
453     the body-fixed velocity at center of resistance $v_{R,i}^b$ and
454 tim 2999 angular velocity $\omega _i$
455 tim 2746 \begin{equation}
456     F_{r,i}^b (t) = \left( \begin{array}{l}
457     f_{r,i}^b (t) \\
458     \tau _{r,i}^b (t) \\
459     \end{array} \right) = - \left( {\begin{array}{*{20}c}
460     {\Xi _{R,t} } & {\Xi _{R,c}^T } \\
461     {\Xi _{R,c} } & {\Xi _{R,r} } \\
462     \end{array}} \right)\left( \begin{array}{l}
463     v_{R,i}^b (t) \\
464     \omega _i (t) \\
465     \end{array} \right),
466     \end{equation}
467     while the random force $F_{r,i}^l$ is a Gaussian stochastic variable
468     with zero mean and variance
469     \begin{equation}
470     \left\langle {F_{r,i}^l (t)(F_{r,i}^l (t'))^T } \right\rangle =
471     \left\langle {F_{r,i}^b (t)(F_{r,i}^b (t'))^T } \right\rangle =
472 tim 2999 2k_B T\Xi _R \delta (t - t'). \label{randomForce}
473 tim 2746 \end{equation}
474     The equation of motion for $v_i$ can be written as
475     \begin{equation}
476     m\dot v_i (t) = f_{t,i} (t) = f_{s,i} (t) + f_{f,i}^l (t) +
477     f_{r,i}^l (t)
478     \end{equation}
479     Since the frictional force is applied at the center of resistance
480     which generally does not coincide with the center of mass, an extra
481     torque is exerted at the center of mass. Thus, the net body-fixed
482     frictional torque at the center of mass, $\tau _{n,i}^b (t)$, is
483     given by
484     \begin{equation}
485     \tau _{r,i}^b = \tau _{r,i}^b +r_{MR} \times f_{r,i}^b
486     \end{equation}
487     where $r_{MR}$ is the vector from the center of mass to the center
488 tim 2999 of the resistance. Instead of integrating the angular velocity in
489     lab-fixed frame, we consider the equation of angular momentum in
490     body-fixed frame
491 tim 2746 \begin{equation}
492 tim 2999 \dot j_i (t) = \tau _{t,i} (t) = \tau _{s,i} (t) + \tau _{f,i}^b (t)
493     + \tau _{r,i}^b(t)
494 tim 2746 \end{equation}
495     Embedding the friction terms into force and torque, one can
496     integrate the langevin equations of motion for rigid body of
497     arbitrary shape in a velocity-Verlet style 2-part algorithm, where
498     $h= \delta t$:
499    
500 tim 2999 {\tt moveA:}
501 tim 2746 \begin{align*}
502 tim 2999 {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
503     + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
504     %
505     {\bf r}(t + h) &\leftarrow {\bf r}(t)
506     + h {\bf v}\left(t + h / 2 \right), \\
507     %
508     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
509     + \frac{h}{2} {\bf \tau}^b(t), \\
510     %
511     \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
512     (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
513 tim 2746 \end{align*}
514     In this context, the $\mathrm{rotate}$ function is the reversible
515 tim 2999 product of the three body-fixed rotations,
516 tim 2746 \begin{equation}
517     \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
518     \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y
519     / 2) \cdot \mathsf{G}_x(a_x /2),
520     \end{equation}
521     where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
522 tim 2999 rotates both the rotation matrix ($\mathsf{Q}$) and the body-fixed
523     angular momentum (${\bf j}$) by an angle $\theta$ around body-fixed
524     axis $\alpha$,
525 tim 2746 \begin{equation}
526     \mathsf{G}_\alpha( \theta ) = \left\{
527     \begin{array}{lcl}
528 tim 2999 \mathsf{Q}(t) & \leftarrow & \mathsf{Q}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
529 tim 2746 {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
530     j}(0).
531     \end{array}
532     \right.
533     \end{equation}
534     $\mathsf{R}_\alpha$ is a quadratic approximation to the single-axis
535     rotation matrix. For example, in the small-angle limit, the
536     rotation matrix around the body-fixed x-axis can be approximated as
537     \begin{equation}
538     \mathsf{R}_x(\theta) \approx \left(
539     \begin{array}{ccc}
540     1 & 0 & 0 \\
541     0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
542     \theta^2 / 4} \\
543     0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
544     \theta^2 / 4}
545     \end{array}
546     \right).
547     \end{equation}
548 tim 2999 All other rotations follow in a straightforward manner. After the
549     first part of the propagation, the forces and body-fixed torques are
550     calculated at the new positions and orientations
551 tim 2746
552 tim 2999 {\tt doForces:}
553     \begin{align*}
554     {\bf f}(t + h) &\leftarrow
555     - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\
556     %
557     {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
558     \times \frac{\partial V}{\partial {\bf u}}, \\
559     %
560     {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{Q}(t + h)
561     \cdot {\bf \tau}^s(t + h).
562     \end{align*}
563 tim 2746 Once the forces and torques have been obtained at the new time step,
564     the velocities can be advanced to the same time value.
565    
566 tim 2999 {\tt moveB:}
567 tim 2746 \begin{align*}
568 tim 2999 {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + h / 2
569     \right)
570     + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
571     %
572     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + h / 2
573     \right)
574     + \frac{h}{2} {\bf \tau}^b(t + h) .
575 tim 2746 \end{align*}
576    
577 tim 2999 \section{Results and Discussion}
578 tim 2746
579 tim 2999 The Langevin algorithm described in previous section has been
580     implemented in {\sc oopse}\cite{Meineke2005} and applied to studies
581     of the static and dynamic properties in several systems.
582 tim 2746
583 tim 2999 \subsection{Temperature Control}
584 tim 2746
585 tim 2999 As shown in Eq.~\ref{randomForce}, random collisions associated with
586     the solvent's thermal motions is controlled by the external
587     temperature. The capability to maintain the temperature of the whole
588     system was usually used to measure the stability and efficiency of
589     the algorithm. In order to verify the stability of this new
590     algorithm, a series of simulations are performed on system
591     consisiting of 256 SSD water molecules with different viscosities.
592     The initial configuration for the simulations is taken from a 1ns
593     NVT simulation with a cubic box of 19.7166~\AA. All simulation are
594     carried out with cutoff radius of 9~\AA and 2 fs time step for 1 ns
595     with reference temperature at 300~K. The average temperature as a
596     function of $\eta$ is shown in Table \ref{langevin:viscosity} where
597     the temperatures range from 303.04~K to 300.47~K for $\eta = 0.01 -
598     1$ poise. The better temperature control at higher viscosity can be
599     explained by the finite size effect and relative slow relaxation
600     rate at lower viscosity regime.
601     \begin{table}
602     \caption{AVERAGE TEMPERATURES FROM LANGEVIN DYNAMICS SIMULATIONS OF
603     SSD WATER MOLECULES WITH REFERENCE TEMPERATURE AT 300~K.}
604     \label{langevin:viscosity}
605     \begin{center}
606     \begin{tabular}{lll}
607     \hline
608     $\eta$ & $\text{T}_{\text{avg}}$ & $\text{T}_{\text{rms}}$ \\
609     \hline
610     1 & 300.47 & 10.99 \\
611     0.1 & 301.19 & 11.136 \\
612     0.01 & 303.04 & 11.796 \\
613     \hline
614     \end{tabular}
615     \end{center}
616     \end{table}
617 tim 2746
618 tim 2999 Another set of calculations were performed to study the efficiency of
619     temperature control using different temperature coupling schemes.
620     The starting configuration is cooled to 173~K and evolved using NVE,
621     NVT, and Langevin dynamic with time step of 2 fs.
622     Fig.~\ref{langevin:temperature} shows the heating curve obtained as
623     the systems reach equilibrium. The orange curve in
624     Fig.~\ref{langevin:temperature} represents the simulation using
625     Nos\'e-Hoover temperature scaling scheme with thermostat of 5 ps
626     which gives reasonable tight coupling, while the blue one from
627     Langevin dynamics with viscosity of 0.1 poise demonstrates a faster
628     scaling to the desire temperature. When $ \eta = 0$, Langevin dynamics becomes normal
629     NVE (see orange curve in Fig.~\ref{langevin:temperature}) which
630     loses the temperature control ability.
631    
632     \begin{figure}
633     \centering
634 gezelter 3302 \includegraphics[width=\linewidth]{temperature}
635 tim 2999 \caption[Plot of Temperature Fluctuation Versus Time]{Plot of
636     temperature fluctuation versus time.} \label{langevin:temperature}
637     \end{figure}
638    
639 gezelter 3302 \section{Comparisons with Analytic and MD simulation results}
640 xsun 3298
641 gezelter 3302 In order to validate our Langevin integrator for arbitrarily-shaped
642     rigid bodies, we compared the results of this algorithm with the known
643     hydrodynamic limiting behavior for a few model systems, and to
644     microcanonical molecular dynamics simulations for some more
645     complicated bodies. The model systems and their analytical behavior
646     (if known) are summarized below. Parameters for the primary particles
647     comprising our model systems are given in table \ref{tab:parameters},
648     and a sketch of the arrangement of these primary particles into the
649     model rigid bodies is shown in figure \ref{fig:models}. $d$ and $l$
650     are the physical dimensions of ellipsoidal (Gay-Berne) particles. For
651     spherical particles, the value of the Lennard-Jones $\sigma$ parameter
652     is the particle diameter ($d$). Gay-Berne ellipsoids have an energy
653     scaling parameter, $\epsilon^s$, which describes the well depth for
654     two identical ellipsoids in a {\it side-by-side} configuration.
655     Additionally, a well depth aspect ratio, $\epsilon^r = \epsilon^e /
656     \epsilon^s$, describes the ratio between the well depths in the {\it
657     end-to-end} and side-by-side configurations. For spheres, $\epsilon^r
658     \equiv 1$. Moments of inertia are also required to describe the
659     motion of primary particles with orientational degrees of freedom.
660 gezelter 3299
661 gezelter 3302 \begin{figure}
662     \centering
663     \includegraphics[width=3in]{sketch}
664     \caption[Sketch of the model systems]{A sketch of the model systems
665     used in evaluating the behavior of the rigid body langevin
666     integrator.} \label{fig:models}
667     \end{figure}
668    
669     \begin{table*}
670     \begin{minipage}{\linewidth}
671     \begin{center}
672     \caption{Parameters for the primary particles in use by the rigid body
673     models in figure \ref{fig:models}.}
674     \begin{tabular}{lrcccccccc}
675     \hline
676     & & & & & & & \multicolumn{3}c{$\overleftrightarrow{\mathsf I}$ (amu \AA$^2$)} \\
677     & & $d$ (\AA) & $l$ (\AA) & $\epsilon^s$ (kcal/mol) & $\epsilon^r$ &
678     $m$ (amu) & $I_{xx}$ & $I_{yy}$ & $I_{zz}$ \\ \hline
679     Sphere & & 6.5 & $= d$ & 0.8 & 1 & 190 & & & \\
680     Ellipsoid & & 4.6 & 13.8 & 0.8 & 0.2 & 200 & 2105 & 2105 & 421 \\
681     Dumbbell &(2 identical spheres) & 6.5 & $= d$ & 0.8 & 1 & 190 & & & \\
682     Banana &(3 identical ellipsoids)& 4.2 & 11.2 & 0.8 & 0.2 & 240 & 10000 & 10000 & 0 \\
683     Lipid: & Spherical Head & 6.5 & $= d$ & 0.185 & 1 & 196 & & & \\
684     & Ellipsoidal Tail & 4.6 & 13.8 & 0.8 & 0.2 & 760 & 45000 & 45000 & 9000 \\
685     Solvent & & 4.7 & $= d$ & 0.8 & 1 & 72.06 & & & \\
686     \hline
687     \end{tabular}
688     \label{tab:parameters}
689     \end{center}
690     \end{minipage}
691     \end{table*}
692    
693     \subsection{Simulation Methodology}
694    
695     We performed reference microcanonical simulations with explicit
696     solvents for each of the different model system. In each case there
697     was one solute model and 1929 solvent molecules present in the
698     simulation box. All simulations were equilibrated using a
699     constant-pressure and temperature integrator with target values of 300
700     K for the temperature and 1 atm for pressure. Following this stage,
701     further equilibration and sampling was done in a microcanonical
702     ensemble. Since the bodies are typically quite massive, we were able
703     to use a time step of 25 fs, and a switching function was applied to
704     all potentials to smoothly turn off the interactions between a range
705     of $22$ and $25$ \AA. The switching function was the standard (cubic)
706     function,
707     \begin{equation}
708     s(r) =
709     \begin{cases}
710     1 & \text{if $r \le r_{\text{sw}}$},\\
711     \frac{(r_{\text{cut}} + 2r - 3r_{\text{sw}})(r_{\text{cut}} - r)^2}
712     {(r_{\text{cut}} - r_{\text{sw}})^3}
713     & \text{if $r_{\text{sw}} < r \le r_{\text{cut}}$}, \\
714     0 & \text{if $r > r_{\text{cut}}$.}
715     \end{cases}
716     \label{eq:switchingFunc}
717     \end{equation}
718     To measure shear viscosities from our microcanonical simulations, we
719     used the Einstein form of the pressure correlation function,\cite{hess:209}
720     \begin{equation}
721     \eta = \lim_{t->\infty} \frac{V}{2 k_B T} \frac{d}{dt} \langle \left(
722     \int_{t_0}^{t_0 + t} P_{xz}(t') dt' \right)^2 \rangle_{t_0}.
723     \label{eq:shear}
724     \end{equation}
725     A similar form exists for the bulk viscosity
726     \begin{equation}
727     \kappa = \lim_{t->\infty} \frac{V}{2 k_B T} \frac{d}{dt} \langle \left(
728     \int_{t_0}^{t_0 + t}
729     \left(P\left(t'\right)-\langle P \rangle \right)dt'
730     \right)^2 \rangle_{t_0}.
731     \end{equation}
732     Alternatively, the shear viscosity can also be calculated using a
733     Green-Kubo formula with the off-diagonal pressure tensor correlation function,
734     \begin{equation}
735     \eta = \frac{V}{k_B T} \int_0^{\infty} \langle P_{xz}(t_0) P_{xz}(t_0
736     + t) \rangle_{t_0} dt,
737     \end{equation}
738     although this method converges extremely slowly and is not practical
739     for obtaining viscosities from molecular dynamics simulations.
740    
741     The Langevin dynamics for the different model systems were performed
742     at the same temperature as the average temperature of the
743     microcanonical simulations and with a solvent viscosity taken from
744     Eq. (\ref{eq:shear}) applied to these simulations. Since Langevin
745     dynamics simulations on isolated solute bodies is must faster than
746     explicitly-solvated molecular dynamics, we used 1024 independent
747     solute simulations to obtain statistics on our Langevin integrator.
748    
749     \subsection{Analysis}
750    
751     The quantities of interest when comparing the Langevin integrator to
752     analytic hydrodynamic equations and to molecular dynamics simulations
753     are typically translational diffusion constants and orientational
754     relaxation times. Translational diffusion constants for point
755     particles are computed easily from the long-time slope of the
756     mean-square displacement,
757     \begin{equation}
758     D = \lim_{t\rightarrow \infty} \frac{1}{6 t} \langle {|\left({\bf r}_{i}(t) - {\bf r}_{i}(0) \right)|}^2 \rangle,
759     \end{equation}
760     of the solute molecules. For models in which the translational
761     diffusion tensor (${\bf D}_{tt}$) has different eigenvalues (i.e. any
762     non-spherically-symmetric rigid body), it is possible to compute the
763     diffusive behavior for motion parallel to each body fixed axis by
764     projecting the displacement of the particle onto the body-fixed
765     reference frame at $t=0$. With an isotropic solvent, as we have used
766     in this study, there may be initial differences between the three
767     diffusion constants, but these must converge to the same value at
768     longer times. Translational diffusion constants for the different
769     shaped models are shown in table \ref{tab:translation}.
770    
771     In general, the eigenvalues ($D_1, D_2, D_3$) of the rotational
772     diffusion tensor (${\bf D}_{rr}$) measure the diffusion of an object
773     {\it around} a particular body-fixed axis and {\it not} the diffusion
774     of a vector pointing along the axis. However, these eigenvalues can
775     be combined to find 5 characteristic rotational relaxation
776     times,\cite{Carrasco1999}
777     \begin{eqnarray}
778     1 / \tau_1 & = & 6 D_r - 2 \Delta \\
779     1 / \tau_2 & = & 3 (D_r + D_1) \\
780     1 / \tau_3 & = & 3 (D_r + D_2) \\
781     1 / \tau_4 & = & 3 (D_r + D_3) \\
782     1 / \tau_5 & = & 6 D_r + 2 \Delta
783     \end{eqnarray}
784     where
785     \begin{equation}
786     D_r = \frac{1}{3} \left(D_1 + D_2 + D_3 \right)
787     \end{equation}
788     and
789     \begin{equation}
790     \Delta = \left( D_1^2 + D_2^2 + D_3^2 - D_1 D_2 - D_1 D_3 - D_2 D_3
791     \right)^{1/2}
792     \end{equation}
793     These characteristic times are often averaged and reported as a single
794     relaxation time,\cite{Garcia-de-la-Torre:1997qy}
795     \begin{equation}
796     1 / \tau_0 = \frac{1}{5} \sum_{i=1}^5 \tau_{i}^{-1}.
797     \end{equation}
798     In order to test the Langevin integrator's behavior for rotational
799     relaxation, we have compared the ``analytical results,'' or the
800     characteristic rotation time obtained from the diffusion tensor
801     ($\tau_0$) with simulation results. To obtain relaxation times from
802     simulations (both microcanonical and Langevin), we computed Legendre
803     polynomial correlation functions for a unit vector (${\bf u}$) fixed
804     along one of the body-fixed axes of the model.
805     \begin{equation}
806     C_{\ell}(t) = \langle P_{\ell}\left({\bf u}_{i}(t) \cdot {\bf
807     u}_{i}(0) \right)
808     \end{equation}
809     For simulations in the high-friction limit, orientational correlation
810     times can then be obtained from exponential fits of this function, or by
811     integrating,
812     \begin{equation}
813     \tau_0 = \ell (\ell + 1) \int_0^{\infty} C_{\ell}(t) dt.
814     \end{equation}
815     In lower-friction solvents, the Legendre correlation functions can
816     exhibit non-exponential decay.
817    
818     In table \ref{tab:rotation} we show the characteristic rotational
819     relaxation times (based on the diffusion tensor) for each of the model
820     systems compared with the values obtained via microcanonical and Langevin
821     simulations.
822    
823     \subsection{Results}
824    
825 gezelter 3299 \subsubsection{Spherical particles}
826    
827     Our model system for spherical particles was a Lennard-Jones sphere of
828     diameter ($\sigma$) 6.5 \AA\ in a sea of smaller spheres ($\sigma$ =
829     4.7 \AA). The well depth ($\epsilon$) for both particles was set to
830 gezelter 3302 an arbitrary value of 0.8 kcal/mol.
831 gezelter 3299
832     The Stokes-Einstein behavior of large spherical particles in
833     hydrodynamic flows is well known, giving translational friction
834     coefficients of $6 \pi \eta R$ (stick boundary conditions) and
835 gezelter 3302 rotational friction coefficients of $8 \pi \eta R^3$. Recently,
836     Schmidt and Skinner have computed the behavior of spherical tag
837     particles in molecular dynamics simulations, and have shown that {\it
838     slip} boundary conditions ($\Xi_{tt} = 4 \pi \eta R$) may be more
839 gezelter 3299 appropriate for molecule-sized spheres embedded in a sea of spherical
840 gezelter 3302 solvent particles.\cite{Schmidt:2004fj,Schmidt:2003kx}
841 gezelter 3299
842     Our simulation results show similar behavior to the behavior observed
843 gezelter 3302 by Schmidt and Skinner. The diffusion constant obtained from our
844 gezelter 3299 microcanonical molecular dynamics simulations lies between the slip
845     and stick boundary condition results obtained via Stokes-Einstein
846     behavior. Since the Langevin integrator assumes Stokes-Einstein stick
847     boundary conditions in calculating the drag and random forces for
848     spherical particles, our Langevin routine obtains nearly quantitative
849     agreement with the hydrodynamic results for spherical particles. One
850     avenue for improvement of the method would be to compute elements of
851     $\Xi_{tt}$ assuming behavior intermediate between the two boundary
852 gezelter 3302 conditions.
853 gezelter 3299
854     In these simulations, our spherical particles were structureless, so
855     there is no way to obtain rotational correlation times for this model
856     system.
857    
858     \subsubsection{Ellipsoids}
859     For uniaxial ellipsoids ($a > b = c$) , Perrin's formulae for both
860     translational and rotational diffusion of each of the body-fixed axes
861     can be combined to give a single translational diffusion
862 gezelter 3302 constant,\cite{Berne90}
863 gezelter 3299 \begin{equation}
864     D = \frac{k_B T}{6 \pi \eta a} G(\rho),
865     \label{Dperrin}
866     \end{equation}
867     as well as a single rotational diffusion coefficient,
868     \begin{equation}
869     \Theta = \frac{3 k_B T}{16 \pi \eta a^3} \left\{ \frac{(2 - \rho^2)
870     G(\rho) - 1}{1 - \rho^4} \right\}.
871     \label{ThetaPerrin}
872     \end{equation}
873     In these expressions, $G(\rho)$ is a function of the axial ratio
874     ($\rho = b / a$), which for prolate ellipsoids, is
875     \begin{equation}
876     G(\rho) = (1- \rho^2)^{-1/2} \ln \left\{ \frac{1 + (1 -
877     \rho^2)^{1/2}}{\rho} \right\}
878     \label{GPerrin}
879     \end{equation}
880     Again, there is some uncertainty about the correct boundary conditions
881     to use for molecular-scale ellipsoids in a sea of similarly-sized
882     solvent particles. Ravichandran and Bagchi found that {\it slip}
883 gezelter 3302 boundary conditions most closely resembled the simulation
884     results,\cite{Ravichandran:1999fk} in agreement with earlier work of
885     Tang and Evans.\cite{TANG:1993lr}
886 gezelter 3299
887     As in the case of our spherical model system, the Langevin integrator
888     reproduces almost exactly the behavior of the Perrin formulae (which
889     is unsurprising given that the Perrin formulae were used to derive the
890     drag and random forces applied to the ellipsoid). We obtain
891     translational diffusion constants and rotational correlation times
892     that are within a few percent of the analytic values for both the
893     exact treatment of the diffusion tensor as well as the rough-shell
894     model for the ellipsoid.
895    
896     The agreement with the translational diffusion constants from the
897     microcanonical simulations is quite good, although the rotational
898     correlation times are as much as a factor of 2 different from the
899     predictions of the Perrin hydrodynamic model.
900    
901 gezelter 3302 \subsubsection{Rigid dumbbells}
902 gezelter 3299
903 gezelter 3302 Perhaps the only {\it composite} rigid body for which analytic
904     expressions for the hydrodynamic tensor are available is the
905     two-sphere dumbbell model. This model consists of two non-overlapping
906     spheres held by a rigid bond connecting their centers. There are
907     competing expressions for the 6x6 resistance tensor for this
908     model. Equation (\ref{introEquation:oseenTensor}) above gives the
909     original Oseen tensor, while the second order expression introduced by
910     Rotne and Prager,\cite{Rotne1969} and improved by Garc\'{i}a de la
911     Torre and Bloomfield,\cite{Torre1977} is given above as
912 gezelter 3299 Eq. (\ref{introEquation:RPTensorNonOverlapped}). In our case, we use
913     a model dumbbell in which the two spheres are identical Lennard-Jones
914     particles ($\sigma$ = 6.5 \AA\ , $\epsilon$ = 0.8 kcal / mol) held at
915 gezelter 3302 a distance of 6.532 \AA.
916 gezelter 3299
917     The theoretical values for the translational diffusion constant of the
918     dumbbell are calculated from the work of Stimson and Jeffery, who
919     studied the motion of this system in a flow parallel to the
920 gezelter 3302 inter-sphere axis,\cite{Stimson:1926qy} and Davis, who studied the
921     motion in a flow {\it perpendicular} to the inter-sphere
922     axis.\cite{Davis:1969uq} We know of no analytic solutions for the {\it
923     orientational} correlation times for this model system (other than
924     those derived from the 6x6 tensors mentioned above).
925 gezelter 3299
926     \subsubsection{Ellipsoidal-composite banana-shaped molecules}
927    
928     Banana-shaped rigid bodies composed of composites of Gay-Berne
929     ellipsoids have been used by Orlandi {\it et al.} to observe
930     mesophases in coarse-grained models bent-core liquid crystalline
931 gezelter 3302 molecules.\cite{Orlandi:2006fk} We have used the overlapping
932 gezelter 3299 ellipsoids as a way to test the behavior of our algorithm for a
933     structure of some interest to the materials science community,
934     although since we are interested in capturing only the hydrodynamic
935     behavior of this model, we leave out the dipolar interactions of the
936     original Orlandi model.
937    
938     \subsubsection{Composite sphero-ellipsoids}
939    
940     Spherical heads perched on the ends of Gay-Berne ellipsoids have been
941 gezelter 3302 used recently as models for lipid molecules.\cite{SunGezelter08,Ayton01}
942 gezelter 3299
943    
944 gezelter 3302 The diffusion constants and rotation relaxation times for
945 xsun 3298 different shaped molecules are shown in table \ref{tab:translation}
946     and \ref{tab:rotation} to compare to the results calculated from NVE
947     simulations. The theoretical values for sphere is calculated from the
948     Stokes-Einstein law, the theoretical values for ellipsoid is
949 gezelter 3299 calculated from Perrin's fomula, The exact method is
950 xsun 3298 applied to the langevin dynamics simulations for sphere and ellipsoid,
951     the bead model is applied to the simulation for dumbbell molecule, and
952     the rough shell model is applied to ellipsoid, dumbbell, banana and
953     lipid molecules. The results from all the langevin dynamics
954     simulations, including exact, bead model and rough shell, match the
955     theoretical values perfectly for all different shaped molecules. This
956     indicates that our simulation package for langevin dynamics is working
957     well. The approxiate methods ( bead model and rough shell model) are
958     accurate enough for the current simulations. The goal of the langevin
959     dynamics theory is to replace the explicit solvents by the friction
960     forces. We compared the dynamic properties of different shaped
961     molecules in langevin dynamics simulations with that in NVE
962     simulations. The results are reasonable close. Overall, the
963     translational diffusion constants calculated from langevin dynamics
964     simulations are very close to the values from the NVE simulation. For
965     sphere and lipid molecules, the diffusion constants are a little bit
966     off from the NVE simulation results. One possible reason is that the
967     calculation of the viscosity is very difficult to be accurate. Another
968     possible reason is that although we save very frequently during the
969     NVE simulations and run pretty long time simulations, there is only
970     one solute molecule in the system which makes the calculation for the
971     diffusion constant difficult. The sphere molecule behaves as a free
972     rotor in the solvent, so there is no rotation relaxation time
973     calculated from NVE simulations. The rotation relaxation time is not
974     very close to the NVE simulations results. The banana and lipid
975     molecules match the NVE simulations results pretty well. The mismatch
976     between langevin dynamics and NVE simulation for ellipsoid is possibly
977     caused by the slip boundary condition. For dumbbell, the mismatch is
978     caused by the size of the solvent molecule is pretty large compared to
979     dumbbell molecule in NVE simulations.
980    
981     According to our simulations, the langevin dynamics is a reliable
982     theory to apply to replace the explicit solvents, especially for the
983     translation properties. For large molecules, the rotation properties
984     are also mimiced reasonablly well.
985    
986     \begin{table*}
987     \begin{minipage}{\linewidth}
988     \begin{center}
989     \caption{}
990     \begin{tabular}{lccccc}
991     \hline
992     & & & & &Translation \\
993     \hline
994     & NVE & & Theoretical & Langevin & \\
995     \hline
996     & $\eta$ & D & D & method & D \\
997     \hline
998     sphere & 3.480159e-03 & 1.643135e-04 & 1.942779e-04 & exact & 1.982283e-04 \\
999     ellipsoid & 2.551262e-03 & 2.437492e-04 & 2.335756e-04 & exact & 2.374905e-04 \\
1000     & 2.551262e-03 & 2.437492e-04 & 2.335756e-04 & rough shell & 2.284088e-04 \\
1001 gezelter 3302 dumbbell & 2.41276e-03 & 2.129432e-04 & 2.090239e-04 & bead model & 2.148098e-04 \\
1002 xsun 3298 & 2.41276e-03 & 2.129432e-04 & 2.090239e-04 & rough shell & 2.013219e-04 \\
1003     banana & 2.9846e-03 & 1.527819e-04 & & rough shell & 1.54807e-04 \\
1004     lipid & 3.488661e-03 & 0.9562979e-04 & & rough shell & 1.320987e-04 \\
1005     \end{tabular}
1006     \label{tab:translation}
1007     \end{center}
1008     \end{minipage}
1009     \end{table*}
1010    
1011     \begin{table*}
1012     \begin{minipage}{\linewidth}
1013     \begin{center}
1014     \caption{}
1015     \begin{tabular}{lccccc}
1016     \hline
1017     & & & & &Rotation \\
1018     \hline
1019     & NVE & & Theoretical & Langevin & \\
1020     \hline
1021     & $\eta$ & $\tau_0$ & $\tau_0$ & method & $\tau_0$ \\
1022     \hline
1023     sphere & 3.480159e-03 & & 1.208178e+04 & exact & 1.20628e+04 \\
1024     ellipsoid & 2.551262e-03 & 4.66806e+04 & 2.198986e+04 & exact & 2.21507e+04 \\
1025     & 2.551262e-03 & 4.66806e+04 & 2.198986e+04 & rough shell & 2.21714e+04 \\
1026 gezelter 3302 dumbbell & 2.41276e-03 & 1.42974e+04 & & bead model & 7.12435e+04 \\
1027 xsun 3298 & 2.41276e-03 & 1.42974e+04 & & rough shell & 7.04765e+04 \\
1028     banana & 2.9846e-03 & 6.38323e+04 & & rough shell & 7.0945e+04 \\
1029     lipid & 3.488661e-03 & 7.79595e+04 & & rough shell & 7.78886e+04 \\
1030     \end{tabular}
1031     \label{tab:rotation}
1032     \end{center}
1033     \end{minipage}
1034     \end{table*}
1035    
1036     Langevin dynamics simulations are applied to study the formation of
1037     the ripple phase of lipid membranes. The initial configuration is
1038     taken from our molecular dynamics studies on lipid bilayers with
1039     lennard-Jones sphere solvents. The solvent molecules are excluded from
1040     the system, the experimental value of water viscosity is applied to
1041     mimic the heat bath. Fig. XXX is the snapshot of the stable
1042     configuration of the system, the ripple structure stayed stable after
1043     100 ns run. The efficiency of the simulation is increased by one order
1044     of magnitude.
1045    
1046 tim 2999 \subsection{Langevin Dynamics of Banana Shaped Molecules}
1047    
1048     In order to verify that Langevin dynamics can mimic the dynamics of
1049     the systems absent of explicit solvents, we carried out two sets of
1050     simulations and compare their dynamic properties.
1051     Fig.~\ref{langevin:twoBanana} shows a snapshot of the simulation
1052     made of 256 pentane molecules and two banana shaped molecules at
1053     273~K. It has an equivalent implicit solvent system containing only
1054     two banana shaped molecules with viscosity of 0.289 center poise. To
1055     calculate the hydrodynamic properties of the banana shaped molecule,
1056     we created a rough shell model (see Fig.~\ref{langevin:roughShell}),
1057     in which the banana shaped molecule is represented as a ``shell''
1058     made of 2266 small identical beads with size of 0.3 \AA on the
1059     surface. Applying the procedure described in
1060     Sec.~\ref{introEquation:ResistanceTensorArbitraryOrigin}, we
1061     identified the center of resistance at (0 $\rm{\AA}$, 0.7482 $\rm{\AA}$,
1062     -0.1988 $\rm{\AA}$), as well as the resistance tensor,
1063     \[
1064     \left( {\begin{array}{*{20}c}
1065     0.9261 & 0 & 0&0&0.08585&0.2057\\
1066     0& 0.9270&-0.007063& 0.08585&0&0\\
1067     0&-0.007063&0.7494&0.2057&0&0\\
1068     0&0.0858&0.2057& 58.64& 0&0\\
1069     0.08585&0&0&0&48.30&3.219&\\
1070     0.2057&0&0&0&3.219&10.7373\\
1071     \end{array}} \right).
1072     \]
1073     where the units for translational, translation-rotation coupling and rotational tensors are $\frac{kcal \cdot fs}{mol \cdot \rm{\AA}^2}$, $\frac{kcal \cdot fs}{mol \cdot \rm{\AA} \cdot rad}$ and $\frac{kcal \cdot fs}{mol \cdot rad^2}$ respectively.
1074     Curves of the velocity auto-correlation functions in
1075     Fig.~\ref{langevin:vacf} were shown to match each other very well.
1076     However, because of the stochastic nature, simulation using Langevin
1077     dynamics was shown to decay slightly faster than MD. In order to
1078     study the rotational motion of the molecules, we also calculated the
1079     auto-correlation function of the principle axis of the second GB
1080     particle, $u$. The discrepancy shown in Fig.~\ref{langevin:uacf} was
1081     probably due to the reason that we used the experimental viscosity directly instead of calculating bulk viscosity from simulation.
1082    
1083     \begin{figure}
1084     \centering
1085 gezelter 3302 \includegraphics[width=\linewidth]{roughShell}
1086 tim 2999 \caption[Rough shell model for banana shaped molecule]{Rough shell
1087     model for banana shaped molecule.} \label{langevin:roughShell}
1088     \end{figure}
1089    
1090     \begin{figure}
1091     \centering
1092 gezelter 3302 \includegraphics[width=\linewidth]{twoBanana}
1093 tim 2999 \caption[Snapshot from Simulation of Two Banana Shaped Molecules and
1094     256 Pentane Molecules]{Snapshot from simulation of two Banana shaped
1095     molecules and 256 pentane molecules.} \label{langevin:twoBanana}
1096     \end{figure}
1097    
1098     \begin{figure}
1099     \centering
1100 gezelter 3302 \includegraphics[width=\linewidth]{vacf}
1101 tim 2999 \caption[Plots of Velocity Auto-correlation Functions]{Velocity
1102     auto-correlation functions of NVE (explicit solvent) in blue and
1103     Langevin dynamics (implicit solvent) in red.} \label{langevin:vacf}
1104     \end{figure}
1105    
1106     \begin{figure}
1107     \centering
1108 gezelter 3302 \includegraphics[width=\linewidth]{uacf}
1109 tim 2999 \caption[Auto-correlation functions of the principle axis of the
1110     middle GB particle]{Auto-correlation functions of the principle axis
1111     of the middle GB particle of NVE (blue) and Langevin dynamics
1112     (red).} \label{langevin:uacf}
1113     \end{figure}
1114    
1115 tim 2746 \section{Conclusions}
1116    
1117 tim 2999 We have presented a new Langevin algorithm by incorporating the
1118     hydrodynamics properties of arbitrary shaped molecules into an
1119     advanced symplectic integration scheme. The temperature control
1120     ability of this algorithm was demonstrated by a set of simulations
1121     with different viscosities. It was also shown to have significant
1122     advantage of producing rapid thermal equilibration over
1123     Nos\'{e}-Hoover method. Further studies in systems involving banana
1124     shaped molecules illustrated that the dynamic properties could be
1125     preserved by using this new algorithm as an implicit solvent model.
1126    
1127    
1128 tim 2746 \section{Acknowledgments}
1129     Support for this project was provided by the National Science
1130     Foundation under grant CHE-0134881. T.L. also acknowledges the
1131     financial support from center of applied mathematics at University
1132     of Notre Dame.
1133     \newpage
1134    
1135     \bibliographystyle{jcp2}
1136     \bibliography{langevin}
1137    
1138     \end{document}