ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/langevin/langevin.tex
Revision: 3312
Committed: Thu Jan 17 19:03:11 2008 UTC (16 years, 7 months ago) by xsun
Content type: application/x-tex
File size: 55183 byte(s)
Log Message:
add the numbers in

File Contents

# User Rev Content
1 tim 2746 %\documentclass[prb,aps,twocolumn,tabularx]{revtex4}
2     %\documentclass[aps,prb,preprint]{revtex4}
3     \documentclass[11pt]{article}
4     \usepackage{endfloat}
5     \usepackage{amsmath,bm}
6     \usepackage{amssymb}
7     \usepackage{times}
8     \usepackage{mathptmx}
9     \usepackage{setspace}
10     \usepackage{tabularx}
11     \usepackage{graphicx}
12     \usepackage{booktabs}
13     \usepackage{bibentry}
14     \usepackage{mathrsfs}
15     \usepackage[ref]{overcite}
16     \pagestyle{plain} \pagenumbering{arabic} \oddsidemargin 0.0cm
17     \evensidemargin 0.0cm \topmargin -21pt \headsep 10pt \textheight
18     9.0in \textwidth 6.5in \brokenpenalty=10000
19     \renewcommand{\baselinestretch}{1.2}
20 gezelter 3299 \renewcommand\citemid{\ } % no comma in optional referenc note
21 tim 2746
22     \begin{document}
23    
24 gezelter 3205 \title{An algorithm for performing Langevin dynamics on rigid bodies of arbitrary shape }
25 tim 2746
26 gezelter 3299 \author{Xiuquan Sun, Teng Lin and J. Daniel Gezelter\footnote{Corresponding author. \ Electronic mail:
27 tim 2746 gezelter@nd.edu} \\
28     Department of Chemistry and Biochemistry\\
29     University of Notre Dame\\
30     Notre Dame, Indiana 46556}
31    
32     \date{\today}
33    
34     \maketitle \doublespacing
35    
36     \begin{abstract}
37    
38     \end{abstract}
39    
40     \newpage
41    
42     %\narrowtext
43    
44     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
45     % BODY OF TEXT
46     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
47    
48     \section{Introduction}
49    
50     %applications of langevin dynamics
51 tim 2999 As alternative to Newtonian dynamics, Langevin dynamics, which
52     mimics a simple heat bath with stochastic and dissipative forces,
53     has been applied in a variety of studies. The stochastic treatment
54     of the solvent enables us to carry out substantially longer time
55     simulations. Implicit solvent Langevin dynamics simulations of
56     met-enkephalin not only outperform explicit solvent simulations for
57     computational efficiency, but also agrees very well with explicit
58     solvent simulations for dynamical properties.\cite{Shen2002}
59     Recently, applying Langevin dynamics with the UNRES model, Liow and
60     his coworkers suggest that protein folding pathways can be possibly
61     explored within a reasonable amount of time.\cite{Liwo2005} The
62     stochastic nature of the Langevin dynamics also enhances the
63     sampling of the system and increases the probability of crossing
64     energy barriers.\cite{Banerjee2004, Cui2003} Combining Langevin
65     dynamics with Kramers's theory, Klimov and Thirumalai identified
66     free-energy barriers by studying the viscosity dependence of the
67     protein folding rates.\cite{Klimov1997} In order to account for
68     solvent induced interactions missing from implicit solvent model,
69     Kaya incorporated desolvation free energy barrier into implicit
70     coarse-grained solvent model in protein folding/unfolding studies
71     and discovered a higher free energy barrier between the native and
72     denatured states. Because of its stability against noise, Langevin
73     dynamics is very suitable for studying remagnetization processes in
74     various systems.\cite{Palacios1998,Berkov2002,Denisov2003} For
75 tim 2746 instance, the oscillation power spectrum of nanoparticles from
76     Langevin dynamics simulation has the same peak frequencies for
77 tim 2999 different wave vectors, which recovers the property of magnetic
78     excitations in small finite structures.\cite{Berkov2005a}
79 tim 2746
80     %review rigid body dynamics
81     Rigid bodies are frequently involved in the modeling of different
82     areas, from engineering, physics, to chemistry. For example,
83     missiles and vehicle are usually modeled by rigid bodies. The
84     movement of the objects in 3D gaming engine or other physics
85     simulator is governed by the rigid body dynamics. In molecular
86     simulation, rigid body is used to simplify the model in
87     protein-protein docking study{\cite{Gray2003}}.
88    
89     It is very important to develop stable and efficient methods to
90 tim 2999 integrate the equations of motion for orientational degrees of
91     freedom. Euler angles are the natural choice to describe the
92     rotational degrees of freedom. However, due to $\frac {1}{sin
93     \theta}$ singularities, the numerical integration of corresponding
94     equations of these motion is very inefficient and inaccurate.
95     Although an alternative integrator using multiple sets of Euler
96     angles can overcome this difficulty\cite{Barojas1973}, the
97     computational penalty and the loss of angular momentum conservation
98     still remain. A singularity-free representation utilizing
99     quaternions was developed by Evans in 1977.\cite{Evans1977}
100     Unfortunately, this approach used a nonseparable Hamiltonian
101     resulting from the quaternion representation, which prevented the
102     symplectic algorithm from being utilized. Another different approach
103     is to apply holonomic constraints to the atoms belonging to the
104     rigid body. Each atom moves independently under the normal forces
105     deriving from potential energy and constraint forces which are used
106     to guarantee the rigidness. However, due to their iterative nature,
107     the SHAKE and Rattle algorithms also converge very slowly when the
108     number of constraints increases.\cite{Ryckaert1977, Andersen1983}
109 tim 2746
110 tim 2999 A break-through in geometric literature suggests that, in order to
111 tim 2746 develop a long-term integration scheme, one should preserve the
112 tim 2999 symplectic structure of the propagator. By introducing a conjugate
113     momentum to the rotation matrix $Q$ and re-formulating Hamiltonian's
114     equation, a symplectic integrator, RSHAKE\cite{Kol1997}, was
115     proposed to evolve the Hamiltonian system in a constraint manifold
116     by iteratively satisfying the orthogonality constraint $Q^T Q = 1$.
117     An alternative method using the quaternion representation was
118     developed by Omelyan.\cite{Omelyan1998} However, both of these
119     methods are iterative and inefficient. In this section, we descibe a
120     symplectic Lie-Poisson integrator for rigid bodies developed by
121     Dullweber and his coworkers\cite{Dullweber1997} in depth.
122 tim 2746
123     %review langevin/browninan dynamics for arbitrarily shaped rigid body
124     Combining Langevin or Brownian dynamics with rigid body dynamics,
125 tim 2999 one can study slow processes in biomolecular systems. Modeling DNA
126     as a chain of rigid beads, which are subject to harmonic potentials
127     as well as excluded volume potentials, Mielke and his coworkers
128     discovered rapid superhelical stress generations from the stochastic
129     simulation of twin supercoiling DNA with response to induced
130     torques.\cite{Mielke2004} Membrane fusion is another key biological
131     process which controls a variety of physiological functions, such as
132     release of neurotransmitters \textit{etc}. A typical fusion event
133     happens on the time scale of a millisecond, which is impractical to
134     study using atomistic models with newtonian mechanics. With the help
135     of coarse-grained rigid body model and stochastic dynamics, the
136     fusion pathways were explored by many
137     researchers.\cite{Noguchi2001,Noguchi2002,Shillcock2005} Due to the
138     difficulty of numerical integration of anisotropic rotation, most of
139     the rigid body models are simply modeled using spheres, cylinders,
140     ellipsoids or other regular shapes in stochastic simulations. In an
141     effort to account for the diffusion anisotropy of arbitrary
142 tim 2746 particles, Fernandes and de la Torre improved the original Brownian
143     dynamics simulation algorithm\cite{Ermak1978,Allison1991} by
144     incorporating a generalized $6\times6$ diffusion tensor and
145     introducing a simple rotation evolution scheme consisting of three
146 tim 2999 consecutive rotations.\cite{Fernandes2002} Unfortunately, unexpected
147     errors and biases are introduced into the system due to the
148     arbitrary order of applying the noncommuting rotation
149     operators.\cite{Beard2003} Based on the observation the momentum
150 tim 2746 relaxation time is much less than the time step, one may ignore the
151 tim 2999 inertia in Brownian dynamics. However, the assumption of zero
152 tim 2746 average acceleration is not always true for cooperative motion which
153     is common in protein motion. An inertial Brownian dynamics (IBD) was
154     proposed to address this issue by adding an inertial correction
155 tim 2999 term.\cite{Beard2000} As a complement to IBD which has a lower bound
156 tim 2746 in time step because of the inertial relaxation time, long-time-step
157     inertial dynamics (LTID) can be used to investigate the inertial
158     behavior of the polymer segments in low friction
159 tim 2999 regime.\cite{Beard2000} LTID can also deal with the rotational
160 tim 2746 dynamics for nonskew bodies without translation-rotation coupling by
161     separating the translation and rotation motion and taking advantage
162     of the analytical solution of hydrodynamics properties. However,
163 tim 2999 typical nonskew bodies like cylinders and ellipsoids are inadequate
164     to represent most complex macromolecule assemblies. These intricate
165 tim 2746 molecules have been represented by a set of beads and their
166 tim 2999 hydrodynamic properties can be calculated using variants on the
167     standard hydrodynamic interaction tensors.
168 tim 2746
169     The goal of the present work is to develop a Langevin dynamics
170 tim 2999 algorithm for arbitrary-shaped rigid particles by integrating the
171     accurate estimation of friction tensor from hydrodynamics theory
172     into the sophisticated rigid body dynamics algorithms.
173 tim 2746
174 tim 2999 \subsection{\label{introSection:frictionTensor}Friction Tensor}
175     Theoretically, the friction kernel can be determined using the
176     velocity autocorrelation function. However, this approach becomes
177     impractical when the system becomes more and more complicated.
178     Instead, various approaches based on hydrodynamics have been
179     developed to calculate the friction coefficients. In general, the
180     friction tensor $\Xi$ is a $6\times 6$ matrix given by
181     \[
182     \Xi = \left( {\begin{array}{*{20}c}
183     {\Xi _{}^{tt} } & {\Xi _{}^{rt} } \\
184     {\Xi _{}^{tr} } & {\Xi _{}^{rr} } \\
185     \end{array}} \right).
186     \]
187     Here, $ {\Xi^{tt} }$ and $ {\Xi^{rr} }$ are $3 \times 3$
188     translational friction tensor and rotational resistance (friction)
189     tensor respectively, while ${\Xi^{tr} }$ is translation-rotation
190     coupling tensor and $ {\Xi^{rt} }$ is rotation-translation coupling
191     tensor. When a particle moves in a fluid, it may experience friction
192     force or torque along the opposite direction of the velocity or
193     angular velocity,
194     \[
195 tim 2746 \left( \begin{array}{l}
196 tim 2999 F_R \\
197     \tau _R \\
198 tim 2746 \end{array} \right) = - \left( {\begin{array}{*{20}c}
199 tim 2999 {\Xi ^{tt} } & {\Xi ^{rt} } \\
200     {\Xi ^{tr} } & {\Xi ^{rr} } \\
201 tim 2746 \end{array}} \right)\left( \begin{array}{l}
202 tim 2999 v \\
203     w \\
204 tim 2746 \end{array} \right)
205 tim 2999 \]
206     where $F_r$ is the friction force and $\tau _R$ is the friction
207     torque.
208 tim 2746
209 tim 2999 \subsubsection{\label{introSection:resistanceTensorRegular}\textbf{The Resistance Tensor for Regular Shapes}}
210 tim 2746
211 tim 2999 For a spherical particle with slip boundary conditions, the
212     translational and rotational friction constant can be calculated
213     from Stoke's law,
214 tim 2746 \[
215 tim 2999 \Xi ^{tt} = \left( {\begin{array}{*{20}c}
216     {6\pi \eta R} & 0 & 0 \\
217     0 & {6\pi \eta R} & 0 \\
218     0 & 0 & {6\pi \eta R} \\
219     \end{array}} \right)
220 tim 2746 \]
221 tim 2999 and
222 tim 2746 \[
223 tim 2999 \Xi ^{rr} = \left( {\begin{array}{*{20}c}
224     {8\pi \eta R^3 } & 0 & 0 \\
225     0 & {8\pi \eta R^3 } & 0 \\
226     0 & 0 & {8\pi \eta R^3 } \\
227     \end{array}} \right)
228 tim 2746 \]
229 tim 2999 where $\eta$ is the viscosity of the solvent and $R$ is the
230     hydrodynamic radius.
231    
232     Other non-spherical shapes, such as cylinders and ellipsoids, are
233     widely used as references for developing new hydrodynamics theory,
234     because their properties can be calculated exactly. In 1936, Perrin
235     extended Stokes's law to general ellipsoids, also called a triaxial
236     ellipsoid, which is given in Cartesian coordinates
237     by\cite{Perrin1934, Perrin1936}
238 tim 2746 \[
239 tim 2999 \frac{{x^2 }}{{a^2 }} + \frac{{y^2 }}{{b^2 }} + \frac{{z^2 }}{{c^2
240     }} = 1
241 tim 2746 \]
242 tim 2999 where the semi-axes are of lengths $a$, $b$, and $c$. Unfortunately,
243     due to the complexity of the elliptic integral, only the ellipsoid
244     with the restriction of two axes being equal, \textit{i.e.}
245     prolate($ a \ge b = c$) and oblate ($ a < b = c $), can be solved
246     exactly. Introducing an elliptic integral parameter $S$ for prolate
247     ellipsoids :
248     \[
249     S = \frac{2}{{\sqrt {a^2 - b^2 } }}\ln \frac{{a + \sqrt {a^2 - b^2
250     } }}{b},
251     \]
252     and oblate ellipsoids:
253     \[
254     S = \frac{2}{{\sqrt {b^2 - a^2 } }}arctg\frac{{\sqrt {b^2 - a^2 }
255     }}{a},
256     \]
257     one can write down the translational and rotational resistance
258     tensors
259     \begin{eqnarray*}
260     \Xi _a^{tt} & = & 16\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - b^2 )S - 2a}}. \\
261     \Xi _b^{tt} & = & \Xi _c^{tt} = 32\pi \eta \frac{{a^2 - b^2 }}{{(2a^2 - 3b^2 )S +
262     2a}},
263     \end{eqnarray*}
264     and
265     \begin{eqnarray*}
266     \Xi _a^{rr} & = & \frac{{32\pi }}{3}\eta \frac{{(a^2 - b^2 )b^2 }}{{2a - b^2 S}}, \\
267     \Xi _b^{rr} & = & \Xi _c^{rr} = \frac{{32\pi }}{3}\eta \frac{{(a^4 - b^4 )}}{{(2a^2 - b^2 )S - 2a}}.
268     \end{eqnarray*}
269 tim 2746
270 tim 2999 \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}\textbf{The Resistance Tensor for Arbitrary Shapes}}
271    
272     Unlike spherical and other simply shaped molecules, there is no
273     analytical solution for the friction tensor for arbitrarily shaped
274     rigid molecules. The ellipsoid of revolution model and general
275     triaxial ellipsoid model have been used to approximate the
276     hydrodynamic properties of rigid bodies. However, since the mapping
277     from all possible ellipsoidal spaces, $r$-space, to all possible
278     combination of rotational diffusion coefficients, $D$-space, is not
279     unique\cite{Wegener1979} as well as the intrinsic coupling between
280     translational and rotational motion of rigid bodies, general
281     ellipsoids are not always suitable for modeling arbitrarily shaped
282     rigid molecules. A number of studies have been devoted to
283     determining the friction tensor for irregularly shaped rigid bodies
284     using more advanced methods where the molecule of interest was
285     modeled by a combinations of spheres\cite{Carrasco1999} and the
286     hydrodynamics properties of the molecule can be calculated using the
287     hydrodynamic interaction tensor. Let us consider a rigid assembly of
288     $N$ beads immersed in a continuous medium. Due to hydrodynamic
289     interaction, the ``net'' velocity of $i$th bead, $v'_i$ is different
290     than its unperturbed velocity $v_i$,
291 tim 2746 \[
292 tim 2999 v'_i = v_i - \sum\limits_{j \ne i} {T_{ij} F_j }
293 tim 2746 \]
294 tim 2999 where $F_i$ is the frictional force, and $T_{ij}$ is the
295     hydrodynamic interaction tensor. The friction force of $i$th bead is
296     proportional to its ``net'' velocity
297 tim 2746 \begin{equation}
298 tim 2999 F_i = \zeta _i v_i - \zeta _i \sum\limits_{j \ne i} {T_{ij} F_j }.
299     \label{introEquation:tensorExpression}
300 tim 2746 \end{equation}
301 tim 2999 This equation is the basis for deriving the hydrodynamic tensor. In
302     1930, Oseen and Burgers gave a simple solution to
303     Eq.~\ref{introEquation:tensorExpression}
304 tim 2746 \begin{equation}
305 tim 2999 T_{ij} = \frac{1}{{8\pi \eta r_{ij} }}\left( {I + \frac{{R_{ij}
306     R_{ij}^T }}{{R_{ij}^2 }}} \right). \label{introEquation:oseenTensor}
307 tim 2746 \end{equation}
308 tim 2999 Here $R_{ij}$ is the distance vector between bead $i$ and bead $j$.
309     A second order expression for element of different size was
310     introduced by Rotne and Prager\cite{Rotne1969} and improved by
311     Garc\'{i}a de la Torre and Bloomfield,\cite{Torre1977}
312 tim 2746 \begin{equation}
313 tim 2999 T_{ij} = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {I +
314     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right) + R\frac{{\sigma
315     _i^2 + \sigma _j^2 }}{{r_{ij}^2 }}\left( {\frac{I}{3} -
316     \frac{{R_{ij} R_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
317     \label{introEquation:RPTensorNonOverlapped}
318 tim 2746 \end{equation}
319 tim 2999 Both of the Eq.~\ref{introEquation:oseenTensor} and
320     Eq.~\ref{introEquation:RPTensorNonOverlapped} have an assumption
321     $R_{ij} \ge \sigma _i + \sigma _j$. An alternative expression for
322     overlapping beads with the same radius, $\sigma$, is given by
323 tim 2746 \begin{equation}
324 tim 2999 T_{ij} = \frac{1}{{6\pi \eta R_{ij} }}\left[ {\left( {1 -
325     \frac{2}{{32}}\frac{{R_{ij} }}{\sigma }} \right)I +
326     \frac{2}{{32}}\frac{{R_{ij} R_{ij}^T }}{{R_{ij} \sigma }}} \right]
327     \label{introEquation:RPTensorOverlapped}
328 tim 2746 \end{equation}
329 tim 2999 To calculate the resistance tensor at an arbitrary origin $O$, we
330     construct a $3N \times 3N$ matrix consisting of $N \times N$
331     $B_{ij}$ blocks
332     \begin{equation}
333     B = \left( {\begin{array}{*{20}c}
334     {B_{11} } & \ldots & {B_{1N} } \\
335     \vdots & \ddots & \vdots \\
336     {B_{N1} } & \cdots & {B_{NN} } \\
337     \end{array}} \right),
338     \end{equation}
339     where $B_{ij}$ is given by
340 tim 2746 \[
341 tim 2999 B_{ij} = \delta _{ij} \frac{I}{{6\pi \eta R}} + (1 - \delta _{ij}
342     )T_{ij}
343 tim 2746 \]
344 tim 2999 where $\delta _{ij}$ is the Kronecker delta function. Inverting the
345     $B$ matrix, we obtain
346 tim 2746 \[
347 tim 2999 C = B^{ - 1} = \left( {\begin{array}{*{20}c}
348     {C_{11} } & \ldots & {C_{1N} } \\
349     \vdots & \ddots & \vdots \\
350     {C_{N1} } & \cdots & {C_{NN} } \\
351     \end{array}} \right),
352 tim 2746 \]
353 tim 2999 which can be partitioned into $N \times N$ $3 \times 3$ block
354     $C_{ij}$. With the help of $C_{ij}$ and the skew matrix $U_i$
355 tim 2746 \[
356 tim 2999 U_i = \left( {\begin{array}{*{20}c}
357     0 & { - z_i } & {y_i } \\
358     {z_i } & 0 & { - x_i } \\
359     { - y_i } & {x_i } & 0 \\
360     \end{array}} \right)
361 tim 2746 \]
362 tim 2999 where $x_i$, $y_i$, $z_i$ are the components of the vector joining
363     bead $i$ and origin $O$, the elements of resistance tensor at
364     arbitrary origin $O$ can be written as
365     \begin{eqnarray}
366     \Xi _{}^{tt} & = & \sum\limits_i {\sum\limits_j {C_{ij} } } \notag , \\
367     \Xi _{}^{tr} & = & \Xi _{}^{rt} = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
368 gezelter 3310 \Xi _{}^{rr} & = & - \sum\limits_i {\sum\limits_j {U_i C_{ij} } }
369     U_j + 6 \eta V {\bf I}. \notag
370 tim 2999 \label{introEquation:ResistanceTensorArbitraryOrigin}
371     \end{eqnarray}
372 gezelter 3310 The final term in the expression for $\Xi^{rr}$ is correction that
373     accounts for errors in the rotational motion of certain kinds of bead
374     models. The additive correction uses the solvent viscosity ($\eta$)
375     as well as the total volume of the beads that contribute to the
376     hydrodynamic model,
377     \begin{equation}
378     V = \frac{4 \pi}{3} \sum_{i=1}^{N} \sigma_i^3,
379     \end{equation}
380     where $\sigma_i$ is the radius of bead $i$. This correction term was
381     rigorously tested and compared with the analytical results for
382     two-sphere and ellipsoidal systems by Garcia de la Torre and
383     Rodes.\cite{Torre:1983lr}
384    
385    
386 tim 2999 The resistance tensor depends on the origin to which they refer. The
387     proper location for applying the friction force is the center of
388     resistance (or center of reaction), at which the trace of rotational
389     resistance tensor, $ \Xi ^{rr}$ reaches a minimum value.
390     Mathematically, the center of resistance is defined as an unique
391     point of the rigid body at which the translation-rotation coupling
392     tensors are symmetric,
393     \begin{equation}
394     \Xi^{tr} = \left( {\Xi^{tr} } \right)^T
395     \label{introEquation:definitionCR}
396     \end{equation}
397     From Equation \ref{introEquation:ResistanceTensorArbitraryOrigin},
398     we can easily derive that the translational resistance tensor is
399     origin independent, while the rotational resistance tensor and
400     translation-rotation coupling resistance tensor depend on the
401     origin. Given the resistance tensor at an arbitrary origin $O$, and
402     a vector ,$r_{OP}(x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we can
403     obtain the resistance tensor at $P$ by
404     \begin{equation}
405     \begin{array}{l}
406     \Xi _P^{tt} = \Xi _O^{tt} \\
407     \Xi _P^{tr} = \Xi _P^{rt} = \Xi _O^{tr} - U_{OP} \Xi _O^{tt} \\
408     \Xi _P^{rr} = \Xi _O^{rr} - U_{OP} \Xi _O^{tt} U_{OP} + \Xi _O^{tr} U_{OP} - U_{OP} \Xi _O^{{tr} ^{^T }} \\
409     \end{array}
410     \label{introEquation:resistanceTensorTransformation}
411     \end{equation}
412     where
413 tim 2746 \[
414 tim 2999 U_{OP} = \left( {\begin{array}{*{20}c}
415     0 & { - z_{OP} } & {y_{OP} } \\
416     {z_i } & 0 & { - x_{OP} } \\
417     { - y_{OP} } & {x_{OP} } & 0 \\
418     \end{array}} \right)
419 tim 2746 \]
420 tim 2999 Using Eq.~\ref{introEquation:definitionCR} and
421     Eq.~\ref{introEquation:resistanceTensorTransformation}, one can
422     locate the position of center of resistance,
423     \begin{eqnarray*}
424     \left( \begin{array}{l}
425     x_{OR} \\
426     y_{OR} \\
427     z_{OR} \\
428     \end{array} \right) & = &\left( {\begin{array}{*{20}c}
429     {(\Xi _O^{rr} )_{yy} + (\Xi _O^{rr} )_{zz} } & { - (\Xi _O^{rr} )_{xy} } & { - (\Xi _O^{rr} )_{xz} } \\
430     { - (\Xi _O^{rr} )_{xy} } & {(\Xi _O^{rr} )_{zz} + (\Xi _O^{rr} )_{xx} } & { - (\Xi _O^{rr} )_{yz} } \\
431     { - (\Xi _O^{rr} )_{xz} } & { - (\Xi _O^{rr} )_{yz} } & {(\Xi _O^{rr} )_{xx} + (\Xi _O^{rr} )_{yy} } \\
432     \end{array}} \right)^{ - 1} \\
433     & & \left( \begin{array}{l}
434     (\Xi _O^{tr} )_{yz} - (\Xi _O^{tr} )_{zy} \\
435     (\Xi _O^{tr} )_{zx} - (\Xi _O^{tr} )_{xz} \\
436     (\Xi _O^{tr} )_{xy} - (\Xi _O^{tr} )_{yx} \\
437     \end{array} \right) \\
438     \end{eqnarray*}
439     where $x_OR$, $y_OR$, $z_OR$ are the components of the vector
440     joining center of resistance $R$ and origin $O$.
441 tim 2746
442    
443 gezelter 3310 \section{Langevin Dynamics for Rigid Particles of Arbitrary Shape\label{LDRB}}
444 tim 2999 Consider the Langevin equations of motion in generalized coordinates
445 tim 2746 \begin{equation}
446     M_i \dot V_i (t) = F_{s,i} (t) + F_{f,i(t)} + F_{r,i} (t)
447     \label{LDGeneralizedForm}
448     \end{equation}
449     where $M_i$ is a $6\times6$ generalized diagonal mass (include mass
450     and moment of inertial) matrix and $V_i$ is a generalized velocity,
451 tim 2999 $V_i = V_i(v_i,\omega _i)$. The right side of
452     Eq.~\ref{LDGeneralizedForm} consists of three generalized forces in
453 tim 2746 lab-fixed frame, systematic force $F_{s,i}$, dissipative force
454     $F_{f,i}$ and stochastic force $F_{r,i}$. While the evolution of the
455     system in Newtownian mechanics typically refers to lab-fixed frame,
456     it is also convenient to handle the rotation of rigid body in
457     body-fixed frame. Thus the friction and random forces are calculated
458     in body-fixed frame and converted back to lab-fixed frame by:
459     \[
460     \begin{array}{l}
461 tim 2999 F_{f,i}^l (t) = Q^T F_{f,i}^b (t), \\
462     F_{r,i}^l (t) = Q^T F_{r,i}^b (t). \\
463     \end{array}
464 tim 2746 \]
465     Here, the body-fixed friction force $F_{r,i}^b$ is proportional to
466     the body-fixed velocity at center of resistance $v_{R,i}^b$ and
467 tim 2999 angular velocity $\omega _i$
468 tim 2746 \begin{equation}
469     F_{r,i}^b (t) = \left( \begin{array}{l}
470     f_{r,i}^b (t) \\
471     \tau _{r,i}^b (t) \\
472     \end{array} \right) = - \left( {\begin{array}{*{20}c}
473     {\Xi _{R,t} } & {\Xi _{R,c}^T } \\
474     {\Xi _{R,c} } & {\Xi _{R,r} } \\
475     \end{array}} \right)\left( \begin{array}{l}
476     v_{R,i}^b (t) \\
477     \omega _i (t) \\
478     \end{array} \right),
479     \end{equation}
480     while the random force $F_{r,i}^l$ is a Gaussian stochastic variable
481     with zero mean and variance
482     \begin{equation}
483     \left\langle {F_{r,i}^l (t)(F_{r,i}^l (t'))^T } \right\rangle =
484     \left\langle {F_{r,i}^b (t)(F_{r,i}^b (t'))^T } \right\rangle =
485 tim 2999 2k_B T\Xi _R \delta (t - t'). \label{randomForce}
486 tim 2746 \end{equation}
487     The equation of motion for $v_i$ can be written as
488     \begin{equation}
489     m\dot v_i (t) = f_{t,i} (t) = f_{s,i} (t) + f_{f,i}^l (t) +
490     f_{r,i}^l (t)
491     \end{equation}
492     Since the frictional force is applied at the center of resistance
493     which generally does not coincide with the center of mass, an extra
494     torque is exerted at the center of mass. Thus, the net body-fixed
495     frictional torque at the center of mass, $\tau _{n,i}^b (t)$, is
496     given by
497     \begin{equation}
498     \tau _{r,i}^b = \tau _{r,i}^b +r_{MR} \times f_{r,i}^b
499     \end{equation}
500     where $r_{MR}$ is the vector from the center of mass to the center
501 tim 2999 of the resistance. Instead of integrating the angular velocity in
502     lab-fixed frame, we consider the equation of angular momentum in
503     body-fixed frame
504 tim 2746 \begin{equation}
505 tim 2999 \dot j_i (t) = \tau _{t,i} (t) = \tau _{s,i} (t) + \tau _{f,i}^b (t)
506     + \tau _{r,i}^b(t)
507 tim 2746 \end{equation}
508     Embedding the friction terms into force and torque, one can
509     integrate the langevin equations of motion for rigid body of
510     arbitrary shape in a velocity-Verlet style 2-part algorithm, where
511     $h= \delta t$:
512    
513 tim 2999 {\tt moveA:}
514 tim 2746 \begin{align*}
515 tim 2999 {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
516     + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
517     %
518     {\bf r}(t + h) &\leftarrow {\bf r}(t)
519     + h {\bf v}\left(t + h / 2 \right), \\
520     %
521     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
522     + \frac{h}{2} {\bf \tau}^b(t), \\
523     %
524     \mathsf{Q}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
525     (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
526 tim 2746 \end{align*}
527     In this context, the $\mathrm{rotate}$ function is the reversible
528 tim 2999 product of the three body-fixed rotations,
529 tim 2746 \begin{equation}
530     \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
531     \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y
532     / 2) \cdot \mathsf{G}_x(a_x /2),
533     \end{equation}
534     where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
535 tim 2999 rotates both the rotation matrix ($\mathsf{Q}$) and the body-fixed
536     angular momentum (${\bf j}$) by an angle $\theta$ around body-fixed
537     axis $\alpha$,
538 tim 2746 \begin{equation}
539     \mathsf{G}_\alpha( \theta ) = \left\{
540     \begin{array}{lcl}
541 tim 2999 \mathsf{Q}(t) & \leftarrow & \mathsf{Q}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
542 tim 2746 {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
543     j}(0).
544     \end{array}
545     \right.
546     \end{equation}
547     $\mathsf{R}_\alpha$ is a quadratic approximation to the single-axis
548     rotation matrix. For example, in the small-angle limit, the
549     rotation matrix around the body-fixed x-axis can be approximated as
550     \begin{equation}
551     \mathsf{R}_x(\theta) \approx \left(
552     \begin{array}{ccc}
553     1 & 0 & 0 \\
554     0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
555     \theta^2 / 4} \\
556     0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
557     \theta^2 / 4}
558     \end{array}
559     \right).
560     \end{equation}
561 tim 2999 All other rotations follow in a straightforward manner. After the
562     first part of the propagation, the forces and body-fixed torques are
563     calculated at the new positions and orientations
564 tim 2746
565 tim 2999 {\tt doForces:}
566     \begin{align*}
567     {\bf f}(t + h) &\leftarrow
568     - \left(\frac{\partial V}{\partial {\bf r}}\right)_{{\bf r}(t + h)}, \\
569     %
570     {\bf \tau}^{s}(t + h) &\leftarrow {\bf u}(t + h)
571     \times \frac{\partial V}{\partial {\bf u}}, \\
572     %
573     {\bf \tau}^{b}(t + h) &\leftarrow \mathsf{Q}(t + h)
574     \cdot {\bf \tau}^s(t + h).
575     \end{align*}
576 tim 2746 Once the forces and torques have been obtained at the new time step,
577     the velocities can be advanced to the same time value.
578    
579 tim 2999 {\tt moveB:}
580 tim 2746 \begin{align*}
581 tim 2999 {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + h / 2
582     \right)
583     + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
584     %
585     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + h / 2
586     \right)
587     + \frac{h}{2} {\bf \tau}^b(t + h) .
588 tim 2746 \end{align*}
589    
590 gezelter 3310 \section{Validating the Method\label{sec:validating}}
591 gezelter 3302 In order to validate our Langevin integrator for arbitrarily-shaped
592 gezelter 3305 rigid bodies, we implemented the algorithm in {\sc
593     oopse}\cite{Meineke2005} and compared the results of this algorithm
594     with the known
595 gezelter 3302 hydrodynamic limiting behavior for a few model systems, and to
596     microcanonical molecular dynamics simulations for some more
597     complicated bodies. The model systems and their analytical behavior
598     (if known) are summarized below. Parameters for the primary particles
599     comprising our model systems are given in table \ref{tab:parameters},
600     and a sketch of the arrangement of these primary particles into the
601 gezelter 3305 model rigid bodies is shown in figure \ref{fig:models}. In table
602     \ref{tab:parameters}, $d$ and $l$ are the physical dimensions of
603     ellipsoidal (Gay-Berne) particles. For spherical particles, the value
604     of the Lennard-Jones $\sigma$ parameter is the particle diameter
605     ($d$). Gay-Berne ellipsoids have an energy scaling parameter,
606     $\epsilon^s$, which describes the well depth for two identical
607     ellipsoids in a {\it side-by-side} configuration. Additionally, a
608     well depth aspect ratio, $\epsilon^r = \epsilon^e / \epsilon^s$,
609     describes the ratio between the well depths in the {\it end-to-end}
610     and side-by-side configurations. For spheres, $\epsilon^r \equiv 1$.
611     Moments of inertia are also required to describe the motion of primary
612     particles with orientational degrees of freedom.
613 gezelter 3299
614 gezelter 3302 \begin{table*}
615     \begin{minipage}{\linewidth}
616     \begin{center}
617     \caption{Parameters for the primary particles in use by the rigid body
618     models in figure \ref{fig:models}.}
619     \begin{tabular}{lrcccccccc}
620     \hline
621     & & & & & & & \multicolumn{3}c{$\overleftrightarrow{\mathsf I}$ (amu \AA$^2$)} \\
622     & & $d$ (\AA) & $l$ (\AA) & $\epsilon^s$ (kcal/mol) & $\epsilon^r$ &
623     $m$ (amu) & $I_{xx}$ & $I_{yy}$ & $I_{zz}$ \\ \hline
624 gezelter 3308 Sphere & & 6.5 & $= d$ & 0.8 & 1 & 190 & 802.75 & 802.75 & 802.75 \\
625 gezelter 3302 Ellipsoid & & 4.6 & 13.8 & 0.8 & 0.2 & 200 & 2105 & 2105 & 421 \\
626 gezelter 3308 Dumbbell &(2 identical spheres) & 6.5 & $= d$ & 0.8 & 1 & 190 & 802.75 & 802.75 & 802.75 \\
627 gezelter 3302 Banana &(3 identical ellipsoids)& 4.2 & 11.2 & 0.8 & 0.2 & 240 & 10000 & 10000 & 0 \\
628     Lipid: & Spherical Head & 6.5 & $= d$ & 0.185 & 1 & 196 & & & \\
629     & Ellipsoidal Tail & 4.6 & 13.8 & 0.8 & 0.2 & 760 & 45000 & 45000 & 9000 \\
630     Solvent & & 4.7 & $= d$ & 0.8 & 1 & 72.06 & & & \\
631     \hline
632     \end{tabular}
633     \label{tab:parameters}
634     \end{center}
635     \end{minipage}
636     \end{table*}
637    
638 gezelter 3305 \begin{figure}
639     \centering
640     \includegraphics[width=3in]{sketch}
641     \caption[Sketch of the model systems]{A sketch of the model systems
642     used in evaluating the behavior of the rigid body Langevin
643     integrator.} \label{fig:models}
644     \end{figure}
645    
646 gezelter 3302 \subsection{Simulation Methodology}
647     We performed reference microcanonical simulations with explicit
648     solvents for each of the different model system. In each case there
649     was one solute model and 1929 solvent molecules present in the
650     simulation box. All simulations were equilibrated using a
651     constant-pressure and temperature integrator with target values of 300
652     K for the temperature and 1 atm for pressure. Following this stage,
653     further equilibration and sampling was done in a microcanonical
654 gezelter 3305 ensemble. Since the model bodies are typically quite massive, we were
655 gezelter 3310 able to use a time step of 25 fs.
656    
657     The model systems studied used both Lennard-Jones spheres as well as
658     uniaxial Gay-Berne ellipoids. In its original form, the Gay-Berne
659     potential was a single site model for the interactions of rigid
660     ellipsoidal molecules.\cite{Gay81} It can be thought of as a
661     modification of the Gaussian overlap model originally described by
662     Berne and Pechukas.\cite{Berne72} The potential is constructed in the
663     familiar form of the Lennard-Jones function using
664     orientation-dependent $\sigma$ and $\epsilon$ parameters,
665     \begin{equation*}
666     V_{ij}({\mathbf{\hat u}_i}, {\mathbf{\hat u}_j}, {\mathbf{\hat
667     r}_{ij}}) = 4\epsilon ({\mathbf{\hat u}_i}, {\mathbf{\hat u}_j},
668     {\mathbf{\hat r}_{ij}})\left[\left(\frac{\sigma_0}{r_{ij}-\sigma({\mathbf{\hat u
669     }_i},
670     {\mathbf{\hat u}_j}, {\mathbf{\hat r}_{ij}})+\sigma_0}\right)^{12}
671     -\left(\frac{\sigma_0}{r_{ij}-\sigma({\mathbf{\hat u}_i}, {\mathbf{\hat u}_j},
672     {\mathbf{\hat r}_{ij}})+\sigma_0}\right)^6\right]
673     \label{eq:gb}
674     \end{equation*}
675    
676     The range $(\sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf
677     \hat{r}}_{ij}))$, and strength $(\epsilon({\bf \hat{u}}_{i},{\bf
678     \hat{u}}_{j},{\bf \hat{r}}_{ij}))$ parameters
679     are dependent on the relative orientations of the two ellipsoids (${\bf
680     \hat{u}}_{i},{\bf \hat{u}}_{j}$) as well as the direction of the
681     inter-ellipsoid separation (${\bf \hat{r}}_{ij}$). The shape and
682     attractiveness of each ellipsoid is governed by a relatively small set
683     of parameters: $l$ and $d$ describe the length and width of each
684     uniaxial ellipsoid, while $\epsilon^s$, which describes the well depth
685     for two identical ellipsoids in a {\it side-by-side} configuration.
686     Additionally, a well depth aspect ratio, $\epsilon^r = \epsilon^e /
687     \epsilon^s$, describes the ratio between the well depths in the {\it
688     end-to-end} and side-by-side configurations. Details of the potential
689     are given elsewhere,\cite{Luckhurst90,Golubkov06,SunGezelter08} and an
690     excellent overview of the computational methods that can be used to
691     efficiently compute forces and torques for this potential can be found
692     in Ref. \citen{Golubkov06}
693    
694     For the interaction between nonequivalent uniaxial ellipsoids (or
695     between spheres and ellipsoids), the spheres are treated as ellipsoids
696     with an aspect ratio of 1 ($d = l$) and with an well depth ratio
697     ($\epsilon^r$) of 1 ($\epsilon^e = \epsilon^s$). The form of the
698     Gay-Berne potential we are using was generalized by Cleaver {\it et
699     al.} and is appropriate for dissimilar uniaxial
700     ellipsoids.\cite{Cleaver96}
701    
702     A switching function was applied to all potentials to smoothly turn
703     off the interactions between a range of $22$ and $25$ \AA. The
704     switching function was the standard (cubic) function,
705 gezelter 3302 \begin{equation}
706     s(r) =
707     \begin{cases}
708     1 & \text{if $r \le r_{\text{sw}}$},\\
709     \frac{(r_{\text{cut}} + 2r - 3r_{\text{sw}})(r_{\text{cut}} - r)^2}
710     {(r_{\text{cut}} - r_{\text{sw}})^3}
711     & \text{if $r_{\text{sw}} < r \le r_{\text{cut}}$}, \\
712     0 & \text{if $r > r_{\text{cut}}$.}
713     \end{cases}
714     \label{eq:switchingFunc}
715     \end{equation}
716 gezelter 3310
717 gezelter 3302 To measure shear viscosities from our microcanonical simulations, we
718     used the Einstein form of the pressure correlation function,\cite{hess:209}
719     \begin{equation}
720 gezelter 3310 \eta = \lim_{t->\infty} \frac{V}{2 k_B T} \frac{d}{dt} \left\langle \left(
721     \int_{t_0}^{t_0 + t} P_{xz}(t') dt' \right)^2 \right\rangle_{t_0}.
722 gezelter 3302 \label{eq:shear}
723     \end{equation}
724     A similar form exists for the bulk viscosity
725     \begin{equation}
726 gezelter 3310 \kappa = \lim_{t->\infty} \frac{V}{2 k_B T} \frac{d}{dt} \left\langle \left(
727 gezelter 3302 \int_{t_0}^{t_0 + t}
728 gezelter 3310 \left(P\left(t'\right)-\left\langle P \right\rangle \right)dt'
729     \right)^2 \right\rangle_{t_0}.
730 gezelter 3302 \end{equation}
731     Alternatively, the shear viscosity can also be calculated using a
732     Green-Kubo formula with the off-diagonal pressure tensor correlation function,
733     \begin{equation}
734 gezelter 3310 \eta = \frac{V}{k_B T} \int_0^{\infty} \left\langle P_{xz}(t_0) P_{xz}(t_0
735     + t) \right\rangle_{t_0} dt,
736 gezelter 3302 \end{equation}
737     although this method converges extremely slowly and is not practical
738     for obtaining viscosities from molecular dynamics simulations.
739    
740     The Langevin dynamics for the different model systems were performed
741     at the same temperature as the average temperature of the
742     microcanonical simulations and with a solvent viscosity taken from
743 gezelter 3305 Eq. (\ref{eq:shear}) applied to these simulations. We used 1024
744     independent solute simulations to obtain statistics on our Langevin
745     integrator.
746 gezelter 3302
747     \subsection{Analysis}
748    
749     The quantities of interest when comparing the Langevin integrator to
750     analytic hydrodynamic equations and to molecular dynamics simulations
751     are typically translational diffusion constants and orientational
752     relaxation times. Translational diffusion constants for point
753     particles are computed easily from the long-time slope of the
754     mean-square displacement,
755     \begin{equation}
756 gezelter 3310 D = \lim_{t\rightarrow \infty} \frac{1}{6 t} \left\langle {|\left({\bf r}_{i}(t) - {\bf r}_{i}(0) \right)|}^2 \right\rangle,
757 gezelter 3302 \end{equation}
758     of the solute molecules. For models in which the translational
759 gezelter 3305 diffusion tensor (${\bf D}_{tt}$) has non-degenerate eigenvalues
760     (i.e. any non-spherically-symmetric rigid body), it is possible to
761     compute the diffusive behavior for motion parallel to each body-fixed
762     axis by projecting the displacement of the particle onto the
763     body-fixed reference frame at $t=0$. With an isotropic solvent, as we
764     have used in this study, there are differences between the three
765 gezelter 3302 diffusion constants, but these must converge to the same value at
766     longer times. Translational diffusion constants for the different
767 gezelter 3305 shaped models are shown in table \ref{tab:translation}.
768 gezelter 3302
769 gezelter 3305 In general, the three eigenvalues ($D_1, D_2, D_3$) of the rotational
770 gezelter 3302 diffusion tensor (${\bf D}_{rr}$) measure the diffusion of an object
771     {\it around} a particular body-fixed axis and {\it not} the diffusion
772     of a vector pointing along the axis. However, these eigenvalues can
773     be combined to find 5 characteristic rotational relaxation
774 gezelter 3305 times,\cite{PhysRev.119.53,Berne90}
775 gezelter 3302 \begin{eqnarray}
776 gezelter 3305 1 / \tau_1 & = & 6 D_r + 2 \Delta \\
777     1 / \tau_2 & = & 6 D_r - 2 \Delta \\
778     1 / \tau_3 & = & 3 (D_r + D_1) \\
779     1 / \tau_4 & = & 3 (D_r + D_2) \\
780     1 / \tau_5 & = & 3 (D_r + D_3)
781 gezelter 3302 \end{eqnarray}
782     where
783     \begin{equation}
784     D_r = \frac{1}{3} \left(D_1 + D_2 + D_3 \right)
785     \end{equation}
786     and
787     \begin{equation}
788 gezelter 3305 \Delta = \left( (D_1 - D_2)^2 + (D_3 - D_1 )(D_3 - D_2)\right)^{1/2}
789 gezelter 3302 \end{equation}
790 gezelter 3305 Each of these characteristic times can be used to predict the decay of
791     part of the rotational correlation function when $\ell = 2$,
792 gezelter 3302 \begin{equation}
793 gezelter 3305 C_2(t) = \frac{a^2}{N^2} e^{-t/\tau_1} + \frac{b^2}{N^2} e^{-t/\tau_2}.
794 gezelter 3302 \end{equation}
795 gezelter 3305 This is the same as the $F^2_{0,0}(t)$ correlation function that
796     appears in Ref. \citen{Berne90}. The amplitudes of the two decay
797     terms are expressed in terms of three dimensionless functions of the
798     eigenvalues: $a = \sqrt{3} (D_1 - D_2)$, $b = (2D_3 - D_1 - D_2 +
799     2\Delta)$, and $N = 2 \sqrt{\Delta b}$. Similar expressions can be
800     obtained for other angular momentum correlation
801     functions.\cite{PhysRev.119.53,Berne90} In all of the model systems we
802     studied, only one of the amplitudes of the two decay terms was
803     non-zero, so it was possible to derive a single relaxation time for
804     each of the hydrodynamic tensors. In many cases, these characteristic
805     times are averaged and reported in the literature as a single relaxation
806     time,\cite{Garcia-de-la-Torre:1997qy}
807 gezelter 3302 \begin{equation}
808 gezelter 3305 1 / \tau_0 = \frac{1}{5} \sum_{i=1}^5 \tau_{i}^{-1},
809     \end{equation}
810     although for the cases reported here, this averaging is not necessary
811     and only one of the five relaxation times is relevant.
812    
813     To test the Langevin integrator's behavior for rotational relaxation,
814     we have compared the analytical orientational relaxation times (if
815     they are known) with the general result from the diffusion tensor and
816     with the results from both the explicitly solvated molecular dynamics
817     and Langevin simulations. Relaxation times from simulations (both
818     microcanonical and Langevin), were computed using Legendre polynomial
819     correlation functions for a unit vector (${\bf u}$) fixed along one or
820     more of the body-fixed axes of the model.
821     \begin{equation}
822 gezelter 3310 C_{\ell}(t) = \left\langle P_{\ell}\left({\bf u}_{i}(t) \cdot {\bf
823     u}_{i}(0) \right) \right\rangle
824 gezelter 3302 \end{equation}
825     For simulations in the high-friction limit, orientational correlation
826     times can then be obtained from exponential fits of this function, or by
827     integrating,
828     \begin{equation}
829 gezelter 3305 \tau = \ell (\ell + 1) \int_0^{\infty} C_{\ell}(t) dt.
830 gezelter 3302 \end{equation}
831 gezelter 3305 In lower-friction solvents, the Legendre correlation functions often
832     exhibit non-exponential decay, and may not be characterized by a
833     single decay constant.
834 gezelter 3302
835     In table \ref{tab:rotation} we show the characteristic rotational
836     relaxation times (based on the diffusion tensor) for each of the model
837     systems compared with the values obtained via microcanonical and Langevin
838     simulations.
839    
840 gezelter 3305 \subsection{Spherical particles}
841 gezelter 3299 Our model system for spherical particles was a Lennard-Jones sphere of
842     diameter ($\sigma$) 6.5 \AA\ in a sea of smaller spheres ($\sigma$ =
843     4.7 \AA). The well depth ($\epsilon$) for both particles was set to
844 gezelter 3302 an arbitrary value of 0.8 kcal/mol.
845 gezelter 3299
846     The Stokes-Einstein behavior of large spherical particles in
847     hydrodynamic flows is well known, giving translational friction
848     coefficients of $6 \pi \eta R$ (stick boundary conditions) and
849 gezelter 3302 rotational friction coefficients of $8 \pi \eta R^3$. Recently,
850     Schmidt and Skinner have computed the behavior of spherical tag
851     particles in molecular dynamics simulations, and have shown that {\it
852     slip} boundary conditions ($\Xi_{tt} = 4 \pi \eta R$) may be more
853 gezelter 3299 appropriate for molecule-sized spheres embedded in a sea of spherical
854 gezelter 3310 solvent particles.\cite{Schmidt:2004fj,Schmidt:2003kx}
855 gezelter 3299
856     Our simulation results show similar behavior to the behavior observed
857 gezelter 3302 by Schmidt and Skinner. The diffusion constant obtained from our
858 gezelter 3299 microcanonical molecular dynamics simulations lies between the slip
859     and stick boundary condition results obtained via Stokes-Einstein
860     behavior. Since the Langevin integrator assumes Stokes-Einstein stick
861     boundary conditions in calculating the drag and random forces for
862     spherical particles, our Langevin routine obtains nearly quantitative
863     agreement with the hydrodynamic results for spherical particles. One
864     avenue for improvement of the method would be to compute elements of
865     $\Xi_{tt}$ assuming behavior intermediate between the two boundary
866 gezelter 3302 conditions.
867 gezelter 3299
868 gezelter 3310 In the explicit solvent simulations, both our solute and solvent
869     particles were structureless, exerting no torques upon each other.
870     Therefore, there are not rotational correlation times available for
871     this model system.
872 gezelter 3299
873 gezelter 3310 \subsection{Ellipsoids}
874     For uniaxial ellipsoids ($a > b = c$), Perrin's formulae for both
875 gezelter 3299 translational and rotational diffusion of each of the body-fixed axes
876     can be combined to give a single translational diffusion
877 gezelter 3302 constant,\cite{Berne90}
878 gezelter 3299 \begin{equation}
879     D = \frac{k_B T}{6 \pi \eta a} G(\rho),
880     \label{Dperrin}
881     \end{equation}
882     as well as a single rotational diffusion coefficient,
883     \begin{equation}
884     \Theta = \frac{3 k_B T}{16 \pi \eta a^3} \left\{ \frac{(2 - \rho^2)
885     G(\rho) - 1}{1 - \rho^4} \right\}.
886     \label{ThetaPerrin}
887     \end{equation}
888     In these expressions, $G(\rho)$ is a function of the axial ratio
889     ($\rho = b / a$), which for prolate ellipsoids, is
890     \begin{equation}
891     G(\rho) = (1- \rho^2)^{-1/2} \ln \left\{ \frac{1 + (1 -
892     \rho^2)^{1/2}}{\rho} \right\}
893     \label{GPerrin}
894     \end{equation}
895     Again, there is some uncertainty about the correct boundary conditions
896     to use for molecular-scale ellipsoids in a sea of similarly-sized
897     solvent particles. Ravichandran and Bagchi found that {\it slip}
898 gezelter 3302 boundary conditions most closely resembled the simulation
899     results,\cite{Ravichandran:1999fk} in agreement with earlier work of
900     Tang and Evans.\cite{TANG:1993lr}
901 gezelter 3299
902 gezelter 3305 Even though there are analytic resistance tensors for ellipsoids, we
903     constructed a rough-shell model using 2135 beads (each with a diameter
904 gezelter 3310 of 0.25 \AA) to approximate the shape of the model ellipsoid. We
905 gezelter 3305 compared the Langevin dynamics from both the simple ellipsoidal
906     resistance tensor and the rough shell approximation with
907     microcanonical simulations and the predictions of Perrin. As in the
908     case of our spherical model system, the Langevin integrator reproduces
909     almost exactly the behavior of the Perrin formulae (which is
910     unsurprising given that the Perrin formulae were used to derive the
911 gezelter 3299 drag and random forces applied to the ellipsoid). We obtain
912     translational diffusion constants and rotational correlation times
913     that are within a few percent of the analytic values for both the
914     exact treatment of the diffusion tensor as well as the rough-shell
915     model for the ellipsoid.
916    
917 gezelter 3308 The translational diffusion constants from the microcanonical simulations
918     agree well with the predictions of the Perrin model, although the rotational
919     correlation times are a factor of 2 shorter than expected from hydrodynamic
920     theory. One explanation for the slower rotation
921     of explicitly-solvated ellipsoids is the possibility that solute-solvent
922     collisions happen at both ends of the solute whenever the principal
923     axis of the ellipsoid is turning. In the upper portion of figure
924     \ref{fig:explanation} we sketch a physical picture of this explanation.
925     Since our Langevin integrator is providing nearly quantitative agreement with
926     the Perrin model, it also predicts orientational diffusion for ellipsoids that
927     exceed explicitly solvated correlation times by a factor of two.
928 gezelter 3299
929 gezelter 3310 \subsection{Rigid dumbbells}
930 gezelter 3302 Perhaps the only {\it composite} rigid body for which analytic
931     expressions for the hydrodynamic tensor are available is the
932     two-sphere dumbbell model. This model consists of two non-overlapping
933     spheres held by a rigid bond connecting their centers. There are
934     competing expressions for the 6x6 resistance tensor for this
935     model. Equation (\ref{introEquation:oseenTensor}) above gives the
936     original Oseen tensor, while the second order expression introduced by
937     Rotne and Prager,\cite{Rotne1969} and improved by Garc\'{i}a de la
938     Torre and Bloomfield,\cite{Torre1977} is given above as
939 gezelter 3299 Eq. (\ref{introEquation:RPTensorNonOverlapped}). In our case, we use
940     a model dumbbell in which the two spheres are identical Lennard-Jones
941     particles ($\sigma$ = 6.5 \AA\ , $\epsilon$ = 0.8 kcal / mol) held at
942 gezelter 3302 a distance of 6.532 \AA.
943 gezelter 3299
944     The theoretical values for the translational diffusion constant of the
945     dumbbell are calculated from the work of Stimson and Jeffery, who
946     studied the motion of this system in a flow parallel to the
947 gezelter 3302 inter-sphere axis,\cite{Stimson:1926qy} and Davis, who studied the
948     motion in a flow {\it perpendicular} to the inter-sphere
949     axis.\cite{Davis:1969uq} We know of no analytic solutions for the {\it
950     orientational} correlation times for this model system (other than
951 gezelter 3305 those derived from the 6 x 6 tensors mentioned above).
952 gezelter 3299
953 gezelter 3305 The bead model for this model system comprises the two large spheres
954     by themselves, while the rough shell approximation used 3368 separate
955     beads (each with a diameter of 0.25 \AA) to approximate the shape of
956     the rigid body. The hydrodynamics tensors computed from both the bead
957     and rough shell models are remarkably similar. Computing the initial
958     hydrodynamic tensor for a rough shell model can be quite expensive (in
959     this case it requires inverting a 10104 x 10104 matrix), while the
960     bead model is typically easy to compute (in this case requiring
961 gezelter 3308 inversion of a 6 x 6 matrix).
962 gezelter 3305
963 gezelter 3308 \begin{figure}
964     \centering
965 gezelter 3310 \includegraphics[width=2in]{RoughShell}
966 gezelter 3308 \caption[Model rigid bodies and their rough shell approximations]{The
967     model rigid bodies (left column) used to test this algorithm and their
968     rough-shell approximations (right-column) that were used to compute
969     the hydrodynamic tensors. The top two models (ellipsoid and dumbbell)
970     have analytic solutions and were used to test the rough shell
971     approximation. The lower two models (banana and lipid) were compared
972     with explicitly-solvated molecular dynamics simulations. }
973     \label{fig:roughShell}
974     \end{figure}
975    
976    
977 gezelter 3305 Once the hydrodynamic tensor has been computed, there is no additional
978     penalty for carrying out a Langevin simulation with either of the two
979     different hydrodynamics models. Our naive expectation is that since
980     the rigid body's surface is roughened under the various shell models,
981     the diffusion constants will be even farther from the ``slip''
982     boundary conditions than observed for the bead model (which uses a
983     Stokes-Einstein model to arrive at the hydrodynamic tensor). For the
984     dumbbell, this prediction is correct although all of the Langevin
985     diffusion constants are within 6\% of the diffusion constant predicted
986     from the fully solvated system.
987    
988 gezelter 3308 For rotational motion, Langevin integration (and the hydrodynamic tensor)
989     yields rotational correlation times that are substantially shorter than those
990     obtained from explicitly-solvated simulations. It is likely that this is due
991     to the large size of the explicit solvent spheres, a feature that prevents
992     the solvent from coming in contact with a substantial fraction of the surface
993     area of the dumbbell. Therefore, the explicit solvent only provides drag
994     over a substantially reduced surface area of this model, while the
995     hydrodynamic theories utilize the entire surface area for estimating
996     rotational diffusion. A sketch of the free volume available in the explicit
997     solvent simulations is shown in figure \ref{fig:explanation}.
998 gezelter 3305
999 gezelter 3310
1000     \begin{figure}
1001     \centering
1002     \includegraphics[width=6in]{explanation}
1003     \caption[Explanations of the differences between orientational
1004     correlation times for explicitly-solvated models and hydrodynamics
1005     predictions]{Explanations of the differences between orientational
1006     correlation times for explicitly-solvated models and hydrodynamic
1007     predictions. For the ellipsoids (upper figures), rotation of the
1008     principal axis can involve correlated collisions at both sides of the
1009     solute. In the rigid dumbbell model (lower figures), the large size
1010     of the explicit solvent spheres prevents them from coming in contact
1011     with a substantial fraction of the surface area of the dumbbell.
1012     Therefore, the explicit solvent only provides drag over a
1013     substantially reduced surface area of this model, where the
1014     hydrodynamic theories utilize the entire surface area for estimating
1015     rotational diffusion.
1016     } \label{fig:explanation}
1017     \end{figure}
1018    
1019    
1020    
1021     \subsection{Composite banana-shaped molecules}
1022     Banana-shaped rigid bodies composed of three Gay-Berne ellipsoids have
1023     been used by Orlandi {\it et al.} to observe mesophases in
1024     coarse-grained models for bent-core liquid crystalline
1025     molecules.\cite{Orlandi:2006fk} We have used the same overlapping
1026 gezelter 3299 ellipsoids as a way to test the behavior of our algorithm for a
1027     structure of some interest to the materials science community,
1028     although since we are interested in capturing only the hydrodynamic
1029 gezelter 3310 behavior of this model, we have left out the dipolar interactions of
1030     the original Orlandi model.
1031 gezelter 3308
1032     A reference system composed of a single banana rigid body embedded in a
1033     sea of 1929 solvent particles was created and run under standard
1034     (microcanonical) molecular dynamics. The resulting viscosity of this
1035     mixture was 0.298 centipoise (as estimated using Eq. (\ref{eq:shear})).
1036     To calculate the hydrodynamic properties of the banana rigid body model,
1037 gezelter 3310 we created a rough shell (see Fig.~\ref{fig:roughShell}), in which
1038 gezelter 3308 the banana is represented as a ``shell'' made of 3321 identical beads
1039 gezelter 3310 (0.25 \AA\ in diameter) distributed on the surface. Applying the
1040 gezelter 3308 procedure described in Sec.~\ref{introEquation:ResistanceTensorArbitraryOrigin}, we
1041 gezelter 3310 identified the center of resistance, ${\bf r} = $(0 \AA, 0.81 \AA, 0 \AA), as
1042     well as the resistance tensor,
1043     \begin{equation*}
1044     \Xi =
1045 gezelter 3308 \left( {\begin{array}{*{20}c}
1046     0.9261 & 0 & 0&0&0.08585&0.2057\\
1047     0& 0.9270&-0.007063& 0.08585&0&0\\
1048     0&-0.007063&0.7494&0.2057&0&0\\
1049 gezelter 3310 0&0.0858&0.2057& 58.64& 0&0\\0.08585&0&0&0&48.30&3.219&\\0.2057&0&0&0&3.219&10.7373\\\end{array}} \right),
1050     \end{equation*}
1051     where the units for translational, translation-rotation coupling and
1052     rotational tensors are (kcal fs / mol \AA$^2$), (kcal fs / mol \AA\ rad),
1053     and (kcal fs / mol rad$^2$), respectively.
1054 gezelter 3299
1055 gezelter 3308 The Langevin rigid-body integrator (and the hydrodynamic diffusion tensor)
1056     are essentially quantitative for translational diffusion of this model.
1057     Orientational correlation times under the Langevin rigid-body integrator
1058     are within 11\% of the values obtained from explicit solvent, but these
1059     models also exhibit some solvent inaccessible surface area in the
1060     explicitly-solvated case.
1061    
1062 gezelter 3310 \subsection{Composite sphero-ellipsoids}
1063 gezelter 3299 Spherical heads perched on the ends of Gay-Berne ellipsoids have been
1064 xsun 3312 used recently as models for lipid
1065     molecules.\cite{SunGezelter08,Ayton01}
1066 gezelter 3310 MORE DETAILS
1067 xsun 3298
1068 xsun 3312 A reference system composed of a single lipid rigid body embedded in a
1069     sea of 1929 solvent particles was created and run under standard
1070     (microcanonical) molecular dynamics. The resulting viscosity of this
1071     mixture was 0.349 centipoise (as estimated using
1072     Eq. (\ref{eq:shear})). To calculate the hydrodynamic properties of
1073     the lipid rigid body model, we created a rough shell (see
1074     Fig.~\ref{fig:roughShell}), in which the lipid is represented as a
1075     ``shell'' made of 3550 identical beads (0.25 \AA\ in diameter)
1076     distributed on the surface. Applying the procedure described in
1077     Sec.~\ref{introEquation:ResistanceTensorArbitraryOrigin}, we
1078     identified the center of resistance, ${\bf r} = $(0 \AA, 0 \AA, 1.46
1079     \AA).
1080 gezelter 3310
1081     \subsection{Summary}
1082 xsun 3298 According to our simulations, the langevin dynamics is a reliable
1083     theory to apply to replace the explicit solvents, especially for the
1084     translation properties. For large molecules, the rotation properties
1085     are also mimiced reasonablly well.
1086    
1087     \begin{table*}
1088     \begin{minipage}{\linewidth}
1089     \begin{center}
1090 gezelter 3305 \caption{Translational diffusion constants (D) for the model systems
1091     calculated using microcanonical simulations (with explicit solvent),
1092     theoretical predictions, and Langevin simulations (with implicit solvent).
1093     Analytical solutions for the exactly-solved hydrodynamics models are
1094     from Refs. \citen{Einstein05} (sphere), \citen{Perrin1934} and \citen{Perrin1936}
1095     (ellipsoid), \citen{Stimson:1926qy} and \citen{Davis:1969uq}
1096     (dumbbell). The other model systems have no known analytic solution.
1097     All diffusion constants are reported in units of $10^{-3}$ cm$^2$ / ps (=
1098     $10^{-4}$ \AA$^2$ / fs). }
1099     \begin{tabular}{lccccccc}
1100 xsun 3298 \hline
1101 gezelter 3305 & \multicolumn{2}c{microcanonical simulation} & & \multicolumn{3}c{Theoretical} & Langevin \\
1102     \cline{2-3} \cline{5-7}
1103     model & $\eta$ (centipoise) & D & & Analytical & method & Hydrodynamics & simulation \\
1104 xsun 3298 \hline
1105 xsun 3312 sphere & 0.279 & 3.06 & & 2.42 & exact & 2.42 & 2.33 \\
1106 gezelter 3305 ellipsoid & 0.255 & 2.44 & & 2.34 & exact & 2.34 & 2.37 \\
1107     & 0.255 & 2.44 & & 2.34 & rough shell & 2.36 & 2.28 \\
1108 xsun 3312 dumbbell & 0.308 & 2.06 & & 1.64 & bead model & 1.65 & 1.62 \\
1109     & 0.308 & 2.06 & & 1.64 & rough shell & 1.59 & 1.62 \\
1110 gezelter 3305 banana & 0.298 & 1.53 & & & rough shell & 1.56 & 1.55 \\
1111     lipid & 0.349 & 0.96 & & & rough shell & 1.33 & 1.32 \\
1112 xsun 3298 \end{tabular}
1113     \label{tab:translation}
1114     \end{center}
1115     \end{minipage}
1116     \end{table*}
1117    
1118     \begin{table*}
1119     \begin{minipage}{\linewidth}
1120     \begin{center}
1121 gezelter 3305 \caption{Orientational relaxation times ($\tau$) for the model systems using
1122     microcanonical simulation (with explicit solvent), theoretical
1123     predictions, and Langevin simulations (with implicit solvent). All
1124     relaxation times are for the rotational correlation function with
1125     $\ell = 2$ and are reported in units of ps. The ellipsoidal model has
1126     an exact solution for the orientational correlation time due to
1127     Perrin, but the other model systems have no known analytic solution.}
1128     \begin{tabular}{lccccccc}
1129 xsun 3298 \hline
1130 gezelter 3305 & \multicolumn{2}c{microcanonical simulation} & & \multicolumn{3}c{Theoretical} & Langevin \\
1131     \cline{2-3} \cline{5-7}
1132     model & $\eta$ (centipoise) & $\tau$ & & Perrin & method & Hydrodynamic & simulation \\
1133 xsun 3298 \hline
1134 xsun 3312 sphere & 0.279 & & & 9.69 & exact & 9.69 & 9.64 \\
1135 gezelter 3305 ellipsoid & 0.255 & 46.7 & & 22.0 & exact & 22.0 & 22.2 \\
1136     & 0.255 & 46.7 & & 22.0 & rough shell & 22.6 & 22.2 \\
1137 xsun 3312 dumbbell & 0.308 & 14.1 & & & bead model & 50.0 & 50.1 \\
1138     & 0.308 & 14.1 & & & rough shell & 41.5 & 41.3 \\
1139 gezelter 3305 banana & 0.298 & 63.8 & & & rough shell & 70.9 & 70.9 \\
1140     lipid & 0.349 & 78.0 & & & rough shell & 76.9 & 77.9 \\
1141     \hline
1142 xsun 3298 \end{tabular}
1143     \label{tab:rotation}
1144     \end{center}
1145     \end{minipage}
1146     \end{table*}
1147    
1148 gezelter 3310 \section{Application: A rigid-body lipid bilayer}
1149    
1150     The Langevin dynamics integrator was applied to study the formation of
1151     corrugated structures emerging from simulations of the coarse grained
1152     lipid molecular models presented above. The initial configuration is
1153 xsun 3298 taken from our molecular dynamics studies on lipid bilayers with
1154 gezelter 3310 lennard-Jones sphere solvents. The solvent molecules were excluded
1155     from the system, and the experimental value for the viscosity of water
1156     at 20C ($\eta = 1.00$ cp) was used to mimic the hydrodynamic effects
1157     of the solvent. The absence of explicit solvent molecules and the
1158     stability of the integrator allowed us to take timesteps of 50 fs. A
1159     total simulation run time of 100 ns was sampled.
1160     Fig. \ref{fig:bilayer} shows the configuration of the system after 100
1161     ns, and the ripple structure remains stable during the entire
1162     trajectory. Compared with using explicit bead-model solvent
1163     molecules, the efficiency of the simulation has increased by an order
1164 xsun 3298 of magnitude.
1165    
1166 gezelter 3310 \begin{figure}
1167     \centering
1168     \includegraphics[width=\linewidth]{bilayer}
1169     \caption[Snapshot of a bilayer of rigid-body models for lipids]{A
1170     snapshot of a bilayer composed of rigid-body models for lipid
1171     molecules evolving using the Langevin integrator described in this
1172     work.} \label{fig:bilayer}
1173     \end{figure}
1174    
1175 tim 2746 \section{Conclusions}
1176    
1177 tim 2999 We have presented a new Langevin algorithm by incorporating the
1178     hydrodynamics properties of arbitrary shaped molecules into an
1179 gezelter 3308 advanced symplectic integration scheme. Further studies in systems
1180     involving banana shaped molecules illustrated that the dynamic
1181     properties could be preserved by using this new algorithm as an
1182     implicit solvent model.
1183 tim 2999
1184    
1185 tim 2746 \section{Acknowledgments}
1186     Support for this project was provided by the National Science
1187     Foundation under grant CHE-0134881. T.L. also acknowledges the
1188     financial support from center of applied mathematics at University
1189     of Notre Dame.
1190     \newpage
1191    
1192 gezelter 3305 \bibliographystyle{jcp}
1193 tim 2746 \bibliography{langevin}
1194    
1195     \end{document}