ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/langevin/langevin.tex
Revision: 3352
Committed: Fri Feb 29 22:02:46 2008 UTC (16 years, 6 months ago) by gezelter
Content type: application/x-tex
File size: 65334 byte(s)
Log Message:
newest version

File Contents

# User Rev Content
1 tim 2746 %\documentclass[prb,aps,twocolumn,tabularx]{revtex4}
2 gezelter 3352 %\documentclass[aps,prb,preprint,amsmath,amssymb,endfloats]{revtex4}
3 tim 2746 \documentclass[11pt]{article}
4 gezelter 3337 \usepackage{amsmath}
5 tim 2746 \usepackage{amssymb}
6     \usepackage{times}
7     \usepackage{mathptmx}
8     \usepackage{setspace}
9 gezelter 3352 \usepackage{endfloat}
10     %\usepackage{tabularx}
11 tim 2746 \usepackage{graphicx}
12 gezelter 3352 %\usepackage{booktabs}
13     %\usepackage{bibentry}
14     %\usepackage{mathrsfs}
15 tim 2746 \usepackage[ref]{overcite}
16     \pagestyle{plain} \pagenumbering{arabic} \oddsidemargin 0.0cm
17     \evensidemargin 0.0cm \topmargin -21pt \headsep 10pt \textheight
18     9.0in \textwidth 6.5in \brokenpenalty=10000
19 gezelter 3352
20 gezelter 3299 \renewcommand\citemid{\ } % no comma in optional referenc note
21 tim 2746
22     \begin{document}
23    
24 gezelter 3352 \title{Langevin dynamics for rigid bodies of arbitrary shape}
25 tim 2746
26 gezelter 3352 \author{Xiuquan Sun, Teng Lin and J. Daniel
27     Gezelter\footnote{Corresponding author. \ Electronic mail: gezelter@nd.edu} \\
28     Department of Chemistry and Biochemistry,\\
29 tim 2746 University of Notre Dame\\
30     Notre Dame, Indiana 46556}
31    
32     \date{\today}
33    
34    
35 gezelter 3352 \maketitle
36    
37    
38    
39 tim 2746 \begin{abstract}
40 gezelter 3352 We present an algorithm for carrying out Langevin dynamics simulations
41     on complex rigid bodies by incorporating the hydrodynamic resistance
42     tensors for arbitrary shapes into an advanced symplectic integration
43     scheme. The integrator gives quantitative agreement with both
44     analytic and approximate hydrodynamic theories for a number of model
45     rigid bodies, and works well at reproducing the solute dynamical
46     properties (diffusion constants, and orientational relaxation times)
47     obtained from explicitly-solvated simulations.
48 tim 2746 \end{abstract}
49    
50     \newpage
51    
52 gezelter 3352
53    
54 tim 2746 %\narrowtext
55    
56     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
57     % BODY OF TEXT
58     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
59    
60 gezelter 3352 \begin{doublespace}
61    
62 tim 2746 \section{Introduction}
63    
64     %applications of langevin dynamics
65 gezelter 3352 Langevin dynamics, which mimics a heat bath using both stochastic and
66 gezelter 3316 dissipative forces, has been applied in a variety of situations as an
67     alternative to molecular dynamics with explicit solvent molecules.
68     The stochastic treatment of the solvent allows the use of simulations
69 gezelter 3352 with substantially longer time and length scales. In general, the
70 gezelter 3316 dynamic and structural properties obtained from Langevin simulations
71     agree quite well with similar properties obtained from explicit
72     solvent simulations.
73    
74     Recent examples of the usefulness of Langevin simulations include a
75     study of met-enkephalin in which Langevin simulations predicted
76     dynamical properties that were largely in agreement with explicit
77     solvent simulations.\cite{Shen2002} By applying Langevin dynamics with
78 gezelter 3352 the UNRES model, Liwo and his coworkers suggest that protein folding
79 gezelter 3316 pathways can be explored within a reasonable amount of
80     time.\cite{Liwo2005}
81    
82     The stochastic nature of Langevin dynamics also enhances the sampling
83     of the system and increases the probability of crossing energy
84     barriers.\cite{Cui2003,Banerjee2004} Combining Langevin dynamics with
85 gezelter 3333 Kramers' theory, Klimov and Thirumalai identified free-energy
86 gezelter 3316 barriers by studying the viscosity dependence of the protein folding
87     rates.\cite{Klimov1997} In order to account for solvent induced
88     interactions missing from the implicit solvent model, Kaya
89     incorporated a desolvation free energy barrier into protein
90     folding/unfolding studies and discovered a higher free energy barrier
91 xsun 3317 between the native and denatured states.\cite{HuseyinKaya07012005}
92 gezelter 3316
93 gezelter 3352 In typical LD simulations, the friction and random ($f_r$) forces on
94 gezelter 3333 individual atoms are taken from Stokes' law,
95 gezelter 3316 \begin{eqnarray}
96 gezelter 3352 m \dot{v}(t) & = & -\nabla U(x) - \xi m v(t) + f_r(t) \notag \\
97     \langle f_r(t) \rangle & = & 0 \\
98     \langle f_r(t) f_r(t') \rangle & = & 2 k_B T \xi m \delta(t - t') \notag
99 gezelter 3316 \end{eqnarray}
100 gezelter 3352 where $\xi \approx 6 \pi \eta \rho$. Here $\eta$ is the viscosity of the
101     implicit solvent, and $\rho$ is the hydrodynamic radius of the atom.
102 tim 2746
103 gezelter 3333 The use of rigid substructures,\cite{Chun:2000fj}
104 gezelter 3352 coarse-graining,\cite{Ayton01,Golubkov06,Orlandi:2006fk,SunX._jp0762020}
105     and ellipsoidal representations of protein side
106     chains~\cite{Fogolari:1996lr} has made the use of the Stokes-Einstein
107     approximation problematic. A rigid substructure moves as a single
108     unit with orientational as well as translational degrees of freedom.
109     This requires a more general treatment of the hydrodynamics than the
110     spherical approximation provides. Also, the atoms involved in a rigid
111     or coarse-grained structure have solvent-mediated interactions with
112     each other, and these interactions are ignored if all atoms are
113     treated as separate spherical particles. The theory of interactions
114     {\it between} bodies moving through a fluid has been developed over
115     the past century and has been applied to simulations of Brownian
116     motion.\cite{FIXMAN:1986lr,Ramachandran1996}
117 tim 2746
118 gezelter 3352 In order to account for the diffusion anisotropy of complex shapes,
119     Fernandes and Garc\'{i}a de la Torre improved an earlier Brownian
120     dynamics simulation algorithm~\cite{Ermak1978,Allison1991} by
121 gezelter 3333 incorporating a generalized $6\times6$ diffusion tensor and
122     introducing a rotational evolution scheme consisting of three
123     consecutive rotations.\cite{Fernandes2002} Unfortunately, biases are
124     introduced into the system due to the arbitrary order of applying the
125     noncommuting rotation operators.\cite{Beard2003} Based on the
126     observation the momentum relaxation time is much less than the time
127     step, one may ignore the inertia in Brownian dynamics. However, the
128     assumption of zero average acceleration is not always true for
129     cooperative motion which is common in proteins. An inertial Brownian
130     dynamics (IBD) was proposed to address this issue by adding an
131 gezelter 3352 inertial correction term.\cite{Beard2000} As a complement to IBD,
132     which has a lower bound in time step because of the inertial
133     relaxation time, long-time-step inertial dynamics (LTID) can be used
134     to investigate the inertial behavior of linked polymer segments in a
135     low friction regime.\cite{Beard2000} LTID can also deal with the
136 gezelter 3333 rotational dynamics for nonskew bodies without translation-rotation
137     coupling by separating the translation and rotation motion and taking
138 gezelter 3352 advantage of the analytical solution of hydrodynamic
139 gezelter 3333 properties. However, typical nonskew bodies like cylinders and
140     ellipsoids are inadequate to represent most complex macromolecular
141 gezelter 3352 assemblies. Therefore, the goal of this work is to adapt some of the
142     hydrodynamic methodologies developed to treat Brownian motion of
143     complex assemblies into a Langevin integrator for rigid bodies with
144     arbitrary shapes.
145 gezelter 3333
146 gezelter 3316 \subsection{Rigid Body Dynamics}
147     Rigid bodies are frequently involved in the modeling of large
148     collections of particles that move as a single unit. In molecular
149     simulations, rigid bodies have been used to simplify protein-protein
150 gezelter 3333 docking,\cite{Gray2003} and lipid bilayer
151 gezelter 3352 simulations.\cite{SunX._jp0762020} Many of the water models in common
152 gezelter 3333 use are also rigid-body
153     models,\cite{Jorgensen83,Berendsen81,Berendsen87} although they are
154 gezelter 3352 typically evolved in molecular dynamics simulations using constraints
155     rather than rigid body equations of motion.
156 gezelter 3316
157 gezelter 3333 Euler angles are a natural choice to describe the rotational degrees
158 gezelter 3337 of freedom. However, due to $\frac{1}{\sin \theta}$ singularities, the
159 gezelter 3333 numerical integration of corresponding equations of these motion can
160     become inaccurate (and inefficient). Although the use of multiple
161     sets of Euler angles can overcome this problem,\cite{Barojas1973} the
162     computational penalty and the loss of angular momentum conservation
163     remain. A singularity-free representation utilizing quaternions was
164     developed by Evans in 1977.\cite{Evans1977} The Evans quaternion
165     approach uses a nonseparable Hamiltonian, and this has prevented
166     symplectic algorithms from being utilized until very
167     recently.\cite{Miller2002}
168 gezelter 3316
169 gezelter 3333 Another approach is the application of holonomic constraints to the
170     atoms belonging to the rigid body. Each atom moves independently
171     under the normal forces deriving from potential energy and constraints
172     are used to guarantee rigidity. However, due to their iterative
173     nature, the SHAKE and RATTLE algorithms converge very slowly when the
174     number of constraints (and the number of particles that belong to the
175     rigid body) increases.\cite{Ryckaert1977,Andersen1983}
176 tim 2746
177 gezelter 3333 In order to develop a stable and efficient integration scheme that
178     preserves most constants of the motion, symplectic propagators are
179     necessary. By introducing a conjugate momentum to the rotation matrix
180 gezelter 3352 ${\bf Q}$ and re-formulating Hamilton's equations, a symplectic
181 gezelter 3333 orientational integrator, RSHAKE,\cite{Kol1997} was proposed to evolve
182     rigid bodies on a constraint manifold by iteratively satisfying the
183 gezelter 3352 orthogonality constraint ${\bf Q}^T {\bf Q} = 1$. An alternative
184     method using the quaternion representation was developed by
185     Omelyan.\cite{Omelyan1998} However, both of these methods are
186     iterative and suffer from some related inefficiencies. A symplectic
187     Lie-Poisson integrator for rigid bodies developed by Dullweber {\it et
188     al.}\cite{Dullweber1997} removes most of the limitations mentioned
189     above and is therefore the basis for our Langevin integrator.
190 gezelter 3316
191 tim 2746 The goal of the present work is to develop a Langevin dynamics
192 gezelter 3341 algorithm for arbitrary-shaped rigid particles by integrating an
193     accurate estimate of the friction tensor from hydrodynamics theory
194     into a symplectic rigid body dynamics propagator. In the sections
195     below, we review some of the theory of hydrodynamic tensors developed
196 gezelter 3333 primarily for Brownian simulations of multi-particle systems, we then
197     present our integration method for a set of generalized Langevin
198     equations of motion, and we compare the behavior of the new Langevin
199     integrator to dynamical quantities obtained via explicit solvent
200     molecular dynamics.
201 tim 2746
202 gezelter 3316 \subsection{\label{introSection:frictionTensor}The Friction Tensor}
203 gezelter 3341 Theoretically, a complete friction kernel for a solute particle can be
204     determined using the velocity autocorrelation function from a
205     simulation with explicit solvent molecules. However, this approach
206     becomes impractical when the solute becomes complex. Instead, various
207     approaches based on hydrodynamics have been developed to calculate
208     static friction coefficients. In general, the friction tensor $\Xi$ is
209     a $6\times 6$ matrix given by
210 gezelter 3316 \begin{equation}
211 gezelter 3333 \Xi = \left( \begin{array}{*{20}c}
212     \Xi^{tt} & \Xi^{rt} \\
213     \Xi^{tr} & \Xi^{rr} \\
214     \end{array} \right).
215 gezelter 3316 \end{equation}
216     Here, $\Xi^{tt}$ and $\Xi^{rr}$ are $3 \times 3$ translational and
217     rotational resistance (friction) tensors respectively, while
218     $\Xi^{tr}$ is translation-rotation coupling tensor and $\Xi^{rt}$ is
219     rotation-translation coupling tensor. When a particle moves in a
220 gezelter 3341 fluid, it may experience a friction force ($\mathbf{f}_f$) and torque
221     ($\mathbf{\tau}_f$) in opposition to the velocity ($\mathbf{v}$) and
222     body-fixed angular velocity ($\mathbf{\omega}$),
223 gezelter 3316 \begin{equation}
224 tim 2746 \left( \begin{array}{l}
225 xsun 3338 \mathbf{f}_f \\
226 gezelter 3316 \mathbf{\tau}_f \\
227 gezelter 3333 \end{array} \right) = - \left( \begin{array}{*{20}c}
228     \Xi^{tt} & \Xi^{rt} \\
229     \Xi^{tr} & \Xi^{rr} \\
230     \end{array} \right)\left( \begin{array}{l}
231 gezelter 3316 \mathbf{v} \\
232     \mathbf{\omega} \\
233     \end{array} \right).
234     \end{equation}
235 tim 2746
236 tim 2999 \subsubsection{\label{introSection:resistanceTensorRegular}\textbf{The Resistance Tensor for Regular Shapes}}
237 gezelter 3352 For a spherical body under ``stick'' boundary conditions,
238     the translational and rotational friction tensors can be calculated
239     from Stokes' law,
240 gezelter 3316 \begin{equation}
241 gezelter 3352 \label{eq:StokesTranslation}
242 gezelter 3333 \Xi^{tt} = \left( \begin{array}{*{20}c}
243 gezelter 3352 {6\pi \eta \rho} & 0 & 0 \\
244     0 & {6\pi \eta \rho} & 0 \\
245     0 & 0 & {6\pi \eta \rho} \\
246 gezelter 3333 \end{array} \right)
247 gezelter 3316 \end{equation}
248 tim 2999 and
249 gezelter 3316 \begin{equation}
250 gezelter 3352 \label{eq:StokesRotation}
251 gezelter 3333 \Xi^{rr} = \left( \begin{array}{*{20}c}
252 gezelter 3352 {8\pi \eta \rho^3 } & 0 & 0 \\
253     0 & {8\pi \eta \rho^3 } & 0 \\
254     0 & 0 & {8\pi \eta \rho^3 } \\
255 gezelter 3333 \end{array} \right)
256 gezelter 3316 \end{equation}
257 gezelter 3352 where $\eta$ is the viscosity of the solvent and $\rho$ is the
258     hydrodynamic radius. The presence of the rotational resistance tensor
259     implies that the spherical body has internal structure and
260     orientational degrees of freedom that must be propagated in time. For
261     non-structured spherical bodies (i.e. the atoms in a traditional
262     molecular dynamics simulation) these degrees of freedom do not exist.
263 tim 2999
264     Other non-spherical shapes, such as cylinders and ellipsoids, are
265 gezelter 3341 widely used as references for developing new hydrodynamic theories,
266 tim 2999 because their properties can be calculated exactly. In 1936, Perrin
267 gezelter 3341 extended Stokes' law to general
268     ellipsoids,\cite{Perrin1934,Perrin1936} described in Cartesian
269     coordinates as
270 gezelter 3316 \begin{equation}
271 gezelter 3333 \frac{x^2 }{a^2} + \frac{y^2}{b^2} + \frac{z^2 }{c^2} = 1.
272 gezelter 3316 \end{equation}
273 gezelter 3333 Here, the semi-axes are of lengths $a$, $b$, and $c$. Due to the
274     complexity of the elliptic integral, only uniaxial ellipsoids, either
275 gezelter 3341 prolate ($a \ge b = c$) or oblate ($a < b = c$), were solved
276 gezelter 3333 exactly. Introducing an elliptic integral parameter $S$ for prolate,
277 gezelter 3316 \begin{equation}
278     S = \frac{2}{\sqrt{a^2 - b^2}} \ln \frac{a + \sqrt{a^2 - b^2}}{b},
279     \end{equation}
280 gezelter 3333 and oblate,
281 gezelter 3316 \begin{equation}
282     S = \frac{2}{\sqrt {b^2 - a^2 }} \arctan \frac{\sqrt {b^2 - a^2}}{a},
283     \end{equation}
284 gezelter 3341 ellipsoids, it is possible to write down exact solutions for the
285     resistance tensors. As is the case for spherical bodies, the translational,
286     \begin{eqnarray}
287 gezelter 3316 \Xi_a^{tt} & = & 16\pi \eta \frac{a^2 - b^2}{(2a^2 - b^2 )S - 2a}. \\
288     \Xi_b^{tt} = \Xi_c^{tt} & = & 32\pi \eta \frac{a^2 - b^2 }{(2a^2 - 3b^2 )S + 2a},
289 gezelter 3341 \end{eqnarray}
290     and rotational,
291     \begin{eqnarray}
292 gezelter 3316 \Xi_a^{rr} & = & \frac{32\pi}{3} \eta \frac{(a^2 - b^2 )b^2}{2a - b^2 S}, \\
293     \Xi_b^{rr} = \Xi_c^{rr} & = & \frac{32\pi}{3} \eta \frac{(a^4 - b^4)}{(2a^2 - b^2 )S - 2a}
294 gezelter 3341 \end{eqnarray}
295     resistance tensors are diagonal $3 \times 3$ matrices. For both
296     spherical and ellipsoidal particles, the translation-rotation and
297     rotation-translation coupling tensors are zero.
298 tim 2746
299 tim 2999 \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}\textbf{The Resistance Tensor for Arbitrary Shapes}}
300 gezelter 3341 There is no analytical solution for the friction tensor for rigid
301     molecules of arbitrary shape. The ellipsoid of revolution and general
302     triaxial ellipsoid models have been widely used to approximate the
303 gezelter 3316 hydrodynamic properties of rigid bodies. However, the mapping from all
304 gezelter 3341 possible ellipsoidal spaces ($r$-space) to all possible combinations
305     of rotational diffusion coefficients ($D$-space) is not
306 gezelter 3316 unique.\cite{Wegener1979} Additionally, because there is intrinsic
307 gezelter 3341 coupling between translational and rotational motion of {\it skew}
308     rigid bodies, general ellipsoids are not always suitable for modeling
309     rigid molecules. A number of studies have been devoted to determining
310     the friction tensor for irregular shapes using methods in which the
311     molecule of interest is modeled with a combination of
312     spheres\cite{Carrasco1999} and the hydrodynamic properties of the
313     molecule are then calculated using a set of two-point interaction
314     tensors. We have found the {\it bead} and {\it rough shell} models of
315     Carrasco and Garc\'{i}a de la Torre to be the most useful of these
316     methods,\cite{Carrasco1999} and we review the basic outline of the
317     rough shell approach here. A more thorough explanation can be found
318     in Ref. \citen{Carrasco1999}.
319 gezelter 3333
320 gezelter 3341 Consider a rigid assembly of $N$ small beads moving through a
321     continuous medium. Due to hydrodynamic interactions between the
322     beads, the net velocity of the $i^\mathrm{th}$ bead relative to the
323     medium, ${\bf v}'_i$, is different than its unperturbed velocity ${\bf
324     v}_i$,
325 gezelter 3333 \begin{equation}
326 gezelter 3341 {\bf v}'_i = {\bf v}_i - \sum\limits_{j \ne i} {{\bf T}_{ij} {\bf F}_j }
327 gezelter 3333 \end{equation}
328 gezelter 3341 where ${\bf F}_j$ is the frictional force on the medium due to bead $j$, and
329     ${\bf T}_{ij}$ is the hydrodynamic interaction tensor between the two beads.
330     The frictional force felt by the $i^\mathrm{th}$ bead is proportional to
331     its net velocity
332 tim 2746 \begin{equation}
333 gezelter 3352 {\bf F}_i = \xi_i {\bf v}_i - \xi_i \sum\limits_{j \ne i} {{\bf T}_{ij} {\bf F}_j }.
334 tim 2999 \label{introEquation:tensorExpression}
335 tim 2746 \end{equation}
336 gezelter 3341 Eq. (\ref{introEquation:tensorExpression}) defines the two-point
337     hydrodynamic tensor, ${\bf T}_{ij}$. There have been many proposed
338     solutions to this equation, including the simple solution given by
339     Oseen and Burgers in 1930 for two beads of identical radius. A second
340     order expression for beads of different hydrodynamic radii was
341 gezelter 3352 introduced by Rotne and Prager,\cite{Rotne1969} and improved by
342 tim 2999 Garc\'{i}a de la Torre and Bloomfield,\cite{Torre1977}
343 tim 2746 \begin{equation}
344 gezelter 3341 {\bf T}_{ij} = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {{\bf I} +
345 gezelter 3352 \frac{{{\bf R}_{ij} {\bf R}_{ij}^T }}{{R_{ij}^2 }}} \right) + \frac{{\rho
346     _i^2 + \rho_j^2 }}{{R_{ij}^2 }}\left( {\frac{{\bf I}}{3} -
347 gezelter 3341 \frac{{{\bf R}_{ij} {\bf R}_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
348 tim 2999 \label{introEquation:RPTensorNonOverlapped}
349 tim 2746 \end{equation}
350 gezelter 3341 Here ${\bf R}_{ij}$ is the distance vector between beads $i$ and $j$. Both
351     the Oseen-Burgers tensor and
352     Eq.~\ref{introEquation:RPTensorNonOverlapped} have an assumption that
353 gezelter 3352 the beads do not overlap ($R_{ij} \ge \rho_i + \rho_j$).
354 gezelter 3341
355     To calculate the resistance tensor for a body represented as the union
356     of many non-overlapping beads, we first pick an arbitrary origin $O$
357     and then construct a $3N \times 3N$ supermatrix consisting of $N
358     \times N$ ${\bf B}_{ij}$ blocks
359 tim 2746 \begin{equation}
360 gezelter 3341 {\bf B} = \left( \begin{array}{*{20}c}
361     {\bf B}_{11} & \ldots & {\bf B}_{1N} \\
362     \vdots & \ddots & \vdots \\
363     {\bf B}_{N1} & \cdots & {\bf B}_{NN}
364     \end{array} \right)
365 tim 2746 \end{equation}
366 gezelter 3341 ${\bf B}_{ij}$ is a version of the hydrodynamic tensor which includes the
367     self-contributions for spheres,
368 tim 2999 \begin{equation}
369 gezelter 3341 {\bf B}_{ij} = \delta _{ij} \frac{{\bf I}}{{6\pi \eta R_{ij}}} + (1 - \delta_{ij}
370     ){\bf T}_{ij}
371     \end{equation}
372     where $\delta_{ij}$ is the Kronecker delta function. Inverting the
373     ${\bf B}$ matrix, we obtain
374     \begin{equation}
375     {\bf C} = {\bf B}^{ - 1} = \left(\begin{array}{*{20}c}
376     {\bf C}_{11} & \ldots & {\bf C}_{1N} \\
377     \vdots & \ddots & \vdots \\
378     {\bf C}_{N1} & \cdots & {\bf C}_{NN}
379 gezelter 3333 \end{array} \right),
380 tim 2999 \end{equation}
381 gezelter 3341 which can be partitioned into $N \times N$ blocks labeled ${\bf C}_{ij}$.
382     (Each of the ${\bf C}_{ij}$ blocks is a $3 \times 3$ matrix.) Using the
383     skew matrix,
384 gezelter 3333 \begin{equation}
385 gezelter 3341 {\bf U}_i = \left(\begin{array}{*{20}c}
386     0 & -z_i & y_i \\
387     z_i & 0 & - x_i \\
388     -y_i & x_i & 0
389     \end{array}\right)
390     \label{eq:skewMatrix}
391 gezelter 3333 \end{equation}
392 tim 2999 where $x_i$, $y_i$, $z_i$ are the components of the vector joining
393 gezelter 3341 bead $i$ and origin $O$, the elements of the resistance tensor (at the
394     arbitrary origin $O$) can be written as
395 tim 2999 \begin{eqnarray}
396 xsun 3339 \label{introEquation:ResistanceTensorArbitraryOrigin}
397 gezelter 3341 \Xi^{tt} & = & \sum\limits_i {\sum\limits_j {{\bf C}_{ij} } } \notag , \\
398     \Xi^{tr} = \Xi _{}^{rt} & = & \sum\limits_i {\sum\limits_j {{\bf U}_i {\bf C}_{ij} } } , \\
399     \Xi^{rr} & = & -\sum\limits_i \sum\limits_j {\bf U}_i {\bf C}_{ij} {\bf U}_j + 6 \eta V {\bf I}. \notag
400 tim 2999 \end{eqnarray}
401 gezelter 3341 The final term in the expression for $\Xi^{rr}$ is a correction that
402     accounts for errors in the rotational motion of the bead models. The
403     additive correction uses the solvent viscosity ($\eta$) as well as the
404     total volume of the beads that contribute to the hydrodynamic model,
405 gezelter 3310 \begin{equation}
406 gezelter 3352 V = \frac{4 \pi}{3} \sum_{i=1}^{N} \rho_i^3,
407 gezelter 3310 \end{equation}
408 gezelter 3352 where $\rho_i$ is the radius of bead $i$. This correction term was
409 gezelter 3310 rigorously tested and compared with the analytical results for
410 gezelter 3341 two-sphere and ellipsoidal systems by Garc\'{i}a de la Torre and
411 gezelter 3310 Rodes.\cite{Torre:1983lr}
412    
413 gezelter 3341 In general, resistance tensors depend on the origin at which they were
414     computed. However, the proper location for applying the friction
415     force is the center of resistance, the special point at which the
416     trace of rotational resistance tensor, $\Xi^{rr}$ reaches a minimum
417     value. Mathematically, the center of resistance can also be defined
418     as the unique point for a rigid body at which the translation-rotation
419     coupling tensors are symmetric,
420 tim 2999 \begin{equation}
421 gezelter 3341 \Xi^{tr} = \left(\Xi^{tr}\right)^T
422 tim 2999 \label{introEquation:definitionCR}
423     \end{equation}
424 gezelter 3341 From Eq. \ref{introEquation:ResistanceTensorArbitraryOrigin}, we can
425     easily derive that the {\it translational} resistance tensor is origin
426     independent, while the rotational resistance tensor and
427 tim 2999 translation-rotation coupling resistance tensor depend on the
428 gezelter 3341 origin. Given the resistance tensor at an arbitrary origin $O$, and a
429     vector ,${\bf r}_{OP} = (x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we
430     can obtain the resistance tensor at $P$ by
431     \begin{eqnarray}
432     \label{introEquation:resistanceTensorTransformation}
433     \Xi_P^{tt} & = & \Xi_O^{tt} \notag \\
434     \Xi_P^{tr} = \Xi_P^{rt} & = & \Xi_O^{tr} - {\bf U}_{OP} \Xi _O^{tt} \\
435     \Xi_P^{rr} & = &\Xi_O^{rr} - {\bf U}_{OP} \Xi_O^{tt} {\bf U}_{OP}
436     + \Xi_O^{tr} {\bf U}_{OP} - {\bf U}_{OP} \left( \Xi_O^{tr}
437     \right)^{^T} \notag
438     \end{eqnarray}
439     where ${\bf U}_{OP}$ is the skew matrix (Eq. (\ref{eq:skewMatrix}))
440     for the vector between the origin $O$ and the point $P$. Using
441     Eqs.~\ref{introEquation:definitionCR}~and~\ref{introEquation:resistanceTensorTransformation},
442     one can locate the position of center of resistance,
443     \begin{equation*}
444     \left(\begin{array}{l}
445     x_{OR} \\
446     y_{OR} \\
447     z_{OR}
448     \end{array}\right) =
449     \left(\begin{array}{*{20}c}
450     (\Xi_O^{rr})_{yy} + (\Xi_O^{rr})_{zz} & -(\Xi_O^{rr})_{xy} & -(\Xi_O^{rr})_{xz} \\
451     -(\Xi_O^{rr})_{xy} & (\Xi_O^{rr})_{zz} + (\Xi_O^{rr})_{xx} & -(\Xi_O^{rr})_{yz} \\
452     -(\Xi_O^{rr})_{xz} & -(\Xi_O^{rr})_{yz} & (\Xi_O^{rr})_{xx} + (\Xi_O^{rr})_{yy} \\
453     \end{array}\right)^{-1}
454     \left(\begin{array}{l}
455     (\Xi_O^{tr})_{yz} - (\Xi_O^{tr})_{zy} \\
456     (\Xi_O^{tr})_{zx} - (\Xi_O^{tr})_{xz} \\
457     (\Xi_O^{tr})_{xy} - (\Xi_O^{tr})_{yx}
458     \end{array}\right)
459     \end{equation*}
460 xsun 3338 where $x_{OR}$, $y_{OR}$, $z_{OR}$ are the components of the vector
461 tim 2999 joining center of resistance $R$ and origin $O$.
462 tim 2746
463 gezelter 3341 For a general rigid molecular substructure, finding the $6 \times 6$
464     resistance tensor can be a computationally demanding task. First, a
465     lattice of small beads that extends well beyond the boundaries of the
466     rigid substructure is created. The lattice is typically composed of
467     0.25 \AA\ beads on a dense FCC lattice. The lattice constant is taken
468     to be the bead diameter, so that adjacent beads are touching, but do
469     not overlap. To make a shape corresponding to the rigid structure,
470     beads that sit on lattice sites that are outside the van der Waals
471 gezelter 3352 radii of all of the atoms comprising the rigid body are excluded from
472     the calculation.
473 tim 2746
474 gezelter 3341 For large structures, most of the beads will be deep within the rigid
475     body and will not contribute to the hydrodynamic tensor. In the {\it
476     rough shell} approach, beads which have all of their lattice neighbors
477     inside the structure are considered interior beads, and are removed
478     from the calculation. After following this procedure, only those
479     beads in direct contact with the van der Waals surface of the rigid
480     body are retained. For reasonably large molecular structures, this
481     truncation can still produce bead assemblies with thousands of
482     members.
483    
484 gezelter 3352 If all of the {\it atoms} comprising the rigid substructure are
485     spherical and non-overlapping, the tensor in
486 gezelter 3341 Eq.~(\ref{introEquation:RPTensorNonOverlapped}) may be used directly
487     using the atoms themselves as the hydrodynamic beads. This is a
488     variant of the {\it bead model} approach of Carrasco and Garc\'{i}a de
489 gezelter 3352 la Torre.\cite{Carrasco1999} In this case, the size of the ${\bf B}$
490     matrix can be quite small, and the calculation of the hydrodynamic
491     tensor is straightforward.
492 gezelter 3341
493     In general, the inversion of the ${\bf B}$ matrix is the most
494     computationally demanding task. This inversion is done only once for
495 gezelter 3352 each type of rigid structure. We have used straightforward
496     LU-decomposition to solve the linear system and to obtain the elements
497     of ${\bf C}$. Once ${\bf C}$ has been obtained, the location of the
498 gezelter 3341 center of resistance ($R$) is found and the resistance tensor at this
499     point is calculated. The $3 \times 1$ vector giving the location of
500     the rigid body's center of resistance and the $6 \times 6$ resistance
501 gezelter 3352 tensor are then stored for use in the Langevin dynamics calculation.
502     These quantities depend on solvent viscosity and temperature and must
503     be recomputed if different simulation conditions are required.
504 gezelter 3341
505 gezelter 3310 \section{Langevin Dynamics for Rigid Particles of Arbitrary Shape\label{LDRB}}
506 gezelter 3337
507 tim 2999 Consider the Langevin equations of motion in generalized coordinates
508 tim 2746 \begin{equation}
509 gezelter 3341 {\bf M} \dot{{\bf V}}(t) = {\bf F}_{s}(t) +
510     {\bf F}_{f}(t) + {\bf F}_{r}(t)
511 tim 2746 \label{LDGeneralizedForm}
512     \end{equation}
513 gezelter 3341 where ${\bf M}$ is a $6 \times 6$ diagonal mass matrix (which
514 gezelter 3337 includes the mass of the rigid body as well as the moments of inertia
515 gezelter 3341 in the body-fixed frame) and ${\bf V}$ is a generalized velocity,
516     ${\bf V} =
517     \left\{{\bf v},{\bf \omega}\right\}$. The right side of
518 gezelter 3333 Eq.~\ref{LDGeneralizedForm} consists of three generalized forces: a
519 gezelter 3352 system force (${\bf F}_{s}$), a frictional or dissipative force (${\bf
520     F}_{f}$) and a stochastic force (${\bf F}_{r}$). While the evolution
521     of the system in Newtonian mechanics is typically done in the lab
522     frame, it is convenient to handle the dynamics of rigid bodies in
523     body-fixed frames. Thus the friction and random forces on each
524 gezelter 3341 substructure are calculated in a body-fixed frame and may converted
525     back to the lab frame using that substructure's rotation matrix (${\bf
526     Q}$):
527 gezelter 3333 \begin{equation}
528 gezelter 3341 {\bf F}_{f,r} =
529 gezelter 3340 \left( \begin{array}{c}
530 gezelter 3341 {\bf f}_{f,r} \\
531     {\bf \tau}_{f,r}
532 gezelter 3340 \end{array} \right)
533     =
534     \left( \begin{array}{c}
535 gezelter 3341 {\bf Q}^{T} {\bf f}^{~b}_{f,r} \\
536     {\bf Q}^{T} {\bf \tau}^{~b}_{f,r}
537 gezelter 3340 \end{array} \right)
538 gezelter 3333 \end{equation}
539 gezelter 3341 The body-fixed friction force, ${\bf F}_{f}^{~b}$, is proportional to
540     the (body-fixed) velocity at the center of resistance
541     ${\bf v}_{R}^{~b}$ and the angular velocity ${\bf \omega}$
542 tim 2746 \begin{equation}
543 gezelter 3341 {\bf F}_{f}^{~b}(t) = \left( \begin{array}{l}
544     {\bf f}_{f}^{~b}(t) \\
545     {\bf \tau}_{f}^{~b}(t) \\
546 gezelter 3333 \end{array} \right) = - \left( \begin{array}{*{20}c}
547 gezelter 3341 \Xi_{R}^{tt} & \Xi_{R}^{rt} \\
548     \Xi_{R}^{tr} & \Xi_{R}^{rr} \\
549 gezelter 3333 \end{array} \right)\left( \begin{array}{l}
550 gezelter 3341 {\bf v}_{R}^{~b}(t) \\
551     {\bf \omega}(t) \\
552 tim 2746 \end{array} \right),
553     \end{equation}
554 gezelter 3341 while the random force, ${\bf F}_{r}$, is a Gaussian stochastic
555     variable with zero mean and variance,
556 tim 2746 \begin{equation}
557 gezelter 3341 \left\langle {{\bf F}_{r}(t) ({\bf F}_{r}(t'))^T } \right\rangle =
558     \left\langle {{\bf F}_{r}^{~b} (t) ({\bf F}_{r}^{~b} (t'))^T } \right\rangle =
559     2 k_B T \Xi_R \delta(t - t'). \label{eq:randomForce}
560 tim 2746 \end{equation}
561 gezelter 3340 $\Xi_R$ is the $6\times6$ resistance tensor at the center of
562 gezelter 3341 resistance. Once this tensor is known for a given rigid body (as
563     described in the previous section) obtaining a stochastic vector that
564     has the properties in Eq. (\ref{eq:randomForce}) can be done
565     efficiently by carrying out a one-time Cholesky decomposition to
566     obtain the square root matrix of the resistance tensor,
567     \begin{equation}
568     \Xi_R = {\bf S} {\bf S}^{T},
569     \label{eq:Cholesky}
570     \end{equation}
571 gezelter 3352 where ${\bf S}$ is a lower triangular matrix.\cite{Schlick2002} A
572 gezelter 3341 vector with the statistics required for the random force can then be
573     obtained by multiplying ${\bf S}$ onto a random 6-vector ${\bf Z}$ which
574     has elements chosen from a Gaussian distribution, such that:
575 gezelter 3340 \begin{equation}
576 gezelter 3341 \langle {\bf Z}_i \rangle = 0, \hspace{1in} \langle {\bf Z}_i \cdot
577     {\bf Z}_j \rangle = \frac{2 k_B T}{\delta t} \delta_{ij},
578 gezelter 3340 \end{equation}
579 gezelter 3341 where $\delta t$ is the timestep in use during the simulation. The
580     random force, ${\bf F}_{r}^{~b} = {\bf S} {\bf Z}$, can be shown to have the
581     correct properties required by Eq. (\ref{eq:randomForce}).
582 gezelter 3333
583 gezelter 3341 The equation of motion for the translational velocity of the center of
584     mass (${\bf v}$) can be written as
585 tim 2746 \begin{equation}
586 gezelter 3341 m \dot{{\bf v}} (t) = {\bf f}_{s}(t) + {\bf f}_{f}(t) +
587     {\bf f}_{r}(t)
588 tim 2746 \end{equation}
589 gezelter 3341 Since the frictional and random forces are applied at the center of
590     resistance, which generally does not coincide with the center of mass,
591     extra torques are exerted at the center of mass. Thus, the net
592     body-fixed torque at the center of mass, $\tau^{~b}(t)$,
593     is given by
594 tim 2746 \begin{equation}
595 gezelter 3341 \tau^{~b} \leftarrow \tau_{s}^{~b} + \tau_{f}^{~b} + \tau_{r}^{~b} + {\bf r}_{MR} \times \left( {\bf f}_{f}^{~b} + {\bf f}_{r}^{~b} \right)
596 tim 2746 \end{equation}
597 gezelter 3341 where ${\bf r}_{MR}$ is the vector from the center of mass to the center of
598     resistance. Instead of integrating the angular velocity in lab-fixed
599     frame, we consider the equation of motion for the angular momentum
600     (${\bf j}$) in the body-fixed frame
601 tim 2746 \begin{equation}
602 gezelter 3352 \frac{\partial}{\partial t}{\bf j}(t) = \tau^{~b}(t)
603 tim 2746 \end{equation}
604 gezelter 3341 Embedding the friction and random forces into the the total force and
605     torque, one can integrate the Langevin equations of motion for a rigid
606     body of arbitrary shape in a velocity-Verlet style 2-part algorithm,
607     where $h = \delta t$:
608 tim 2746
609 gezelter 3341 {\tt move A:}
610 tim 2746 \begin{align*}
611 tim 2999 {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
612     + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
613     %
614     {\bf r}(t + h) &\leftarrow {\bf r}(t)
615     + h {\bf v}\left(t + h / 2 \right), \\
616     %
617     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
618 gezelter 3341 + \frac{h}{2} {\bf \tau}^{~b}(t), \\
619 tim 2999 %
620 gezelter 3341 {\bf Q}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
621 tim 2999 (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
622 tim 2746 \end{align*}
623 gezelter 3341 In this context, $\overleftrightarrow{\mathsf{I}}$ is the diagonal
624     moment of inertia tensor, and the $\mathrm{rotate}$ function is the
625     reversible product of the three body-fixed rotations,
626 tim 2746 \begin{equation}
627     \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
628     \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y
629     / 2) \cdot \mathsf{G}_x(a_x /2),
630     \end{equation}
631     where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
632 gezelter 3341 rotates both the rotation matrix ($\mathbf{Q}$) and the body-fixed
633 tim 2999 angular momentum (${\bf j}$) by an angle $\theta$ around body-fixed
634     axis $\alpha$,
635 tim 2746 \begin{equation}
636     \mathsf{G}_\alpha( \theta ) = \left\{
637     \begin{array}{lcl}
638 gezelter 3341 \mathbf{Q}(t) & \leftarrow & \mathbf{Q}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
639 tim 2746 {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
640     j}(0).
641     \end{array}
642     \right.
643     \end{equation}
644     $\mathsf{R}_\alpha$ is a quadratic approximation to the single-axis
645     rotation matrix. For example, in the small-angle limit, the
646     rotation matrix around the body-fixed x-axis can be approximated as
647     \begin{equation}
648     \mathsf{R}_x(\theta) \approx \left(
649     \begin{array}{ccc}
650     1 & 0 & 0 \\
651     0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
652     \theta^2 / 4} \\
653     0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
654     \theta^2 / 4}
655     \end{array}
656     \right).
657     \end{equation}
658 tim 2999 All other rotations follow in a straightforward manner. After the
659     first part of the propagation, the forces and body-fixed torques are
660 gezelter 3341 calculated at the new positions and orientations. The system forces
661     and torques are derivatives of the total potential energy function
662     ($U$) with respect to the rigid body positions (${\bf r}$) and the
663     columns of the transposed rotation matrix ${\bf Q}^T = \left({\bf
664     u}_x, {\bf u}_y, {\bf u}_z \right)$:
665 tim 2746
666 gezelter 3341 {\tt Forces:}
667 tim 2999 \begin{align*}
668 gezelter 3341 {\bf f}_{s}(t + h) & \leftarrow
669     - \left(\frac{\partial U}{\partial {\bf r}}\right)_{{\bf r}(t + h)} \\
670 tim 2999 %
671 gezelter 3341 {\bf \tau}_{s}(t + h) &\leftarrow {\bf u}(t + h)
672     \times \frac{\partial U}{\partial {\bf u}} \\
673 tim 2999 %
674 gezelter 3341 {\bf v}^{b}_{R}(t+h) & \leftarrow \mathbf{Q}(t+h) \cdot \left({\bf v}(t+h) + {\bf \omega}(t+h) \times {\bf r}_{MR} \right) \\
675     %
676     {\bf f}_{R,f}^{b}(t+h) & \leftarrow - \Xi_{R}^{tt} \cdot
677     {\bf v}^{b}_{R}(t+h) - \Xi_{R}^{rt} \cdot {\bf \omega}(t+h) \\
678     %
679     {\bf \tau}_{R,f}^{b}(t+h) & \leftarrow - \Xi_{R}^{tr} \cdot
680     {\bf v}^{b}_{R}(t+h) - \Xi_{R}^{rr} \cdot {\bf \omega}(t+h) \\
681     %
682     Z & \leftarrow {\tt GaussianNormal}(2 k_B T / h, 6) \\
683     {\bf F}_{R,r}^{b}(t+h) & \leftarrow {\bf S} \cdot Z \\
684     %
685     {\bf f}(t+h) & \leftarrow {\bf f}_{s}(t+h) + \mathbf{Q}^{T}(t+h)
686     \cdot \left({\bf f}_{R,f}^{~b} + {\bf f}_{R,r}^{~b} \right) \\
687     %
688     \tau(t+h) & \leftarrow \tau_{s}(t+h) + \mathbf{Q}^{T}(t+h) \cdot \left(\tau_{R,f}^{~b} + \tau_{R,r}^{~b} \right) + {\bf r}_{MR} \times \left({\bf f}_{f}(t+h) + {\bf f}_{r}(t+h) \right) \\
689     \tau^{~b}(t+h) & \leftarrow \mathbf{Q}(t+h) \cdot \tau(t+h) \\
690 tim 2999 \end{align*}
691 gezelter 3341 Frictional (and random) forces and torques must be computed at the
692     center of resistance, so there are additional steps required to find
693     the body-fixed velocity (${\bf v}_{R}^{~b}$) at this location. Mapping
694     the frictional and random forces at the center of resistance back to
695     the center of mass also introduces an additional term in the torque
696     one obtains at the center of mass.
697    
698 tim 2746 Once the forces and torques have been obtained at the new time step,
699     the velocities can be advanced to the same time value.
700    
701 gezelter 3341 {\tt move B:}
702 tim 2746 \begin{align*}
703 tim 2999 {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + h / 2
704     \right)
705     + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
706     %
707     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + h / 2
708     \right)
709 gezelter 3341 + \frac{h}{2} {\bf \tau}^{~b}(t + h) .
710 tim 2746 \end{align*}
711    
712 gezelter 3310 \section{Validating the Method\label{sec:validating}}
713 gezelter 3302 In order to validate our Langevin integrator for arbitrarily-shaped
714 gezelter 3305 rigid bodies, we implemented the algorithm in {\sc
715     oopse}\cite{Meineke2005} and compared the results of this algorithm
716     with the known
717 gezelter 3302 hydrodynamic limiting behavior for a few model systems, and to
718     microcanonical molecular dynamics simulations for some more
719     complicated bodies. The model systems and their analytical behavior
720     (if known) are summarized below. Parameters for the primary particles
721     comprising our model systems are given in table \ref{tab:parameters},
722     and a sketch of the arrangement of these primary particles into the
723 gezelter 3305 model rigid bodies is shown in figure \ref{fig:models}. In table
724     \ref{tab:parameters}, $d$ and $l$ are the physical dimensions of
725     ellipsoidal (Gay-Berne) particles. For spherical particles, the value
726     of the Lennard-Jones $\sigma$ parameter is the particle diameter
727     ($d$). Gay-Berne ellipsoids have an energy scaling parameter,
728     $\epsilon^s$, which describes the well depth for two identical
729     ellipsoids in a {\it side-by-side} configuration. Additionally, a
730     well depth aspect ratio, $\epsilon^r = \epsilon^e / \epsilon^s$,
731     describes the ratio between the well depths in the {\it end-to-end}
732     and side-by-side configurations. For spheres, $\epsilon^r \equiv 1$.
733     Moments of inertia are also required to describe the motion of primary
734     particles with orientational degrees of freedom.
735 gezelter 3299
736 gezelter 3302 \begin{table*}
737     \begin{minipage}{\linewidth}
738     \begin{center}
739     \caption{Parameters for the primary particles in use by the rigid body
740     models in figure \ref{fig:models}.}
741     \begin{tabular}{lrcccccccc}
742     \hline
743     & & & & & & & \multicolumn{3}c{$\overleftrightarrow{\mathsf I}$ (amu \AA$^2$)} \\
744     & & $d$ (\AA) & $l$ (\AA) & $\epsilon^s$ (kcal/mol) & $\epsilon^r$ &
745     $m$ (amu) & $I_{xx}$ & $I_{yy}$ & $I_{zz}$ \\ \hline
746 gezelter 3308 Sphere & & 6.5 & $= d$ & 0.8 & 1 & 190 & 802.75 & 802.75 & 802.75 \\
747 gezelter 3302 Ellipsoid & & 4.6 & 13.8 & 0.8 & 0.2 & 200 & 2105 & 2105 & 421 \\
748 gezelter 3308 Dumbbell &(2 identical spheres) & 6.5 & $= d$ & 0.8 & 1 & 190 & 802.75 & 802.75 & 802.75 \\
749 gezelter 3302 Banana &(3 identical ellipsoids)& 4.2 & 11.2 & 0.8 & 0.2 & 240 & 10000 & 10000 & 0 \\
750     Lipid: & Spherical Head & 6.5 & $= d$ & 0.185 & 1 & 196 & & & \\
751     & Ellipsoidal Tail & 4.6 & 13.8 & 0.8 & 0.2 & 760 & 45000 & 45000 & 9000 \\
752     Solvent & & 4.7 & $= d$ & 0.8 & 1 & 72.06 & & & \\
753     \hline
754     \end{tabular}
755     \label{tab:parameters}
756     \end{center}
757     \end{minipage}
758     \end{table*}
759    
760 gezelter 3305 \begin{figure}
761     \centering
762     \includegraphics[width=3in]{sketch}
763     \caption[Sketch of the model systems]{A sketch of the model systems
764     used in evaluating the behavior of the rigid body Langevin
765     integrator.} \label{fig:models}
766     \end{figure}
767    
768 gezelter 3302 \subsection{Simulation Methodology}
769     We performed reference microcanonical simulations with explicit
770     solvents for each of the different model system. In each case there
771     was one solute model and 1929 solvent molecules present in the
772 gezelter 3352 simulation box. All simulations were equilibrated for 5 ns using a
773 gezelter 3302 constant-pressure and temperature integrator with target values of 300
774     K for the temperature and 1 atm for pressure. Following this stage,
775 gezelter 3352 further equilibration (5 ns) and sampling (10 ns) was done in a
776     microcanonical ensemble. Since the model bodies are typically quite
777     massive, we were able to use a time step of 25 fs.
778 gezelter 3310
779     The model systems studied used both Lennard-Jones spheres as well as
780     uniaxial Gay-Berne ellipoids. In its original form, the Gay-Berne
781     potential was a single site model for the interactions of rigid
782 gezelter 3352 ellipsoidal molecules.\cite{Gay1981} It can be thought of as a
783 gezelter 3310 modification of the Gaussian overlap model originally described by
784     Berne and Pechukas.\cite{Berne72} The potential is constructed in the
785     familiar form of the Lennard-Jones function using
786     orientation-dependent $\sigma$ and $\epsilon$ parameters,
787     \begin{equation*}
788 gezelter 3341 V_{ij}({{\bf \hat u}_i}, {{\bf \hat u}_j}, {{\bf \hat
789     r}_{ij}}) = 4\epsilon ({{\bf \hat u}_i}, {{\bf \hat u}_j},
790     {{\bf \hat r}_{ij}})\left[\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u
791 gezelter 3310 }_i},
792 gezelter 3341 {{\bf \hat u}_j}, {{\bf \hat r}_{ij}})+\sigma_0}\right)^{12}
793     -\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u}_i}, {{\bf \hat u}_j},
794     {{\bf \hat r}_{ij}})+\sigma_0}\right)^6\right]
795 gezelter 3310 \label{eq:gb}
796     \end{equation*}
797    
798     The range $(\sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf
799     \hat{r}}_{ij}))$, and strength $(\epsilon({\bf \hat{u}}_{i},{\bf
800     \hat{u}}_{j},{\bf \hat{r}}_{ij}))$ parameters
801     are dependent on the relative orientations of the two ellipsoids (${\bf
802     \hat{u}}_{i},{\bf \hat{u}}_{j}$) as well as the direction of the
803     inter-ellipsoid separation (${\bf \hat{r}}_{ij}$). The shape and
804     attractiveness of each ellipsoid is governed by a relatively small set
805     of parameters: $l$ and $d$ describe the length and width of each
806     uniaxial ellipsoid, while $\epsilon^s$, which describes the well depth
807     for two identical ellipsoids in a {\it side-by-side} configuration.
808     Additionally, a well depth aspect ratio, $\epsilon^r = \epsilon^e /
809     \epsilon^s$, describes the ratio between the well depths in the {\it
810     end-to-end} and side-by-side configurations. Details of the potential
811 gezelter 3352 are given elsewhere,\cite{Luckhurst90,Golubkov06,SunX._jp0762020} and an
812 gezelter 3310 excellent overview of the computational methods that can be used to
813     efficiently compute forces and torques for this potential can be found
814     in Ref. \citen{Golubkov06}
815    
816     For the interaction between nonequivalent uniaxial ellipsoids (or
817     between spheres and ellipsoids), the spheres are treated as ellipsoids
818     with an aspect ratio of 1 ($d = l$) and with an well depth ratio
819     ($\epsilon^r$) of 1 ($\epsilon^e = \epsilon^s$). The form of the
820     Gay-Berne potential we are using was generalized by Cleaver {\it et
821     al.} and is appropriate for dissimilar uniaxial
822     ellipsoids.\cite{Cleaver96}
823    
824     A switching function was applied to all potentials to smoothly turn
825     off the interactions between a range of $22$ and $25$ \AA. The
826     switching function was the standard (cubic) function,
827 gezelter 3302 \begin{equation}
828     s(r) =
829     \begin{cases}
830     1 & \text{if $r \le r_{\text{sw}}$},\\
831     \frac{(r_{\text{cut}} + 2r - 3r_{\text{sw}})(r_{\text{cut}} - r)^2}
832     {(r_{\text{cut}} - r_{\text{sw}})^3}
833     & \text{if $r_{\text{sw}} < r \le r_{\text{cut}}$}, \\
834     0 & \text{if $r > r_{\text{cut}}$.}
835     \end{cases}
836     \label{eq:switchingFunc}
837     \end{equation}
838 gezelter 3310
839 gezelter 3302 To measure shear viscosities from our microcanonical simulations, we
840     used the Einstein form of the pressure correlation function,\cite{hess:209}
841     \begin{equation}
842 gezelter 3310 \eta = \lim_{t->\infty} \frac{V}{2 k_B T} \frac{d}{dt} \left\langle \left(
843     \int_{t_0}^{t_0 + t} P_{xz}(t') dt' \right)^2 \right\rangle_{t_0}.
844 gezelter 3302 \label{eq:shear}
845     \end{equation}
846 gezelter 3352 which converges much more rapidly in molecular dynamics simulations
847     than the traditional Green-Kubo formula.
848 gezelter 3302
849     The Langevin dynamics for the different model systems were performed
850     at the same temperature as the average temperature of the
851     microcanonical simulations and with a solvent viscosity taken from
852 gezelter 3305 Eq. (\ref{eq:shear}) applied to these simulations. We used 1024
853     independent solute simulations to obtain statistics on our Langevin
854     integrator.
855 gezelter 3302
856     \subsection{Analysis}
857    
858     The quantities of interest when comparing the Langevin integrator to
859     analytic hydrodynamic equations and to molecular dynamics simulations
860     are typically translational diffusion constants and orientational
861     relaxation times. Translational diffusion constants for point
862     particles are computed easily from the long-time slope of the
863     mean-square displacement,
864     \begin{equation}
865 gezelter 3310 D = \lim_{t\rightarrow \infty} \frac{1}{6 t} \left\langle {|\left({\bf r}_{i}(t) - {\bf r}_{i}(0) \right)|}^2 \right\rangle,
866 gezelter 3302 \end{equation}
867     of the solute molecules. For models in which the translational
868 gezelter 3305 diffusion tensor (${\bf D}_{tt}$) has non-degenerate eigenvalues
869     (i.e. any non-spherically-symmetric rigid body), it is possible to
870     compute the diffusive behavior for motion parallel to each body-fixed
871     axis by projecting the displacement of the particle onto the
872     body-fixed reference frame at $t=0$. With an isotropic solvent, as we
873 gezelter 3352 have used in this study, there may be differences between the three
874     diffusion constants at short times, but these must converge to the
875     same value at longer times. Translational diffusion constants for the
876     different shaped models are shown in table \ref{tab:translation}.
877 gezelter 3302
878 gezelter 3305 In general, the three eigenvalues ($D_1, D_2, D_3$) of the rotational
879 gezelter 3302 diffusion tensor (${\bf D}_{rr}$) measure the diffusion of an object
880     {\it around} a particular body-fixed axis and {\it not} the diffusion
881     of a vector pointing along the axis. However, these eigenvalues can
882     be combined to find 5 characteristic rotational relaxation
883 gezelter 3305 times,\cite{PhysRev.119.53,Berne90}
884 gezelter 3302 \begin{eqnarray}
885 gezelter 3305 1 / \tau_1 & = & 6 D_r + 2 \Delta \\
886     1 / \tau_2 & = & 6 D_r - 2 \Delta \\
887     1 / \tau_3 & = & 3 (D_r + D_1) \\
888     1 / \tau_4 & = & 3 (D_r + D_2) \\
889     1 / \tau_5 & = & 3 (D_r + D_3)
890 gezelter 3302 \end{eqnarray}
891     where
892     \begin{equation}
893     D_r = \frac{1}{3} \left(D_1 + D_2 + D_3 \right)
894     \end{equation}
895     and
896     \begin{equation}
897 gezelter 3305 \Delta = \left( (D_1 - D_2)^2 + (D_3 - D_1 )(D_3 - D_2)\right)^{1/2}
898 gezelter 3302 \end{equation}
899 gezelter 3305 Each of these characteristic times can be used to predict the decay of
900     part of the rotational correlation function when $\ell = 2$,
901 gezelter 3302 \begin{equation}
902 gezelter 3305 C_2(t) = \frac{a^2}{N^2} e^{-t/\tau_1} + \frac{b^2}{N^2} e^{-t/\tau_2}.
903 gezelter 3302 \end{equation}
904 gezelter 3305 This is the same as the $F^2_{0,0}(t)$ correlation function that
905     appears in Ref. \citen{Berne90}. The amplitudes of the two decay
906     terms are expressed in terms of three dimensionless functions of the
907     eigenvalues: $a = \sqrt{3} (D_1 - D_2)$, $b = (2D_3 - D_1 - D_2 +
908     2\Delta)$, and $N = 2 \sqrt{\Delta b}$. Similar expressions can be
909     obtained for other angular momentum correlation
910     functions.\cite{PhysRev.119.53,Berne90} In all of the model systems we
911     studied, only one of the amplitudes of the two decay terms was
912     non-zero, so it was possible to derive a single relaxation time for
913     each of the hydrodynamic tensors. In many cases, these characteristic
914     times are averaged and reported in the literature as a single relaxation
915     time,\cite{Garcia-de-la-Torre:1997qy}
916 gezelter 3302 \begin{equation}
917 gezelter 3305 1 / \tau_0 = \frac{1}{5} \sum_{i=1}^5 \tau_{i}^{-1},
918     \end{equation}
919     although for the cases reported here, this averaging is not necessary
920     and only one of the five relaxation times is relevant.
921    
922     To test the Langevin integrator's behavior for rotational relaxation,
923     we have compared the analytical orientational relaxation times (if
924     they are known) with the general result from the diffusion tensor and
925     with the results from both the explicitly solvated molecular dynamics
926     and Langevin simulations. Relaxation times from simulations (both
927     microcanonical and Langevin), were computed using Legendre polynomial
928     correlation functions for a unit vector (${\bf u}$) fixed along one or
929     more of the body-fixed axes of the model.
930     \begin{equation}
931 gezelter 3310 C_{\ell}(t) = \left\langle P_{\ell}\left({\bf u}_{i}(t) \cdot {\bf
932     u}_{i}(0) \right) \right\rangle
933 gezelter 3302 \end{equation}
934     For simulations in the high-friction limit, orientational correlation
935     times can then be obtained from exponential fits of this function, or by
936     integrating,
937     \begin{equation}
938 gezelter 3305 \tau = \ell (\ell + 1) \int_0^{\infty} C_{\ell}(t) dt.
939 gezelter 3302 \end{equation}
940 gezelter 3305 In lower-friction solvents, the Legendre correlation functions often
941     exhibit non-exponential decay, and may not be characterized by a
942     single decay constant.
943 gezelter 3302
944     In table \ref{tab:rotation} we show the characteristic rotational
945     relaxation times (based on the diffusion tensor) for each of the model
946     systems compared with the values obtained via microcanonical and Langevin
947     simulations.
948    
949 gezelter 3305 \subsection{Spherical particles}
950 gezelter 3299 Our model system for spherical particles was a Lennard-Jones sphere of
951     diameter ($\sigma$) 6.5 \AA\ in a sea of smaller spheres ($\sigma$ =
952     4.7 \AA). The well depth ($\epsilon$) for both particles was set to
953 gezelter 3302 an arbitrary value of 0.8 kcal/mol.
954 gezelter 3299
955     The Stokes-Einstein behavior of large spherical particles in
956 gezelter 3352 hydrodynamic flows with ``stick'' boundary conditions is well known,
957     and is given in Eqs. (\ref{eq:StokesTranslation}) and
958     (\ref{eq:StokesRotation}). Recently, Schmidt and Skinner have
959     computed the behavior of spherical tag particles in molecular dynamics
960     simulations, and have shown that {\it slip} boundary conditions
961     ($\Xi_{tt} = 4 \pi \eta \rho$) may be more appropriate for
962     molecule-sized spheres embedded in a sea of spherical solvent
963     particles.\cite{Schmidt:2004fj,Schmidt:2003kx}
964 gezelter 3299
965     Our simulation results show similar behavior to the behavior observed
966 gezelter 3302 by Schmidt and Skinner. The diffusion constant obtained from our
967 gezelter 3299 microcanonical molecular dynamics simulations lies between the slip
968     and stick boundary condition results obtained via Stokes-Einstein
969     behavior. Since the Langevin integrator assumes Stokes-Einstein stick
970     boundary conditions in calculating the drag and random forces for
971     spherical particles, our Langevin routine obtains nearly quantitative
972     agreement with the hydrodynamic results for spherical particles. One
973     avenue for improvement of the method would be to compute elements of
974     $\Xi_{tt}$ assuming behavior intermediate between the two boundary
975 gezelter 3302 conditions.
976 gezelter 3299
977 gezelter 3310 In the explicit solvent simulations, both our solute and solvent
978     particles were structureless, exerting no torques upon each other.
979     Therefore, there are not rotational correlation times available for
980     this model system.
981 gezelter 3299
982 gezelter 3310 \subsection{Ellipsoids}
983     For uniaxial ellipsoids ($a > b = c$), Perrin's formulae for both
984 gezelter 3299 translational and rotational diffusion of each of the body-fixed axes
985     can be combined to give a single translational diffusion
986 gezelter 3302 constant,\cite{Berne90}
987 gezelter 3299 \begin{equation}
988 gezelter 3352 D = \frac{k_B T}{6 \pi \eta a} G(s),
989 gezelter 3299 \label{Dperrin}
990     \end{equation}
991     as well as a single rotational diffusion coefficient,
992     \begin{equation}
993 gezelter 3352 \Theta = \frac{3 k_B T}{16 \pi \eta a^3} \left\{ \frac{(2 - s^2)
994     G(s) - 1}{1 - s^4} \right\}.
995 gezelter 3299 \label{ThetaPerrin}
996     \end{equation}
997 gezelter 3352 In these expressions, $G(s)$ is a function of the axial ratio
998     ($s = b / a$), which for prolate ellipsoids, is
999 gezelter 3299 \begin{equation}
1000 gezelter 3352 G(s) = (1- s^2)^{-1/2} \ln \left\{ \frac{1 + (1 - s^2)^{1/2}}{s} \right\}
1001 gezelter 3299 \label{GPerrin}
1002     \end{equation}
1003     Again, there is some uncertainty about the correct boundary conditions
1004     to use for molecular-scale ellipsoids in a sea of similarly-sized
1005     solvent particles. Ravichandran and Bagchi found that {\it slip}
1006 gezelter 3302 boundary conditions most closely resembled the simulation
1007     results,\cite{Ravichandran:1999fk} in agreement with earlier work of
1008     Tang and Evans.\cite{TANG:1993lr}
1009 gezelter 3299
1010 gezelter 3305 Even though there are analytic resistance tensors for ellipsoids, we
1011     constructed a rough-shell model using 2135 beads (each with a diameter
1012 gezelter 3310 of 0.25 \AA) to approximate the shape of the model ellipsoid. We
1013 gezelter 3305 compared the Langevin dynamics from both the simple ellipsoidal
1014     resistance tensor and the rough shell approximation with
1015     microcanonical simulations and the predictions of Perrin. As in the
1016     case of our spherical model system, the Langevin integrator reproduces
1017     almost exactly the behavior of the Perrin formulae (which is
1018     unsurprising given that the Perrin formulae were used to derive the
1019 gezelter 3299 drag and random forces applied to the ellipsoid). We obtain
1020     translational diffusion constants and rotational correlation times
1021     that are within a few percent of the analytic values for both the
1022     exact treatment of the diffusion tensor as well as the rough-shell
1023     model for the ellipsoid.
1024    
1025 gezelter 3352 The translational diffusion constants from the microcanonical
1026     simulations agree well with the predictions of the Perrin model,
1027     although the {\it rotational} correlation times are a factor of 2
1028     shorter than expected from hydrodynamic theory. One explanation for
1029     the slower rotation of explicitly-solvated ellipsoids is the
1030     possibility that solute-solvent collisions happen at both ends of the
1031     solute whenever the principal axis of the ellipsoid is turning. In the
1032     upper portion of figure \ref{fig:explanation} we sketch a physical
1033     picture of this explanation. Since our Langevin integrator is
1034     providing nearly quantitative agreement with the Perrin model, it also
1035     predicts orientational diffusion for ellipsoids that exceed explicitly
1036     solvated correlation times by a factor of two.
1037 gezelter 3299
1038 gezelter 3310 \subsection{Rigid dumbbells}
1039 gezelter 3302 Perhaps the only {\it composite} rigid body for which analytic
1040     expressions for the hydrodynamic tensor are available is the
1041     two-sphere dumbbell model. This model consists of two non-overlapping
1042     spheres held by a rigid bond connecting their centers. There are
1043     competing expressions for the 6x6 resistance tensor for this
1044 gezelter 3341 model. The second order expression introduced by Rotne and
1045     Prager,\cite{Rotne1969} and improved by Garc\'{i}a de la Torre and
1046     Bloomfield,\cite{Torre1977} is given above as
1047 gezelter 3299 Eq. (\ref{introEquation:RPTensorNonOverlapped}). In our case, we use
1048     a model dumbbell in which the two spheres are identical Lennard-Jones
1049     particles ($\sigma$ = 6.5 \AA\ , $\epsilon$ = 0.8 kcal / mol) held at
1050 gezelter 3302 a distance of 6.532 \AA.
1051 gezelter 3299
1052     The theoretical values for the translational diffusion constant of the
1053     dumbbell are calculated from the work of Stimson and Jeffery, who
1054     studied the motion of this system in a flow parallel to the
1055 gezelter 3302 inter-sphere axis,\cite{Stimson:1926qy} and Davis, who studied the
1056     motion in a flow {\it perpendicular} to the inter-sphere
1057     axis.\cite{Davis:1969uq} We know of no analytic solutions for the {\it
1058     orientational} correlation times for this model system (other than
1059 gezelter 3341 those derived from the 6 x 6 tensor mentioned above).
1060 gezelter 3299
1061 gezelter 3305 The bead model for this model system comprises the two large spheres
1062     by themselves, while the rough shell approximation used 3368 separate
1063     beads (each with a diameter of 0.25 \AA) to approximate the shape of
1064     the rigid body. The hydrodynamics tensors computed from both the bead
1065     and rough shell models are remarkably similar. Computing the initial
1066     hydrodynamic tensor for a rough shell model can be quite expensive (in
1067     this case it requires inverting a 10104 x 10104 matrix), while the
1068     bead model is typically easy to compute (in this case requiring
1069 gezelter 3308 inversion of a 6 x 6 matrix).
1070 gezelter 3305
1071 gezelter 3308 \begin{figure}
1072     \centering
1073 gezelter 3310 \includegraphics[width=2in]{RoughShell}
1074 gezelter 3308 \caption[Model rigid bodies and their rough shell approximations]{The
1075     model rigid bodies (left column) used to test this algorithm and their
1076     rough-shell approximations (right-column) that were used to compute
1077     the hydrodynamic tensors. The top two models (ellipsoid and dumbbell)
1078     have analytic solutions and were used to test the rough shell
1079     approximation. The lower two models (banana and lipid) were compared
1080     with explicitly-solvated molecular dynamics simulations. }
1081     \label{fig:roughShell}
1082     \end{figure}
1083    
1084    
1085 gezelter 3305 Once the hydrodynamic tensor has been computed, there is no additional
1086     penalty for carrying out a Langevin simulation with either of the two
1087     different hydrodynamics models. Our naive expectation is that since
1088     the rigid body's surface is roughened under the various shell models,
1089     the diffusion constants will be even farther from the ``slip''
1090     boundary conditions than observed for the bead model (which uses a
1091     Stokes-Einstein model to arrive at the hydrodynamic tensor). For the
1092     dumbbell, this prediction is correct although all of the Langevin
1093     diffusion constants are within 6\% of the diffusion constant predicted
1094     from the fully solvated system.
1095    
1096 gezelter 3308 For rotational motion, Langevin integration (and the hydrodynamic tensor)
1097     yields rotational correlation times that are substantially shorter than those
1098     obtained from explicitly-solvated simulations. It is likely that this is due
1099     to the large size of the explicit solvent spheres, a feature that prevents
1100     the solvent from coming in contact with a substantial fraction of the surface
1101     area of the dumbbell. Therefore, the explicit solvent only provides drag
1102     over a substantially reduced surface area of this model, while the
1103     hydrodynamic theories utilize the entire surface area for estimating
1104     rotational diffusion. A sketch of the free volume available in the explicit
1105     solvent simulations is shown in figure \ref{fig:explanation}.
1106 gezelter 3305
1107 gezelter 3310
1108     \begin{figure}
1109     \centering
1110     \includegraphics[width=6in]{explanation}
1111     \caption[Explanations of the differences between orientational
1112     correlation times for explicitly-solvated models and hydrodynamics
1113     predictions]{Explanations of the differences between orientational
1114     correlation times for explicitly-solvated models and hydrodynamic
1115     predictions. For the ellipsoids (upper figures), rotation of the
1116     principal axis can involve correlated collisions at both sides of the
1117     solute. In the rigid dumbbell model (lower figures), the large size
1118     of the explicit solvent spheres prevents them from coming in contact
1119     with a substantial fraction of the surface area of the dumbbell.
1120     Therefore, the explicit solvent only provides drag over a
1121     substantially reduced surface area of this model, where the
1122     hydrodynamic theories utilize the entire surface area for estimating
1123     rotational diffusion.
1124     } \label{fig:explanation}
1125     \end{figure}
1126    
1127     \subsection{Composite banana-shaped molecules}
1128     Banana-shaped rigid bodies composed of three Gay-Berne ellipsoids have
1129     been used by Orlandi {\it et al.} to observe mesophases in
1130     coarse-grained models for bent-core liquid crystalline
1131     molecules.\cite{Orlandi:2006fk} We have used the same overlapping
1132 gezelter 3299 ellipsoids as a way to test the behavior of our algorithm for a
1133     structure of some interest to the materials science community,
1134     although since we are interested in capturing only the hydrodynamic
1135 gezelter 3310 behavior of this model, we have left out the dipolar interactions of
1136     the original Orlandi model.
1137 gezelter 3308
1138 gezelter 3341 A reference system composed of a single banana rigid body embedded in
1139     a sea of 1929 solvent particles was created and run under standard
1140     (microcanonical) molecular dynamics. The resulting viscosity of this
1141     mixture was 0.298 centipoise (as estimated using
1142     Eq. (\ref{eq:shear})). To calculate the hydrodynamic properties of
1143     the banana rigid body model, we created a rough shell (see
1144     Fig.~\ref{fig:roughShell}), in which the banana is represented as a
1145     ``shell'' made of 3321 identical beads (0.25 \AA\ in diameter)
1146     distributed on the surface. Applying the procedure described in
1147     Sec.~\ref{introEquation:ResistanceTensorArbitraryOrigin}, we
1148     identified the center of resistance, ${\bf r} = $(0 \AA, 0.81 \AA, 0
1149     \AA).
1150 gezelter 3299
1151 gezelter 3341 The Langevin rigid-body integrator (and the hydrodynamic diffusion
1152     tensor) are essentially quantitative for translational diffusion of
1153     this model. Orientational correlation times under the Langevin
1154     rigid-body integrator are within 11\% of the values obtained from
1155     explicit solvent, but these models also exhibit some solvent
1156     inaccessible surface area in the explicitly-solvated case.
1157 gezelter 3308
1158 gezelter 3310 \subsection{Composite sphero-ellipsoids}
1159 gezelter 3341
1160 gezelter 3299 Spherical heads perched on the ends of Gay-Berne ellipsoids have been
1161 xsun 3312 used recently as models for lipid
1162 gezelter 3352 molecules.\cite{SunX._jp0762020,Ayton01} A reference system composed of
1163 gezelter 3341 a single lipid rigid body embedded in a sea of 1929 solvent particles
1164     was created and run under a microcanonical ensemble. The resulting
1165     viscosity of this mixture was 0.349 centipoise (as estimated using
1166 xsun 3312 Eq. (\ref{eq:shear})). To calculate the hydrodynamic properties of
1167     the lipid rigid body model, we created a rough shell (see
1168     Fig.~\ref{fig:roughShell}), in which the lipid is represented as a
1169     ``shell'' made of 3550 identical beads (0.25 \AA\ in diameter)
1170     distributed on the surface. Applying the procedure described in
1171     Sec.~\ref{introEquation:ResistanceTensorArbitraryOrigin}, we
1172     identified the center of resistance, ${\bf r} = $(0 \AA, 0 \AA, 1.46
1173     \AA).
1174 gezelter 3310
1175 gezelter 3341 The translational diffusion constants and rotational correlation times
1176     obtained using the Langevin rigid-body integrator (and the
1177     hydrodynamic tensor) are essentially quantitative when compared with
1178     the explicit solvent simulations for this model system.
1179 gezelter 3315
1180 gezelter 3352 \subsection{Summary of comparisons with explicit solvent simulations}
1181     The Langevin rigid-body integrator we have developed is a reliable way
1182     to replace explicit solvent simulations in cases where the detailed
1183     solute-solvent interactions do not greatly impact the behavior of the
1184     solute. As such, it has the potential to greatly increase the length
1185     and time scales of coarse grained simulations of large solvated
1186     molecules. In cases where the dielectric screening of the solvent, or
1187     specific solute-solvent interactions become important for structural
1188     or dynamic features of the solute molecule, this integrator may be
1189     less useful. However, for the kinds of coarse-grained modeling that
1190     have become popular in recent years (ellipsoidal side chains, rigid
1191     bodies, and molecular-scale models), this integrator may prove itself
1192     to be quite valuable.
1193 xsun 3298
1194 gezelter 3315 \begin{figure}
1195     \centering
1196     \includegraphics[width=\linewidth]{graph}
1197     \caption[Mean squared displacements and orientational
1198     correlation functions for each of the model rigid bodies.]{The
1199     mean-squared displacements ($\langle r^2(t) \rangle$) and
1200     orientational correlation functions ($C_2(t)$) for each of the model
1201     rigid bodies studied. The circles are the results for microcanonical
1202     simulations with explicit solvent molecules, while the other data sets
1203     are results for Langevin dynamics using the different hydrodynamic
1204     tensor approximations. The Perrin model for the ellipsoids is
1205     considered the ``exact'' hydrodynamic behavior (this can also be said
1206     for the translational motion of the dumbbell operating under the bead
1207     model). In most cases, the various hydrodynamics models reproduce
1208     each other quantitatively.}
1209     \label{fig:results}
1210     \end{figure}
1211    
1212 xsun 3298 \begin{table*}
1213     \begin{minipage}{\linewidth}
1214     \begin{center}
1215 gezelter 3305 \caption{Translational diffusion constants (D) for the model systems
1216     calculated using microcanonical simulations (with explicit solvent),
1217     theoretical predictions, and Langevin simulations (with implicit solvent).
1218 gezelter 3352 Analytical solutions for the exactly-solved hydrodynamics models are obtained
1219     from: Stokes' law (sphere), and Refs. \citen{Perrin1934} and \citen{Perrin1936}
1220 gezelter 3305 (ellipsoid), \citen{Stimson:1926qy} and \citen{Davis:1969uq}
1221     (dumbbell). The other model systems have no known analytic solution.
1222 gezelter 3352 All diffusion constants are reported in units of $10^{-3}$ cm$^2$ / ps (=
1223 gezelter 3305 $10^{-4}$ \AA$^2$ / fs). }
1224     \begin{tabular}{lccccccc}
1225 xsun 3298 \hline
1226 gezelter 3305 & \multicolumn{2}c{microcanonical simulation} & & \multicolumn{3}c{Theoretical} & Langevin \\
1227     \cline{2-3} \cline{5-7}
1228     model & $\eta$ (centipoise) & D & & Analytical & method & Hydrodynamics & simulation \\
1229 xsun 3298 \hline
1230 xsun 3312 sphere & 0.279 & 3.06 & & 2.42 & exact & 2.42 & 2.33 \\
1231 gezelter 3305 ellipsoid & 0.255 & 2.44 & & 2.34 & exact & 2.34 & 2.37 \\
1232     & 0.255 & 2.44 & & 2.34 & rough shell & 2.36 & 2.28 \\
1233 xsun 3312 dumbbell & 0.308 & 2.06 & & 1.64 & bead model & 1.65 & 1.62 \\
1234     & 0.308 & 2.06 & & 1.64 & rough shell & 1.59 & 1.62 \\
1235 gezelter 3305 banana & 0.298 & 1.53 & & & rough shell & 1.56 & 1.55 \\
1236 gezelter 3341 lipid & 0.349 & 1.41 & & & rough shell & 1.33 & 1.32 \\
1237 xsun 3298 \end{tabular}
1238     \label{tab:translation}
1239     \end{center}
1240     \end{minipage}
1241     \end{table*}
1242    
1243     \begin{table*}
1244     \begin{minipage}{\linewidth}
1245     \begin{center}
1246 gezelter 3305 \caption{Orientational relaxation times ($\tau$) for the model systems using
1247     microcanonical simulation (with explicit solvent), theoretical
1248     predictions, and Langevin simulations (with implicit solvent). All
1249     relaxation times are for the rotational correlation function with
1250     $\ell = 2$ and are reported in units of ps. The ellipsoidal model has
1251     an exact solution for the orientational correlation time due to
1252     Perrin, but the other model systems have no known analytic solution.}
1253     \begin{tabular}{lccccccc}
1254 xsun 3298 \hline
1255 gezelter 3305 & \multicolumn{2}c{microcanonical simulation} & & \multicolumn{3}c{Theoretical} & Langevin \\
1256     \cline{2-3} \cline{5-7}
1257     model & $\eta$ (centipoise) & $\tau$ & & Perrin & method & Hydrodynamic & simulation \\
1258 xsun 3298 \hline
1259 xsun 3312 sphere & 0.279 & & & 9.69 & exact & 9.69 & 9.64 \\
1260 gezelter 3305 ellipsoid & 0.255 & 46.7 & & 22.0 & exact & 22.0 & 22.2 \\
1261     & 0.255 & 46.7 & & 22.0 & rough shell & 22.6 & 22.2 \\
1262 xsun 3312 dumbbell & 0.308 & 14.1 & & & bead model & 50.0 & 50.1 \\
1263     & 0.308 & 14.1 & & & rough shell & 41.5 & 41.3 \\
1264 gezelter 3305 banana & 0.298 & 63.8 & & & rough shell & 70.9 & 70.9 \\
1265     lipid & 0.349 & 78.0 & & & rough shell & 76.9 & 77.9 \\
1266     \hline
1267 xsun 3298 \end{tabular}
1268     \label{tab:rotation}
1269     \end{center}
1270     \end{minipage}
1271     \end{table*}
1272    
1273 gezelter 3310 \section{Application: A rigid-body lipid bilayer}
1274    
1275 gezelter 3352 To test the accuracy and efficiency of the new integrator, we applied
1276     it to study the formation of corrugated structures emerging from
1277     simulations of the coarse grained lipid molecular models presented
1278     above. The initial configuration is taken from earlier molecular
1279     dynamics studies on lipid bilayers which had used spherical
1280     (Lennard-Jones) solvent particles and moderate (480 solvated lipid
1281     molecules) system sizes.\cite{SunX._jp0762020} the solvent molecules
1282     were excluded from the system and the box was replicated three times
1283     in the x- and y- axes (giving a single simulation cell containing 4320
1284     lipids). The experimental value for the viscosity of water at 20C
1285     ($\eta = 1.00$ cp) was used with the Langevin integrator to mimic the
1286     hydrodynamic effects of the solvent. The absence of explicit solvent
1287     molecules and the stability of the integrator allowed us to take
1288     timesteps of 50 fs. A simulation run time of 30 ns was sampled to
1289     calculate structural properties. Fig. \ref{fig:bilayer} shows the
1290     configuration of the system after 30 ns. Structural properties of the
1291     bilayer (e.g. the head and body $P_2$ order parameters) are nearly
1292     identical to those obtained via solvated molecular dynamics. The
1293     ripple structure remained stable during the entire trajectory.
1294     Compared with using explicit bead-model solvent molecules, the 30 ns
1295     trajectory for 4320 lipids with the Langevin integrator is now {\it
1296     faster} on the same hardware than the same length trajectory was for
1297     the 480-lipid system previously studied.
1298 xsun 3298
1299 gezelter 3310 \begin{figure}
1300     \centering
1301     \includegraphics[width=\linewidth]{bilayer}
1302     \caption[Snapshot of a bilayer of rigid-body models for lipids]{A
1303 gezelter 3352 snapshot of a bilayer composed of 4320 rigid-body models for lipid
1304 gezelter 3310 molecules evolving using the Langevin integrator described in this
1305     work.} \label{fig:bilayer}
1306     \end{figure}
1307    
1308 tim 2746 \section{Conclusions}
1309    
1310 gezelter 3352 We have presented a new algorithm for carrying out Langevin dynamics
1311     simulations on complex rigid bodies by incorporating the hydrodynamic
1312     resistance tensors for arbitrary shapes into an advanced symplectic
1313     integration scheme. The integrator gives quantitative agreement with
1314     both analytic and approximate hydrodynamic theories, and works
1315     reasonably well at reproducing the solute dynamical properties
1316     (diffusion constants, and orientational relaxation times) from
1317     explicitly-solvated simulations. For the cases where there are
1318     discrepancies between our Langevin integrator and the explicit solvent
1319     simulations, two features of molecular simulations help explain the
1320     differences.
1321 tim 2999
1322 gezelter 3352 First, the use of ``stick'' boundary conditions for molecular-sized
1323     solutes in a sea of similarly-sized solvent particles may be
1324     problematic. We are certainly not the first group to notice this
1325     difference between hydrodynamic theories and explicitly-solvated
1326     molecular
1327     simulations.\cite{Schmidt:2004fj,Schmidt:2003kx,Ravichandran:1999fk,TANG:1993lr}
1328     The problem becomes particularly noticable in both the translational
1329     diffusion of the spherical particles and the rotational diffusion of
1330     the ellipsoids. In both of these cases it is clear that the
1331     approximations that go into hydrodynamics are the source of the error,
1332     and not the integrator itself.
1333 tim 2999
1334 gezelter 3352 Second, in the case of structures which have substantial surface area
1335     that is inaccessible to solvent particles, the hydrodynamic theories
1336     (and the Langevin integrator) may overestimate the effects of solvent
1337     friction because they overestimate the exposed surface area of the
1338     rigid body. This is particularly noticable in the rotational
1339     diffusion of the dumbbell model. We believe that given a solvent of
1340     known radius, it may be possible to modify the rough shell approach to
1341     place beads on solvent-accessible surface, instead of on the geometric
1342     surface defined by the van der Waals radii of the components of the
1343     rigid body. Further work to confirm the behavior of this new
1344     approximation is ongoing.
1345    
1346 tim 2746 \section{Acknowledgments}
1347     Support for this project was provided by the National Science
1348     Foundation under grant CHE-0134881. T.L. also acknowledges the
1349 gezelter 3352 financial support from Center of Applied Mathematics at University of
1350     Notre Dame.
1351    
1352     \end{doublespace}
1353 tim 2746 \newpage
1354    
1355 gezelter 3352 \bibliographystyle{jcp2}
1356 tim 2746 \bibliography{langevin}
1357     \end{document}