ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/langevin/langevin.tex
Revision: 3391
Committed: Wed Apr 30 16:16:25 2008 UTC (16 years, 4 months ago) by gezelter
Content type: application/x-tex
File size: 67647 byte(s)
Log Message:
Nearing the end

File Contents

# User Rev Content
1 tim 2746 %\documentclass[prb,aps,twocolumn,tabularx]{revtex4}
2 gezelter 3352 %\documentclass[aps,prb,preprint,amsmath,amssymb,endfloats]{revtex4}
3 tim 2746 \documentclass[11pt]{article}
4 gezelter 3337 \usepackage{amsmath}
5 tim 2746 \usepackage{amssymb}
6     \usepackage{times}
7     \usepackage{mathptmx}
8     \usepackage{setspace}
9 gezelter 3352 \usepackage{endfloat}
10 gezelter 3391 \usepackage{caption}
11 gezelter 3352 %\usepackage{tabularx}
12 tim 2746 \usepackage{graphicx}
13 gezelter 3352 %\usepackage{booktabs}
14     %\usepackage{bibentry}
15     %\usepackage{mathrsfs}
16 tim 2746 \usepackage[ref]{overcite}
17     \pagestyle{plain} \pagenumbering{arabic} \oddsidemargin 0.0cm
18     \evensidemargin 0.0cm \topmargin -21pt \headsep 10pt \textheight
19     9.0in \textwidth 6.5in \brokenpenalty=10000
20 gezelter 3352
21 gezelter 3391 % double space list of tables and figures
22     \AtBeginDelayedFloats{\renewcommand{\baselinestretch}{1.66}}
23     \setlength{\abovecaptionskip}{20 pt}
24     \setlength{\belowcaptionskip}{30 pt}
25    
26 gezelter 3299 \renewcommand\citemid{\ } % no comma in optional referenc note
27 tim 2746
28     \begin{document}
29    
30 gezelter 3352 \title{Langevin dynamics for rigid bodies of arbitrary shape}
31 tim 2746
32 gezelter 3352 \author{Xiuquan Sun, Teng Lin and J. Daniel
33     Gezelter\footnote{Corresponding author. \ Electronic mail: gezelter@nd.edu} \\
34     Department of Chemistry and Biochemistry,\\
35 tim 2746 University of Notre Dame\\
36     Notre Dame, Indiana 46556}
37    
38     \date{\today}
39    
40    
41 gezelter 3352 \maketitle
42    
43    
44 gezelter 3391 \begin{doublespace}
45 gezelter 3352
46 tim 2746 \begin{abstract}
47 gezelter 3352 We present an algorithm for carrying out Langevin dynamics simulations
48     on complex rigid bodies by incorporating the hydrodynamic resistance
49 gezelter 3367 tensors for arbitrary shapes into an advanced rotational integration
50 gezelter 3352 scheme. The integrator gives quantitative agreement with both
51     analytic and approximate hydrodynamic theories for a number of model
52     rigid bodies, and works well at reproducing the solute dynamical
53     properties (diffusion constants, and orientational relaxation times)
54     obtained from explicitly-solvated simulations.
55 tim 2746 \end{abstract}
56    
57     \newpage
58    
59     %\narrowtext
60    
61     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
62     % BODY OF TEXT
63     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64    
65 gezelter 3352
66 tim 2746 \section{Introduction}
67    
68     %applications of langevin dynamics
69 gezelter 3352 Langevin dynamics, which mimics a heat bath using both stochastic and
70 gezelter 3316 dissipative forces, has been applied in a variety of situations as an
71     alternative to molecular dynamics with explicit solvent molecules.
72     The stochastic treatment of the solvent allows the use of simulations
73 gezelter 3352 with substantially longer time and length scales. In general, the
74 gezelter 3316 dynamic and structural properties obtained from Langevin simulations
75     agree quite well with similar properties obtained from explicit
76     solvent simulations.
77    
78     Recent examples of the usefulness of Langevin simulations include a
79     study of met-enkephalin in which Langevin simulations predicted
80     dynamical properties that were largely in agreement with explicit
81     solvent simulations.\cite{Shen2002} By applying Langevin dynamics with
82 gezelter 3352 the UNRES model, Liwo and his coworkers suggest that protein folding
83 gezelter 3316 pathways can be explored within a reasonable amount of
84     time.\cite{Liwo2005}
85    
86     The stochastic nature of Langevin dynamics also enhances the sampling
87     of the system and increases the probability of crossing energy
88     barriers.\cite{Cui2003,Banerjee2004} Combining Langevin dynamics with
89 gezelter 3333 Kramers' theory, Klimov and Thirumalai identified free-energy
90 gezelter 3316 barriers by studying the viscosity dependence of the protein folding
91     rates.\cite{Klimov1997} In order to account for solvent induced
92     interactions missing from the implicit solvent model, Kaya
93     incorporated a desolvation free energy barrier into protein
94     folding/unfolding studies and discovered a higher free energy barrier
95 xsun 3317 between the native and denatured states.\cite{HuseyinKaya07012005}
96 gezelter 3316
97 gezelter 3352 In typical LD simulations, the friction and random ($f_r$) forces on
98 gezelter 3333 individual atoms are taken from Stokes' law,
99 gezelter 3316 \begin{eqnarray}
100 gezelter 3352 m \dot{v}(t) & = & -\nabla U(x) - \xi m v(t) + f_r(t) \notag \\
101     \langle f_r(t) \rangle & = & 0 \\
102     \langle f_r(t) f_r(t') \rangle & = & 2 k_B T \xi m \delta(t - t') \notag
103 gezelter 3316 \end{eqnarray}
104 gezelter 3352 where $\xi \approx 6 \pi \eta \rho$. Here $\eta$ is the viscosity of the
105     implicit solvent, and $\rho$ is the hydrodynamic radius of the atom.
106 tim 2746
107 gezelter 3333 The use of rigid substructures,\cite{Chun:2000fj}
108 gezelter 3352 coarse-graining,\cite{Ayton01,Golubkov06,Orlandi:2006fk,SunX._jp0762020}
109     and ellipsoidal representations of protein side
110     chains~\cite{Fogolari:1996lr} has made the use of the Stokes-Einstein
111     approximation problematic. A rigid substructure moves as a single
112     unit with orientational as well as translational degrees of freedom.
113     This requires a more general treatment of the hydrodynamics than the
114     spherical approximation provides. Also, the atoms involved in a rigid
115     or coarse-grained structure have solvent-mediated interactions with
116     each other, and these interactions are ignored if all atoms are
117     treated as separate spherical particles. The theory of interactions
118     {\it between} bodies moving through a fluid has been developed over
119     the past century and has been applied to simulations of Brownian
120     motion.\cite{FIXMAN:1986lr,Ramachandran1996}
121 tim 2746
122 gezelter 3352 In order to account for the diffusion anisotropy of complex shapes,
123     Fernandes and Garc\'{i}a de la Torre improved an earlier Brownian
124     dynamics simulation algorithm~\cite{Ermak1978,Allison1991} by
125 gezelter 3333 incorporating a generalized $6\times6$ diffusion tensor and
126     introducing a rotational evolution scheme consisting of three
127     consecutive rotations.\cite{Fernandes2002} Unfortunately, biases are
128     introduced into the system due to the arbitrary order of applying the
129 gezelter 3391 noncommuting rotation operators.\cite{Beard2003} The effects of these
130     biases can be reduced by decreasing the size of the time step. Based
131     on the observation the momentum relaxation time is much less than the
132     time step, one may ignore the inertia in Brownian dynamics. However,
133     the assumption of zero average acceleration is not always true for
134 gezelter 3333 cooperative motion which is common in proteins. An inertial Brownian
135     dynamics (IBD) was proposed to address this issue by adding an
136 gezelter 3352 inertial correction term.\cite{Beard2000} As a complement to IBD,
137     which has a lower bound in time step because of the inertial
138     relaxation time, long-time-step inertial dynamics (LTID) can be used
139     to investigate the inertial behavior of linked polymer segments in a
140     low friction regime.\cite{Beard2000} LTID can also deal with the
141 gezelter 3333 rotational dynamics for nonskew bodies without translation-rotation
142     coupling by separating the translation and rotation motion and taking
143 gezelter 3352 advantage of the analytical solution of hydrodynamic
144 gezelter 3333 properties. However, typical nonskew bodies like cylinders and
145     ellipsoids are inadequate to represent most complex macromolecular
146 gezelter 3352 assemblies. Therefore, the goal of this work is to adapt some of the
147     hydrodynamic methodologies developed to treat Brownian motion of
148     complex assemblies into a Langevin integrator for rigid bodies with
149     arbitrary shapes.
150 gezelter 3333
151 gezelter 3316 \subsection{Rigid Body Dynamics}
152     Rigid bodies are frequently involved in the modeling of large
153     collections of particles that move as a single unit. In molecular
154     simulations, rigid bodies have been used to simplify protein-protein
155 gezelter 3333 docking,\cite{Gray2003} and lipid bilayer
156 gezelter 3352 simulations.\cite{SunX._jp0762020} Many of the water models in common
157 gezelter 3333 use are also rigid-body
158     models,\cite{Jorgensen83,Berendsen81,Berendsen87} although they are
159 gezelter 3352 typically evolved in molecular dynamics simulations using constraints
160     rather than rigid body equations of motion.
161 gezelter 3316
162 gezelter 3333 Euler angles are a natural choice to describe the rotational degrees
163 gezelter 3337 of freedom. However, due to $\frac{1}{\sin \theta}$ singularities, the
164 gezelter 3333 numerical integration of corresponding equations of these motion can
165     become inaccurate (and inefficient). Although the use of multiple
166     sets of Euler angles can overcome this problem,\cite{Barojas1973} the
167     computational penalty and the loss of angular momentum conservation
168     remain. A singularity-free representation utilizing quaternions was
169     developed by Evans in 1977.\cite{Evans1977} The Evans quaternion
170     approach uses a nonseparable Hamiltonian, and this has prevented
171     symplectic algorithms from being utilized until very
172     recently.\cite{Miller2002}
173 gezelter 3316
174 gezelter 3333 Another approach is the application of holonomic constraints to the
175     atoms belonging to the rigid body. Each atom moves independently
176     under the normal forces deriving from potential energy and constraints
177     are used to guarantee rigidity. However, due to their iterative
178     nature, the SHAKE and RATTLE algorithms converge very slowly when the
179     number of constraints (and the number of particles that belong to the
180     rigid body) increases.\cite{Ryckaert1977,Andersen1983}
181 tim 2746
182 gezelter 3333 In order to develop a stable and efficient integration scheme that
183 gezelter 3367 preserves most constants of the motion in microcanonical simulations,
184     symplectic propagators are necessary. By introducing a conjugate
185     momentum to the rotation matrix ${\bf Q}$ and re-formulating
186     Hamilton's equations, a symplectic orientational integrator,
187     RSHAKE,\cite{Kol1997} was proposed to evolve rigid bodies on a
188     constraint manifold by iteratively satisfying the orthogonality
189     constraint ${\bf Q}^T {\bf Q} = 1$. An alternative method using the
190     quaternion representation was developed by Omelyan.\cite{Omelyan1998}
191     However, both of these methods are iterative and suffer from some
192     related inefficiencies. A symplectic Lie-Poisson integrator for rigid
193     bodies developed by Dullweber {\it et al.}\cite{Dullweber1997} removes
194     most of the limitations mentioned above and is therefore the basis for
195     our Langevin integrator.
196 gezelter 3316
197 tim 2746 The goal of the present work is to develop a Langevin dynamics
198 gezelter 3391 algorithm for arbitrary-shaped rigid particles by integrating accurate
199     estimates of the friction tensor that can be obtaind from classical
200     hydrodynamics theory (or other recently-developed hydrodynamic
201     procedures) into a stable and efficient rigid body dynamics
202     propagator. In the sections below, we review some of the theory of
203     hydrodynamic tensors developed primarily for Brownian simulations of
204     multi-particle systems, we then present our integration method for a
205     set of generalized Langevin equations of motion, and we compare the
206     behavior of the new Langevin integrator to dynamical quantities
207     obtained via explicit solvent molecular dynamics.
208 tim 2746
209 gezelter 3316 \subsection{\label{introSection:frictionTensor}The Friction Tensor}
210 gezelter 3341 Theoretically, a complete friction kernel for a solute particle can be
211     determined using the velocity autocorrelation function from a
212     simulation with explicit solvent molecules. However, this approach
213     becomes impractical when the solute becomes complex. Instead, various
214     approaches based on hydrodynamics have been developed to calculate
215     static friction coefficients. In general, the friction tensor $\Xi$ is
216     a $6\times 6$ matrix given by
217 gezelter 3316 \begin{equation}
218 gezelter 3333 \Xi = \left( \begin{array}{*{20}c}
219     \Xi^{tt} & \Xi^{rt} \\
220     \Xi^{tr} & \Xi^{rr} \\
221     \end{array} \right).
222 gezelter 3316 \end{equation}
223     Here, $\Xi^{tt}$ and $\Xi^{rr}$ are $3 \times 3$ translational and
224     rotational resistance (friction) tensors respectively, while
225     $\Xi^{tr}$ is translation-rotation coupling tensor and $\Xi^{rt}$ is
226     rotation-translation coupling tensor. When a particle moves in a
227 gezelter 3341 fluid, it may experience a friction force ($\mathbf{f}_f$) and torque
228     ($\mathbf{\tau}_f$) in opposition to the velocity ($\mathbf{v}$) and
229     body-fixed angular velocity ($\mathbf{\omega}$),
230 gezelter 3316 \begin{equation}
231 tim 2746 \left( \begin{array}{l}
232 xsun 3338 \mathbf{f}_f \\
233 gezelter 3316 \mathbf{\tau}_f \\
234 gezelter 3333 \end{array} \right) = - \left( \begin{array}{*{20}c}
235     \Xi^{tt} & \Xi^{rt} \\
236     \Xi^{tr} & \Xi^{rr} \\
237     \end{array} \right)\left( \begin{array}{l}
238 gezelter 3316 \mathbf{v} \\
239     \mathbf{\omega} \\
240     \end{array} \right).
241     \end{equation}
242 gezelter 3367 For an arbitrary body moving in a fluid, Peters has derived a set of
243     fluctuation-dissipation relations for the friction
244     tensors,\cite{Peters:1999qy,Peters:1999uq,Peters:2000fk}
245     \begin{eqnarray}
246     \Xi^{tt} & = & \frac{1}{k_B T} \int_0^\infty \left[ \langle {\bf
247     F}(0) {\bf F}(-s) \rangle_{eq} - \langle {\bf F} \rangle_{eq}^2
248     \right] ds \\
249     \notag \\
250     \Xi^{tr} & = & \frac{1}{k_B T} \int_0^\infty \left[ \langle {\bf
251     F}(0) {\bf \tau}(-s) \rangle_{eq} - \langle {\bf F} \rangle_{eq}
252     \langle {\bf \tau} \rangle_{eq} \right] ds \\
253     \notag \\
254     \Xi^{rt} & = & \frac{1}{k_B T} \int_0^\infty \left[ \langle {\bf
255     \tau}(0) {\bf F}(-s) \rangle_{eq} - \langle {\bf \tau} \rangle_{eq}
256     \langle {\bf F} \rangle_{eq} \right] ds \\
257     \notag \\
258     \Xi^{rr} & = & \frac{1}{k_B T} \int_0^\infty \left[ \langle {\bf
259     \tau}(0) {\bf \tau}(-s) \rangle_{eq} - \langle {\bf \tau} \rangle_{eq}^2
260     \right] ds
261     \end{eqnarray}
262     In these expressions, the forces (${\bf F}$) and torques (${\bf
263     \tau}$) are those that arise solely from the interactions of the body with
264     the surrounding fluid. For a single solute body in an isotropic fluid,
265     the average forces and torques in these expressions ($\langle {\bf F}
266     \rangle_{eq}$ and $\langle {\bf \tau} \rangle_{eq}$)
267     vanish, and one obtains the simpler force-torque correlation formulae
268     of Nienhuis.\cite{Nienhuis:1970lr} Molecular dynamics simulations with
269     explicit solvent molecules can be used to obtain estimates of the
270     friction tensors with these formulae. In practice, however, one needs
271     relatively long simulations with frequently-stored force and torque
272     information to compute friction tensors, and this becomes
273     prohibitively expensive when there are large numbers of large solute
274     particles. For bodies with simple shapes, there are a number of
275     approximate expressions that allow computation of these tensors
276     without the need for expensive simulations that utilize explicit
277     solvent particles.
278 tim 2746
279 tim 2999 \subsubsection{\label{introSection:resistanceTensorRegular}\textbf{The Resistance Tensor for Regular Shapes}}
280 gezelter 3367 For a spherical body under ``stick'' boundary conditions, the
281     translational and rotational friction tensors can be estimated from
282     Stokes' law,
283 gezelter 3316 \begin{equation}
284 gezelter 3352 \label{eq:StokesTranslation}
285 gezelter 3333 \Xi^{tt} = \left( \begin{array}{*{20}c}
286 gezelter 3352 {6\pi \eta \rho} & 0 & 0 \\
287     0 & {6\pi \eta \rho} & 0 \\
288     0 & 0 & {6\pi \eta \rho} \\
289 gezelter 3333 \end{array} \right)
290 gezelter 3316 \end{equation}
291 tim 2999 and
292 gezelter 3316 \begin{equation}
293 gezelter 3352 \label{eq:StokesRotation}
294 gezelter 3333 \Xi^{rr} = \left( \begin{array}{*{20}c}
295 gezelter 3352 {8\pi \eta \rho^3 } & 0 & 0 \\
296     0 & {8\pi \eta \rho^3 } & 0 \\
297     0 & 0 & {8\pi \eta \rho^3 } \\
298 gezelter 3333 \end{array} \right)
299 gezelter 3316 \end{equation}
300 gezelter 3352 where $\eta$ is the viscosity of the solvent and $\rho$ is the
301     hydrodynamic radius. The presence of the rotational resistance tensor
302     implies that the spherical body has internal structure and
303     orientational degrees of freedom that must be propagated in time. For
304     non-structured spherical bodies (i.e. the atoms in a traditional
305     molecular dynamics simulation) these degrees of freedom do not exist.
306 tim 2999
307     Other non-spherical shapes, such as cylinders and ellipsoids, are
308 gezelter 3341 widely used as references for developing new hydrodynamic theories,
309 tim 2999 because their properties can be calculated exactly. In 1936, Perrin
310 gezelter 3341 extended Stokes' law to general
311     ellipsoids,\cite{Perrin1934,Perrin1936} described in Cartesian
312     coordinates as
313 gezelter 3316 \begin{equation}
314 gezelter 3333 \frac{x^2 }{a^2} + \frac{y^2}{b^2} + \frac{z^2 }{c^2} = 1.
315 gezelter 3316 \end{equation}
316 gezelter 3333 Here, the semi-axes are of lengths $a$, $b$, and $c$. Due to the
317     complexity of the elliptic integral, only uniaxial ellipsoids, either
318 gezelter 3341 prolate ($a \ge b = c$) or oblate ($a < b = c$), were solved
319 gezelter 3333 exactly. Introducing an elliptic integral parameter $S$ for prolate,
320 gezelter 3316 \begin{equation}
321     S = \frac{2}{\sqrt{a^2 - b^2}} \ln \frac{a + \sqrt{a^2 - b^2}}{b},
322     \end{equation}
323 gezelter 3333 and oblate,
324 gezelter 3316 \begin{equation}
325     S = \frac{2}{\sqrt {b^2 - a^2 }} \arctan \frac{\sqrt {b^2 - a^2}}{a},
326     \end{equation}
327 gezelter 3341 ellipsoids, it is possible to write down exact solutions for the
328     resistance tensors. As is the case for spherical bodies, the translational,
329     \begin{eqnarray}
330 gezelter 3316 \Xi_a^{tt} & = & 16\pi \eta \frac{a^2 - b^2}{(2a^2 - b^2 )S - 2a}. \\
331     \Xi_b^{tt} = \Xi_c^{tt} & = & 32\pi \eta \frac{a^2 - b^2 }{(2a^2 - 3b^2 )S + 2a},
332 gezelter 3341 \end{eqnarray}
333     and rotational,
334     \begin{eqnarray}
335 gezelter 3316 \Xi_a^{rr} & = & \frac{32\pi}{3} \eta \frac{(a^2 - b^2 )b^2}{2a - b^2 S}, \\
336     \Xi_b^{rr} = \Xi_c^{rr} & = & \frac{32\pi}{3} \eta \frac{(a^4 - b^4)}{(2a^2 - b^2 )S - 2a}
337 gezelter 3341 \end{eqnarray}
338     resistance tensors are diagonal $3 \times 3$ matrices. For both
339     spherical and ellipsoidal particles, the translation-rotation and
340     rotation-translation coupling tensors are zero.
341 tim 2746
342 tim 2999 \subsubsection{\label{introSection:resistanceTensorRegularArbitrary}\textbf{The Resistance Tensor for Arbitrary Shapes}}
343 gezelter 3367 Other than the fluctuation dissipation formulae given by
344     Peters,\cite{Peters:1999qy,Peters:1999uq,Peters:2000fk} there are no
345     analytic solutions for the friction tensor for rigid molecules of
346     arbitrary shape. The ellipsoid of revolution and general triaxial
347     ellipsoid models have been widely used to approximate the hydrodynamic
348     properties of rigid bodies. However, the mapping from all possible
349     ellipsoidal spaces ($r$-space) to all possible combinations of
350     rotational diffusion coefficients ($D$-space) is not
351 gezelter 3316 unique.\cite{Wegener1979} Additionally, because there is intrinsic
352 gezelter 3341 coupling between translational and rotational motion of {\it skew}
353     rigid bodies, general ellipsoids are not always suitable for modeling
354     rigid molecules. A number of studies have been devoted to determining
355     the friction tensor for irregular shapes using methods in which the
356     molecule of interest is modeled with a combination of
357     spheres\cite{Carrasco1999} and the hydrodynamic properties of the
358     molecule are then calculated using a set of two-point interaction
359     tensors. We have found the {\it bead} and {\it rough shell} models of
360     Carrasco and Garc\'{i}a de la Torre to be the most useful of these
361     methods,\cite{Carrasco1999} and we review the basic outline of the
362     rough shell approach here. A more thorough explanation can be found
363     in Ref. \citen{Carrasco1999}.
364 gezelter 3333
365 gezelter 3341 Consider a rigid assembly of $N$ small beads moving through a
366     continuous medium. Due to hydrodynamic interactions between the
367     beads, the net velocity of the $i^\mathrm{th}$ bead relative to the
368     medium, ${\bf v}'_i$, is different than its unperturbed velocity ${\bf
369     v}_i$,
370 gezelter 3333 \begin{equation}
371 gezelter 3341 {\bf v}'_i = {\bf v}_i - \sum\limits_{j \ne i} {{\bf T}_{ij} {\bf F}_j }
372 gezelter 3333 \end{equation}
373 gezelter 3341 where ${\bf F}_j$ is the frictional force on the medium due to bead $j$, and
374     ${\bf T}_{ij}$ is the hydrodynamic interaction tensor between the two beads.
375     The frictional force felt by the $i^\mathrm{th}$ bead is proportional to
376     its net velocity
377 tim 2746 \begin{equation}
378 gezelter 3352 {\bf F}_i = \xi_i {\bf v}_i - \xi_i \sum\limits_{j \ne i} {{\bf T}_{ij} {\bf F}_j }.
379 tim 2999 \label{introEquation:tensorExpression}
380 tim 2746 \end{equation}
381 gezelter 3341 Eq. (\ref{introEquation:tensorExpression}) defines the two-point
382     hydrodynamic tensor, ${\bf T}_{ij}$. There have been many proposed
383     solutions to this equation, including the simple solution given by
384     Oseen and Burgers in 1930 for two beads of identical radius. A second
385     order expression for beads of different hydrodynamic radii was
386 gezelter 3352 introduced by Rotne and Prager,\cite{Rotne1969} and improved by
387 tim 2999 Garc\'{i}a de la Torre and Bloomfield,\cite{Torre1977}
388 tim 2746 \begin{equation}
389 gezelter 3341 {\bf T}_{ij} = \frac{1}{{8\pi \eta R_{ij} }}\left[ {\left( {{\bf I} +
390 gezelter 3352 \frac{{{\bf R}_{ij} {\bf R}_{ij}^T }}{{R_{ij}^2 }}} \right) + \frac{{\rho
391     _i^2 + \rho_j^2 }}{{R_{ij}^2 }}\left( {\frac{{\bf I}}{3} -
392 gezelter 3341 \frac{{{\bf R}_{ij} {\bf R}_{ij}^T }}{{R_{ij}^2 }}} \right)} \right].
393 tim 2999 \label{introEquation:RPTensorNonOverlapped}
394 tim 2746 \end{equation}
395 gezelter 3341 Here ${\bf R}_{ij}$ is the distance vector between beads $i$ and $j$. Both
396     the Oseen-Burgers tensor and
397     Eq.~\ref{introEquation:RPTensorNonOverlapped} have an assumption that
398 gezelter 3352 the beads do not overlap ($R_{ij} \ge \rho_i + \rho_j$).
399 gezelter 3341
400     To calculate the resistance tensor for a body represented as the union
401     of many non-overlapping beads, we first pick an arbitrary origin $O$
402     and then construct a $3N \times 3N$ supermatrix consisting of $N
403     \times N$ ${\bf B}_{ij}$ blocks
404 tim 2746 \begin{equation}
405 gezelter 3341 {\bf B} = \left( \begin{array}{*{20}c}
406     {\bf B}_{11} & \ldots & {\bf B}_{1N} \\
407     \vdots & \ddots & \vdots \\
408     {\bf B}_{N1} & \cdots & {\bf B}_{NN}
409     \end{array} \right)
410 tim 2746 \end{equation}
411 gezelter 3341 ${\bf B}_{ij}$ is a version of the hydrodynamic tensor which includes the
412     self-contributions for spheres,
413 tim 2999 \begin{equation}
414 gezelter 3341 {\bf B}_{ij} = \delta _{ij} \frac{{\bf I}}{{6\pi \eta R_{ij}}} + (1 - \delta_{ij}
415     ){\bf T}_{ij}
416     \end{equation}
417     where $\delta_{ij}$ is the Kronecker delta function. Inverting the
418     ${\bf B}$ matrix, we obtain
419     \begin{equation}
420     {\bf C} = {\bf B}^{ - 1} = \left(\begin{array}{*{20}c}
421     {\bf C}_{11} & \ldots & {\bf C}_{1N} \\
422     \vdots & \ddots & \vdots \\
423     {\bf C}_{N1} & \cdots & {\bf C}_{NN}
424 gezelter 3333 \end{array} \right),
425 tim 2999 \end{equation}
426 gezelter 3341 which can be partitioned into $N \times N$ blocks labeled ${\bf C}_{ij}$.
427     (Each of the ${\bf C}_{ij}$ blocks is a $3 \times 3$ matrix.) Using the
428     skew matrix,
429 gezelter 3333 \begin{equation}
430 gezelter 3341 {\bf U}_i = \left(\begin{array}{*{20}c}
431     0 & -z_i & y_i \\
432     z_i & 0 & - x_i \\
433     -y_i & x_i & 0
434     \end{array}\right)
435     \label{eq:skewMatrix}
436 gezelter 3333 \end{equation}
437 tim 2999 where $x_i$, $y_i$, $z_i$ are the components of the vector joining
438 gezelter 3341 bead $i$ and origin $O$, the elements of the resistance tensor (at the
439     arbitrary origin $O$) can be written as
440 tim 2999 \begin{eqnarray}
441 xsun 3339 \label{introEquation:ResistanceTensorArbitraryOrigin}
442 gezelter 3341 \Xi^{tt} & = & \sum\limits_i {\sum\limits_j {{\bf C}_{ij} } } \notag , \\
443     \Xi^{tr} = \Xi _{}^{rt} & = & \sum\limits_i {\sum\limits_j {{\bf U}_i {\bf C}_{ij} } } , \\
444     \Xi^{rr} & = & -\sum\limits_i \sum\limits_j {\bf U}_i {\bf C}_{ij} {\bf U}_j + 6 \eta V {\bf I}. \notag
445 tim 2999 \end{eqnarray}
446 gezelter 3341 The final term in the expression for $\Xi^{rr}$ is a correction that
447     accounts for errors in the rotational motion of the bead models. The
448     additive correction uses the solvent viscosity ($\eta$) as well as the
449     total volume of the beads that contribute to the hydrodynamic model,
450 gezelter 3310 \begin{equation}
451 gezelter 3352 V = \frac{4 \pi}{3} \sum_{i=1}^{N} \rho_i^3,
452 gezelter 3310 \end{equation}
453 gezelter 3352 where $\rho_i$ is the radius of bead $i$. This correction term was
454 gezelter 3310 rigorously tested and compared with the analytical results for
455 gezelter 3341 two-sphere and ellipsoidal systems by Garc\'{i}a de la Torre and
456 gezelter 3310 Rodes.\cite{Torre:1983lr}
457    
458 gezelter 3341 In general, resistance tensors depend on the origin at which they were
459     computed. However, the proper location for applying the friction
460     force is the center of resistance, the special point at which the
461     trace of rotational resistance tensor, $\Xi^{rr}$ reaches a minimum
462     value. Mathematically, the center of resistance can also be defined
463     as the unique point for a rigid body at which the translation-rotation
464     coupling tensors are symmetric,
465 tim 2999 \begin{equation}
466 gezelter 3341 \Xi^{tr} = \left(\Xi^{tr}\right)^T
467 tim 2999 \label{introEquation:definitionCR}
468     \end{equation}
469 gezelter 3341 From Eq. \ref{introEquation:ResistanceTensorArbitraryOrigin}, we can
470     easily derive that the {\it translational} resistance tensor is origin
471     independent, while the rotational resistance tensor and
472 tim 2999 translation-rotation coupling resistance tensor depend on the
473 gezelter 3341 origin. Given the resistance tensor at an arbitrary origin $O$, and a
474     vector ,${\bf r}_{OP} = (x_{OP}, y_{OP}, z_{OP})$, from $O$ to $P$, we
475     can obtain the resistance tensor at $P$ by
476     \begin{eqnarray}
477     \label{introEquation:resistanceTensorTransformation}
478     \Xi_P^{tt} & = & \Xi_O^{tt} \notag \\
479     \Xi_P^{tr} = \Xi_P^{rt} & = & \Xi_O^{tr} - {\bf U}_{OP} \Xi _O^{tt} \\
480     \Xi_P^{rr} & = &\Xi_O^{rr} - {\bf U}_{OP} \Xi_O^{tt} {\bf U}_{OP}
481     + \Xi_O^{tr} {\bf U}_{OP} - {\bf U}_{OP} \left( \Xi_O^{tr}
482     \right)^{^T} \notag
483     \end{eqnarray}
484     where ${\bf U}_{OP}$ is the skew matrix (Eq. (\ref{eq:skewMatrix}))
485     for the vector between the origin $O$ and the point $P$. Using
486     Eqs.~\ref{introEquation:definitionCR}~and~\ref{introEquation:resistanceTensorTransformation},
487     one can locate the position of center of resistance,
488     \begin{equation*}
489     \left(\begin{array}{l}
490     x_{OR} \\
491     y_{OR} \\
492     z_{OR}
493     \end{array}\right) =
494     \left(\begin{array}{*{20}c}
495     (\Xi_O^{rr})_{yy} + (\Xi_O^{rr})_{zz} & -(\Xi_O^{rr})_{xy} & -(\Xi_O^{rr})_{xz} \\
496     -(\Xi_O^{rr})_{xy} & (\Xi_O^{rr})_{zz} + (\Xi_O^{rr})_{xx} & -(\Xi_O^{rr})_{yz} \\
497     -(\Xi_O^{rr})_{xz} & -(\Xi_O^{rr})_{yz} & (\Xi_O^{rr})_{xx} + (\Xi_O^{rr})_{yy} \\
498     \end{array}\right)^{-1}
499     \left(\begin{array}{l}
500     (\Xi_O^{tr})_{yz} - (\Xi_O^{tr})_{zy} \\
501     (\Xi_O^{tr})_{zx} - (\Xi_O^{tr})_{xz} \\
502     (\Xi_O^{tr})_{xy} - (\Xi_O^{tr})_{yx}
503     \end{array}\right)
504     \end{equation*}
505 xsun 3338 where $x_{OR}$, $y_{OR}$, $z_{OR}$ are the components of the vector
506 tim 2999 joining center of resistance $R$ and origin $O$.
507 tim 2746
508 gezelter 3341 For a general rigid molecular substructure, finding the $6 \times 6$
509     resistance tensor can be a computationally demanding task. First, a
510     lattice of small beads that extends well beyond the boundaries of the
511     rigid substructure is created. The lattice is typically composed of
512     0.25 \AA\ beads on a dense FCC lattice. The lattice constant is taken
513     to be the bead diameter, so that adjacent beads are touching, but do
514     not overlap. To make a shape corresponding to the rigid structure,
515     beads that sit on lattice sites that are outside the van der Waals
516 gezelter 3352 radii of all of the atoms comprising the rigid body are excluded from
517     the calculation.
518 tim 2746
519 gezelter 3341 For large structures, most of the beads will be deep within the rigid
520     body and will not contribute to the hydrodynamic tensor. In the {\it
521     rough shell} approach, beads which have all of their lattice neighbors
522     inside the structure are considered interior beads, and are removed
523     from the calculation. After following this procedure, only those
524     beads in direct contact with the van der Waals surface of the rigid
525     body are retained. For reasonably large molecular structures, this
526     truncation can still produce bead assemblies with thousands of
527     members.
528    
529 gezelter 3352 If all of the {\it atoms} comprising the rigid substructure are
530     spherical and non-overlapping, the tensor in
531 gezelter 3341 Eq.~(\ref{introEquation:RPTensorNonOverlapped}) may be used directly
532     using the atoms themselves as the hydrodynamic beads. This is a
533     variant of the {\it bead model} approach of Carrasco and Garc\'{i}a de
534 gezelter 3352 la Torre.\cite{Carrasco1999} In this case, the size of the ${\bf B}$
535     matrix can be quite small, and the calculation of the hydrodynamic
536     tensor is straightforward.
537 gezelter 3341
538     In general, the inversion of the ${\bf B}$ matrix is the most
539     computationally demanding task. This inversion is done only once for
540 gezelter 3352 each type of rigid structure. We have used straightforward
541     LU-decomposition to solve the linear system and to obtain the elements
542     of ${\bf C}$. Once ${\bf C}$ has been obtained, the location of the
543 gezelter 3341 center of resistance ($R$) is found and the resistance tensor at this
544     point is calculated. The $3 \times 1$ vector giving the location of
545     the rigid body's center of resistance and the $6 \times 6$ resistance
546 gezelter 3352 tensor are then stored for use in the Langevin dynamics calculation.
547     These quantities depend on solvent viscosity and temperature and must
548     be recomputed if different simulation conditions are required.
549 gezelter 3341
550 gezelter 3310 \section{Langevin Dynamics for Rigid Particles of Arbitrary Shape\label{LDRB}}
551 gezelter 3337
552 tim 2999 Consider the Langevin equations of motion in generalized coordinates
553 tim 2746 \begin{equation}
554 gezelter 3341 {\bf M} \dot{{\bf V}}(t) = {\bf F}_{s}(t) +
555     {\bf F}_{f}(t) + {\bf F}_{r}(t)
556 tim 2746 \label{LDGeneralizedForm}
557     \end{equation}
558 gezelter 3341 where ${\bf M}$ is a $6 \times 6$ diagonal mass matrix (which
559 gezelter 3337 includes the mass of the rigid body as well as the moments of inertia
560 gezelter 3341 in the body-fixed frame) and ${\bf V}$ is a generalized velocity,
561     ${\bf V} =
562     \left\{{\bf v},{\bf \omega}\right\}$. The right side of
563 gezelter 3333 Eq.~\ref{LDGeneralizedForm} consists of three generalized forces: a
564 gezelter 3352 system force (${\bf F}_{s}$), a frictional or dissipative force (${\bf
565     F}_{f}$) and a stochastic force (${\bf F}_{r}$). While the evolution
566     of the system in Newtonian mechanics is typically done in the lab
567     frame, it is convenient to handle the dynamics of rigid bodies in
568     body-fixed frames. Thus the friction and random forces on each
569 gezelter 3341 substructure are calculated in a body-fixed frame and may converted
570     back to the lab frame using that substructure's rotation matrix (${\bf
571     Q}$):
572 gezelter 3333 \begin{equation}
573 gezelter 3341 {\bf F}_{f,r} =
574 gezelter 3340 \left( \begin{array}{c}
575 gezelter 3341 {\bf f}_{f,r} \\
576     {\bf \tau}_{f,r}
577 gezelter 3340 \end{array} \right)
578     =
579     \left( \begin{array}{c}
580 gezelter 3341 {\bf Q}^{T} {\bf f}^{~b}_{f,r} \\
581     {\bf Q}^{T} {\bf \tau}^{~b}_{f,r}
582 gezelter 3340 \end{array} \right)
583 gezelter 3333 \end{equation}
584 gezelter 3341 The body-fixed friction force, ${\bf F}_{f}^{~b}$, is proportional to
585     the (body-fixed) velocity at the center of resistance
586     ${\bf v}_{R}^{~b}$ and the angular velocity ${\bf \omega}$
587 tim 2746 \begin{equation}
588 gezelter 3341 {\bf F}_{f}^{~b}(t) = \left( \begin{array}{l}
589     {\bf f}_{f}^{~b}(t) \\
590     {\bf \tau}_{f}^{~b}(t) \\
591 gezelter 3333 \end{array} \right) = - \left( \begin{array}{*{20}c}
592 gezelter 3341 \Xi_{R}^{tt} & \Xi_{R}^{rt} \\
593     \Xi_{R}^{tr} & \Xi_{R}^{rr} \\
594 gezelter 3333 \end{array} \right)\left( \begin{array}{l}
595 gezelter 3341 {\bf v}_{R}^{~b}(t) \\
596     {\bf \omega}(t) \\
597 tim 2746 \end{array} \right),
598     \end{equation}
599 gezelter 3341 while the random force, ${\bf F}_{r}$, is a Gaussian stochastic
600     variable with zero mean and variance,
601 tim 2746 \begin{equation}
602 gezelter 3341 \left\langle {{\bf F}_{r}(t) ({\bf F}_{r}(t'))^T } \right\rangle =
603     \left\langle {{\bf F}_{r}^{~b} (t) ({\bf F}_{r}^{~b} (t'))^T } \right\rangle =
604     2 k_B T \Xi_R \delta(t - t'). \label{eq:randomForce}
605 tim 2746 \end{equation}
606 gezelter 3340 $\Xi_R$ is the $6\times6$ resistance tensor at the center of
607 gezelter 3341 resistance. Once this tensor is known for a given rigid body (as
608     described in the previous section) obtaining a stochastic vector that
609     has the properties in Eq. (\ref{eq:randomForce}) can be done
610     efficiently by carrying out a one-time Cholesky decomposition to
611     obtain the square root matrix of the resistance tensor,
612     \begin{equation}
613     \Xi_R = {\bf S} {\bf S}^{T},
614     \label{eq:Cholesky}
615     \end{equation}
616 gezelter 3352 where ${\bf S}$ is a lower triangular matrix.\cite{Schlick2002} A
617 gezelter 3341 vector with the statistics required for the random force can then be
618     obtained by multiplying ${\bf S}$ onto a random 6-vector ${\bf Z}$ which
619     has elements chosen from a Gaussian distribution, such that:
620 gezelter 3340 \begin{equation}
621 gezelter 3341 \langle {\bf Z}_i \rangle = 0, \hspace{1in} \langle {\bf Z}_i \cdot
622     {\bf Z}_j \rangle = \frac{2 k_B T}{\delta t} \delta_{ij},
623 gezelter 3340 \end{equation}
624 gezelter 3341 where $\delta t$ is the timestep in use during the simulation. The
625     random force, ${\bf F}_{r}^{~b} = {\bf S} {\bf Z}$, can be shown to have the
626     correct properties required by Eq. (\ref{eq:randomForce}).
627 gezelter 3333
628 gezelter 3341 The equation of motion for the translational velocity of the center of
629     mass (${\bf v}$) can be written as
630 tim 2746 \begin{equation}
631 gezelter 3341 m \dot{{\bf v}} (t) = {\bf f}_{s}(t) + {\bf f}_{f}(t) +
632     {\bf f}_{r}(t)
633 tim 2746 \end{equation}
634 gezelter 3341 Since the frictional and random forces are applied at the center of
635     resistance, which generally does not coincide with the center of mass,
636     extra torques are exerted at the center of mass. Thus, the net
637     body-fixed torque at the center of mass, $\tau^{~b}(t)$,
638     is given by
639 tim 2746 \begin{equation}
640 gezelter 3341 \tau^{~b} \leftarrow \tau_{s}^{~b} + \tau_{f}^{~b} + \tau_{r}^{~b} + {\bf r}_{MR} \times \left( {\bf f}_{f}^{~b} + {\bf f}_{r}^{~b} \right)
641 tim 2746 \end{equation}
642 gezelter 3341 where ${\bf r}_{MR}$ is the vector from the center of mass to the center of
643     resistance. Instead of integrating the angular velocity in lab-fixed
644     frame, we consider the equation of motion for the angular momentum
645     (${\bf j}$) in the body-fixed frame
646 tim 2746 \begin{equation}
647 gezelter 3352 \frac{\partial}{\partial t}{\bf j}(t) = \tau^{~b}(t)
648 tim 2746 \end{equation}
649 gezelter 3341 Embedding the friction and random forces into the the total force and
650     torque, one can integrate the Langevin equations of motion for a rigid
651     body of arbitrary shape in a velocity-Verlet style 2-part algorithm,
652     where $h = \delta t$:
653 tim 2746
654 gezelter 3341 {\tt move A:}
655 tim 2746 \begin{align*}
656 tim 2999 {\bf v}\left(t + h / 2\right) &\leftarrow {\bf v}(t)
657     + \frac{h}{2} \left( {\bf f}(t) / m \right), \\
658     %
659     {\bf r}(t + h) &\leftarrow {\bf r}(t)
660     + h {\bf v}\left(t + h / 2 \right), \\
661     %
662     {\bf j}\left(t + h / 2 \right) &\leftarrow {\bf j}(t)
663 gezelter 3341 + \frac{h}{2} {\bf \tau}^{~b}(t), \\
664 tim 2999 %
665 gezelter 3341 {\bf Q}(t + h) &\leftarrow \mathrm{rotate}\left( h {\bf j}
666 tim 2999 (t + h / 2) \cdot \overleftrightarrow{\mathsf{I}}^{-1} \right).
667 tim 2746 \end{align*}
668 gezelter 3341 In this context, $\overleftrightarrow{\mathsf{I}}$ is the diagonal
669     moment of inertia tensor, and the $\mathrm{rotate}$ function is the
670     reversible product of the three body-fixed rotations,
671 tim 2746 \begin{equation}
672     \mathrm{rotate}({\bf a}) = \mathsf{G}_x(a_x / 2) \cdot
673     \mathsf{G}_y(a_y / 2) \cdot \mathsf{G}_z(a_z) \cdot \mathsf{G}_y(a_y
674     / 2) \cdot \mathsf{G}_x(a_x /2),
675     \end{equation}
676     where each rotational propagator, $\mathsf{G}_\alpha(\theta)$,
677 gezelter 3341 rotates both the rotation matrix ($\mathbf{Q}$) and the body-fixed
678 tim 2999 angular momentum (${\bf j}$) by an angle $\theta$ around body-fixed
679     axis $\alpha$,
680 tim 2746 \begin{equation}
681     \mathsf{G}_\alpha( \theta ) = \left\{
682     \begin{array}{lcl}
683 gezelter 3341 \mathbf{Q}(t) & \leftarrow & \mathbf{Q}(0) \cdot \mathsf{R}_\alpha(\theta)^T, \\
684 tim 2746 {\bf j}(t) & \leftarrow & \mathsf{R}_\alpha(\theta) \cdot {\bf
685     j}(0).
686     \end{array}
687     \right.
688     \end{equation}
689     $\mathsf{R}_\alpha$ is a quadratic approximation to the single-axis
690     rotation matrix. For example, in the small-angle limit, the
691     rotation matrix around the body-fixed x-axis can be approximated as
692     \begin{equation}
693     \mathsf{R}_x(\theta) \approx \left(
694     \begin{array}{ccc}
695     1 & 0 & 0 \\
696     0 & \frac{1-\theta^2 / 4}{1 + \theta^2 / 4} & -\frac{\theta}{1+
697     \theta^2 / 4} \\
698     0 & \frac{\theta}{1+ \theta^2 / 4} & \frac{1-\theta^2 / 4}{1 +
699     \theta^2 / 4}
700     \end{array}
701     \right).
702     \end{equation}
703 tim 2999 All other rotations follow in a straightforward manner. After the
704     first part of the propagation, the forces and body-fixed torques are
705 gezelter 3341 calculated at the new positions and orientations. The system forces
706     and torques are derivatives of the total potential energy function
707     ($U$) with respect to the rigid body positions (${\bf r}$) and the
708     columns of the transposed rotation matrix ${\bf Q}^T = \left({\bf
709     u}_x, {\bf u}_y, {\bf u}_z \right)$:
710 tim 2746
711 gezelter 3341 {\tt Forces:}
712 tim 2999 \begin{align*}
713 gezelter 3341 {\bf f}_{s}(t + h) & \leftarrow
714     - \left(\frac{\partial U}{\partial {\bf r}}\right)_{{\bf r}(t + h)} \\
715 tim 2999 %
716 gezelter 3341 {\bf \tau}_{s}(t + h) &\leftarrow {\bf u}(t + h)
717     \times \frac{\partial U}{\partial {\bf u}} \\
718 tim 2999 %
719 gezelter 3341 {\bf v}^{b}_{R}(t+h) & \leftarrow \mathbf{Q}(t+h) \cdot \left({\bf v}(t+h) + {\bf \omega}(t+h) \times {\bf r}_{MR} \right) \\
720     %
721     {\bf f}_{R,f}^{b}(t+h) & \leftarrow - \Xi_{R}^{tt} \cdot
722     {\bf v}^{b}_{R}(t+h) - \Xi_{R}^{rt} \cdot {\bf \omega}(t+h) \\
723     %
724     {\bf \tau}_{R,f}^{b}(t+h) & \leftarrow - \Xi_{R}^{tr} \cdot
725     {\bf v}^{b}_{R}(t+h) - \Xi_{R}^{rr} \cdot {\bf \omega}(t+h) \\
726     %
727     Z & \leftarrow {\tt GaussianNormal}(2 k_B T / h, 6) \\
728     {\bf F}_{R,r}^{b}(t+h) & \leftarrow {\bf S} \cdot Z \\
729     %
730     {\bf f}(t+h) & \leftarrow {\bf f}_{s}(t+h) + \mathbf{Q}^{T}(t+h)
731     \cdot \left({\bf f}_{R,f}^{~b} + {\bf f}_{R,r}^{~b} \right) \\
732     %
733     \tau(t+h) & \leftarrow \tau_{s}(t+h) + \mathbf{Q}^{T}(t+h) \cdot \left(\tau_{R,f}^{~b} + \tau_{R,r}^{~b} \right) + {\bf r}_{MR} \times \left({\bf f}_{f}(t+h) + {\bf f}_{r}(t+h) \right) \\
734     \tau^{~b}(t+h) & \leftarrow \mathbf{Q}(t+h) \cdot \tau(t+h) \\
735 tim 2999 \end{align*}
736 gezelter 3341 Frictional (and random) forces and torques must be computed at the
737     center of resistance, so there are additional steps required to find
738     the body-fixed velocity (${\bf v}_{R}^{~b}$) at this location. Mapping
739     the frictional and random forces at the center of resistance back to
740     the center of mass also introduces an additional term in the torque
741     one obtains at the center of mass.
742    
743 tim 2746 Once the forces and torques have been obtained at the new time step,
744     the velocities can be advanced to the same time value.
745    
746 gezelter 3341 {\tt move B:}
747 tim 2746 \begin{align*}
748 tim 2999 {\bf v}\left(t + h \right) &\leftarrow {\bf v}\left(t + h / 2
749     \right)
750     + \frac{h}{2} \left( {\bf f}(t + h) / m \right), \\
751     %
752     {\bf j}\left(t + h \right) &\leftarrow {\bf j}\left(t + h / 2
753     \right)
754 gezelter 3341 + \frac{h}{2} {\bf \tau}^{~b}(t + h) .
755 tim 2746 \end{align*}
756    
757 gezelter 3310 \section{Validating the Method\label{sec:validating}}
758 gezelter 3302 In order to validate our Langevin integrator for arbitrarily-shaped
759 gezelter 3391 rigid bodies, we implemented the algorithm in OOPSE\cite{Meineke2005}
760     and compared the results of this algorithm with the known hydrodynamic
761     limiting behavior for a few model systems, and to microcanonical
762     molecular dynamics simulations for some more complicated bodies. Code
763     to estimate the hydrodynamic tensors using the bead and rough shell
764     models was also implemented in OOPSE, although a number of other
765     programs exist that can perform these
766     tasks.\cite{JoseGarciadelaTorre02012000,Garcia-de-la-Torre:2001wd,GarciadelaTorreJ2002}
767    
768     The model systems and their analytical behavior
769 gezelter 3302 (if known) are summarized below. Parameters for the primary particles
770     comprising our model systems are given in table \ref{tab:parameters},
771     and a sketch of the arrangement of these primary particles into the
772 gezelter 3305 model rigid bodies is shown in figure \ref{fig:models}. In table
773     \ref{tab:parameters}, $d$ and $l$ are the physical dimensions of
774     ellipsoidal (Gay-Berne) particles. For spherical particles, the value
775     of the Lennard-Jones $\sigma$ parameter is the particle diameter
776     ($d$). Gay-Berne ellipsoids have an energy scaling parameter,
777     $\epsilon^s$, which describes the well depth for two identical
778     ellipsoids in a {\it side-by-side} configuration. Additionally, a
779     well depth aspect ratio, $\epsilon^r = \epsilon^e / \epsilon^s$,
780     describes the ratio between the well depths in the {\it end-to-end}
781     and side-by-side configurations. For spheres, $\epsilon^r \equiv 1$.
782     Moments of inertia are also required to describe the motion of primary
783     particles with orientational degrees of freedom.
784 gezelter 3299
785 gezelter 3302 \begin{table*}
786     \begin{minipage}{\linewidth}
787     \begin{center}
788 gezelter 3391 \caption[Parameters for the primary particles in use by the rigid body
789     models in figure \ref{fig:models}.]{}
790 gezelter 3302 \begin{tabular}{lrcccccccc}
791     \hline
792     & & & & & & & \multicolumn{3}c{$\overleftrightarrow{\mathsf I}$ (amu \AA$^2$)} \\
793     & & $d$ (\AA) & $l$ (\AA) & $\epsilon^s$ (kcal/mol) & $\epsilon^r$ &
794     $m$ (amu) & $I_{xx}$ & $I_{yy}$ & $I_{zz}$ \\ \hline
795 gezelter 3308 Sphere & & 6.5 & $= d$ & 0.8 & 1 & 190 & 802.75 & 802.75 & 802.75 \\
796 gezelter 3302 Ellipsoid & & 4.6 & 13.8 & 0.8 & 0.2 & 200 & 2105 & 2105 & 421 \\
797 gezelter 3308 Dumbbell &(2 identical spheres) & 6.5 & $= d$ & 0.8 & 1 & 190 & 802.75 & 802.75 & 802.75 \\
798 gezelter 3302 Banana &(3 identical ellipsoids)& 4.2 & 11.2 & 0.8 & 0.2 & 240 & 10000 & 10000 & 0 \\
799     Lipid: & Spherical Head & 6.5 & $= d$ & 0.185 & 1 & 196 & & & \\
800     & Ellipsoidal Tail & 4.6 & 13.8 & 0.8 & 0.2 & 760 & 45000 & 45000 & 9000 \\
801     Solvent & & 4.7 & $= d$ & 0.8 & 1 & 72.06 & & & \\
802     \hline
803     \end{tabular}
804     \label{tab:parameters}
805     \end{center}
806     \end{minipage}
807     \end{table*}
808    
809 gezelter 3305 \begin{figure}
810     \centering
811     \includegraphics[width=3in]{sketch}
812 xsun 3390 \caption[A sketch of the model systems used in evaluating the behavior
813     of the rigid body Langevin integrator]{} \label{fig:models}
814 gezelter 3305 \end{figure}
815    
816 gezelter 3302 \subsection{Simulation Methodology}
817     We performed reference microcanonical simulations with explicit
818     solvents for each of the different model system. In each case there
819     was one solute model and 1929 solvent molecules present in the
820 gezelter 3352 simulation box. All simulations were equilibrated for 5 ns using a
821 gezelter 3302 constant-pressure and temperature integrator with target values of 300
822     K for the temperature and 1 atm for pressure. Following this stage,
823 gezelter 3352 further equilibration (5 ns) and sampling (10 ns) was done in a
824     microcanonical ensemble. Since the model bodies are typically quite
825     massive, we were able to use a time step of 25 fs.
826 gezelter 3310
827     The model systems studied used both Lennard-Jones spheres as well as
828     uniaxial Gay-Berne ellipoids. In its original form, the Gay-Berne
829     potential was a single site model for the interactions of rigid
830 gezelter 3352 ellipsoidal molecules.\cite{Gay1981} It can be thought of as a
831 gezelter 3310 modification of the Gaussian overlap model originally described by
832     Berne and Pechukas.\cite{Berne72} The potential is constructed in the
833     familiar form of the Lennard-Jones function using
834     orientation-dependent $\sigma$ and $\epsilon$ parameters,
835     \begin{equation*}
836 gezelter 3341 V_{ij}({{\bf \hat u}_i}, {{\bf \hat u}_j}, {{\bf \hat
837     r}_{ij}}) = 4\epsilon ({{\bf \hat u}_i}, {{\bf \hat u}_j},
838     {{\bf \hat r}_{ij}})\left[\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u
839 gezelter 3310 }_i},
840 gezelter 3341 {{\bf \hat u}_j}, {{\bf \hat r}_{ij}})+\sigma_0}\right)^{12}
841     -\left(\frac{\sigma_0}{r_{ij}-\sigma({{\bf \hat u}_i}, {{\bf \hat u}_j},
842     {{\bf \hat r}_{ij}})+\sigma_0}\right)^6\right]
843 gezelter 3310 \label{eq:gb}
844     \end{equation*}
845    
846     The range $(\sigma({\bf \hat{u}}_{i},{\bf \hat{u}}_{j},{\bf
847     \hat{r}}_{ij}))$, and strength $(\epsilon({\bf \hat{u}}_{i},{\bf
848     \hat{u}}_{j},{\bf \hat{r}}_{ij}))$ parameters
849     are dependent on the relative orientations of the two ellipsoids (${\bf
850     \hat{u}}_{i},{\bf \hat{u}}_{j}$) as well as the direction of the
851     inter-ellipsoid separation (${\bf \hat{r}}_{ij}$). The shape and
852     attractiveness of each ellipsoid is governed by a relatively small set
853     of parameters: $l$ and $d$ describe the length and width of each
854     uniaxial ellipsoid, while $\epsilon^s$, which describes the well depth
855     for two identical ellipsoids in a {\it side-by-side} configuration.
856     Additionally, a well depth aspect ratio, $\epsilon^r = \epsilon^e /
857     \epsilon^s$, describes the ratio between the well depths in the {\it
858     end-to-end} and side-by-side configurations. Details of the potential
859 gezelter 3352 are given elsewhere,\cite{Luckhurst90,Golubkov06,SunX._jp0762020} and an
860 gezelter 3310 excellent overview of the computational methods that can be used to
861     efficiently compute forces and torques for this potential can be found
862     in Ref. \citen{Golubkov06}
863    
864     For the interaction between nonequivalent uniaxial ellipsoids (or
865     between spheres and ellipsoids), the spheres are treated as ellipsoids
866     with an aspect ratio of 1 ($d = l$) and with an well depth ratio
867     ($\epsilon^r$) of 1 ($\epsilon^e = \epsilon^s$). The form of the
868     Gay-Berne potential we are using was generalized by Cleaver {\it et
869     al.} and is appropriate for dissimilar uniaxial
870     ellipsoids.\cite{Cleaver96}
871    
872     A switching function was applied to all potentials to smoothly turn
873     off the interactions between a range of $22$ and $25$ \AA. The
874     switching function was the standard (cubic) function,
875 gezelter 3302 \begin{equation}
876     s(r) =
877     \begin{cases}
878     1 & \text{if $r \le r_{\text{sw}}$},\\
879     \frac{(r_{\text{cut}} + 2r - 3r_{\text{sw}})(r_{\text{cut}} - r)^2}
880     {(r_{\text{cut}} - r_{\text{sw}})^3}
881     & \text{if $r_{\text{sw}} < r \le r_{\text{cut}}$}, \\
882     0 & \text{if $r > r_{\text{cut}}$.}
883     \end{cases}
884     \label{eq:switchingFunc}
885     \end{equation}
886 gezelter 3310
887 gezelter 3302 To measure shear viscosities from our microcanonical simulations, we
888     used the Einstein form of the pressure correlation function,\cite{hess:209}
889     \begin{equation}
890 gezelter 3310 \eta = \lim_{t->\infty} \frac{V}{2 k_B T} \frac{d}{dt} \left\langle \left(
891     \int_{t_0}^{t_0 + t} P_{xz}(t') dt' \right)^2 \right\rangle_{t_0}.
892 gezelter 3302 \label{eq:shear}
893     \end{equation}
894 gezelter 3352 which converges much more rapidly in molecular dynamics simulations
895     than the traditional Green-Kubo formula.
896 gezelter 3302
897     The Langevin dynamics for the different model systems were performed
898     at the same temperature as the average temperature of the
899     microcanonical simulations and with a solvent viscosity taken from
900 gezelter 3305 Eq. (\ref{eq:shear}) applied to these simulations. We used 1024
901     independent solute simulations to obtain statistics on our Langevin
902     integrator.
903 gezelter 3302
904     \subsection{Analysis}
905    
906     The quantities of interest when comparing the Langevin integrator to
907     analytic hydrodynamic equations and to molecular dynamics simulations
908     are typically translational diffusion constants and orientational
909     relaxation times. Translational diffusion constants for point
910     particles are computed easily from the long-time slope of the
911     mean-square displacement,
912     \begin{equation}
913 gezelter 3310 D = \lim_{t\rightarrow \infty} \frac{1}{6 t} \left\langle {|\left({\bf r}_{i}(t) - {\bf r}_{i}(0) \right)|}^2 \right\rangle,
914 gezelter 3302 \end{equation}
915     of the solute molecules. For models in which the translational
916 gezelter 3305 diffusion tensor (${\bf D}_{tt}$) has non-degenerate eigenvalues
917     (i.e. any non-spherically-symmetric rigid body), it is possible to
918     compute the diffusive behavior for motion parallel to each body-fixed
919     axis by projecting the displacement of the particle onto the
920     body-fixed reference frame at $t=0$. With an isotropic solvent, as we
921 gezelter 3352 have used in this study, there may be differences between the three
922     diffusion constants at short times, but these must converge to the
923     same value at longer times. Translational diffusion constants for the
924     different shaped models are shown in table \ref{tab:translation}.
925 gezelter 3302
926 gezelter 3305 In general, the three eigenvalues ($D_1, D_2, D_3$) of the rotational
927 gezelter 3302 diffusion tensor (${\bf D}_{rr}$) measure the diffusion of an object
928     {\it around} a particular body-fixed axis and {\it not} the diffusion
929     of a vector pointing along the axis. However, these eigenvalues can
930     be combined to find 5 characteristic rotational relaxation
931 gezelter 3305 times,\cite{PhysRev.119.53,Berne90}
932 gezelter 3302 \begin{eqnarray}
933 gezelter 3305 1 / \tau_1 & = & 6 D_r + 2 \Delta \\
934     1 / \tau_2 & = & 6 D_r - 2 \Delta \\
935     1 / \tau_3 & = & 3 (D_r + D_1) \\
936     1 / \tau_4 & = & 3 (D_r + D_2) \\
937     1 / \tau_5 & = & 3 (D_r + D_3)
938 gezelter 3302 \end{eqnarray}
939     where
940     \begin{equation}
941     D_r = \frac{1}{3} \left(D_1 + D_2 + D_3 \right)
942     \end{equation}
943     and
944     \begin{equation}
945 gezelter 3305 \Delta = \left( (D_1 - D_2)^2 + (D_3 - D_1 )(D_3 - D_2)\right)^{1/2}
946 gezelter 3302 \end{equation}
947 gezelter 3305 Each of these characteristic times can be used to predict the decay of
948     part of the rotational correlation function when $\ell = 2$,
949 gezelter 3302 \begin{equation}
950 gezelter 3305 C_2(t) = \frac{a^2}{N^2} e^{-t/\tau_1} + \frac{b^2}{N^2} e^{-t/\tau_2}.
951 gezelter 3302 \end{equation}
952 gezelter 3305 This is the same as the $F^2_{0,0}(t)$ correlation function that
953     appears in Ref. \citen{Berne90}. The amplitudes of the two decay
954     terms are expressed in terms of three dimensionless functions of the
955     eigenvalues: $a = \sqrt{3} (D_1 - D_2)$, $b = (2D_3 - D_1 - D_2 +
956     2\Delta)$, and $N = 2 \sqrt{\Delta b}$. Similar expressions can be
957     obtained for other angular momentum correlation
958     functions.\cite{PhysRev.119.53,Berne90} In all of the model systems we
959     studied, only one of the amplitudes of the two decay terms was
960     non-zero, so it was possible to derive a single relaxation time for
961     each of the hydrodynamic tensors. In many cases, these characteristic
962     times are averaged and reported in the literature as a single relaxation
963     time,\cite{Garcia-de-la-Torre:1997qy}
964 gezelter 3302 \begin{equation}
965 gezelter 3305 1 / \tau_0 = \frac{1}{5} \sum_{i=1}^5 \tau_{i}^{-1},
966     \end{equation}
967     although for the cases reported here, this averaging is not necessary
968     and only one of the five relaxation times is relevant.
969    
970     To test the Langevin integrator's behavior for rotational relaxation,
971     we have compared the analytical orientational relaxation times (if
972     they are known) with the general result from the diffusion tensor and
973     with the results from both the explicitly solvated molecular dynamics
974     and Langevin simulations. Relaxation times from simulations (both
975     microcanonical and Langevin), were computed using Legendre polynomial
976     correlation functions for a unit vector (${\bf u}$) fixed along one or
977     more of the body-fixed axes of the model.
978     \begin{equation}
979 gezelter 3310 C_{\ell}(t) = \left\langle P_{\ell}\left({\bf u}_{i}(t) \cdot {\bf
980     u}_{i}(0) \right) \right\rangle
981 gezelter 3302 \end{equation}
982     For simulations in the high-friction limit, orientational correlation
983     times can then be obtained from exponential fits of this function, or by
984     integrating,
985     \begin{equation}
986 gezelter 3305 \tau = \ell (\ell + 1) \int_0^{\infty} C_{\ell}(t) dt.
987 gezelter 3302 \end{equation}
988 gezelter 3305 In lower-friction solvents, the Legendre correlation functions often
989     exhibit non-exponential decay, and may not be characterized by a
990     single decay constant.
991 gezelter 3302
992     In table \ref{tab:rotation} we show the characteristic rotational
993     relaxation times (based on the diffusion tensor) for each of the model
994     systems compared with the values obtained via microcanonical and Langevin
995     simulations.
996    
997 gezelter 3305 \subsection{Spherical particles}
998 gezelter 3299 Our model system for spherical particles was a Lennard-Jones sphere of
999     diameter ($\sigma$) 6.5 \AA\ in a sea of smaller spheres ($\sigma$ =
1000     4.7 \AA). The well depth ($\epsilon$) for both particles was set to
1001 gezelter 3302 an arbitrary value of 0.8 kcal/mol.
1002 gezelter 3299
1003     The Stokes-Einstein behavior of large spherical particles in
1004 gezelter 3352 hydrodynamic flows with ``stick'' boundary conditions is well known,
1005     and is given in Eqs. (\ref{eq:StokesTranslation}) and
1006     (\ref{eq:StokesRotation}). Recently, Schmidt and Skinner have
1007     computed the behavior of spherical tag particles in molecular dynamics
1008     simulations, and have shown that {\it slip} boundary conditions
1009     ($\Xi_{tt} = 4 \pi \eta \rho$) may be more appropriate for
1010     molecule-sized spheres embedded in a sea of spherical solvent
1011     particles.\cite{Schmidt:2004fj,Schmidt:2003kx}
1012 gezelter 3299
1013     Our simulation results show similar behavior to the behavior observed
1014 gezelter 3302 by Schmidt and Skinner. The diffusion constant obtained from our
1015 gezelter 3299 microcanonical molecular dynamics simulations lies between the slip
1016     and stick boundary condition results obtained via Stokes-Einstein
1017     behavior. Since the Langevin integrator assumes Stokes-Einstein stick
1018     boundary conditions in calculating the drag and random forces for
1019     spherical particles, our Langevin routine obtains nearly quantitative
1020     agreement with the hydrodynamic results for spherical particles. One
1021     avenue for improvement of the method would be to compute elements of
1022     $\Xi_{tt}$ assuming behavior intermediate between the two boundary
1023 gezelter 3302 conditions.
1024 gezelter 3299
1025 gezelter 3310 In the explicit solvent simulations, both our solute and solvent
1026     particles were structureless, exerting no torques upon each other.
1027     Therefore, there are not rotational correlation times available for
1028     this model system.
1029 gezelter 3299
1030 gezelter 3310 \subsection{Ellipsoids}
1031     For uniaxial ellipsoids ($a > b = c$), Perrin's formulae for both
1032 gezelter 3299 translational and rotational diffusion of each of the body-fixed axes
1033     can be combined to give a single translational diffusion
1034 gezelter 3302 constant,\cite{Berne90}
1035 gezelter 3299 \begin{equation}
1036 gezelter 3352 D = \frac{k_B T}{6 \pi \eta a} G(s),
1037 gezelter 3299 \label{Dperrin}
1038     \end{equation}
1039     as well as a single rotational diffusion coefficient,
1040     \begin{equation}
1041 gezelter 3352 \Theta = \frac{3 k_B T}{16 \pi \eta a^3} \left\{ \frac{(2 - s^2)
1042     G(s) - 1}{1 - s^4} \right\}.
1043 gezelter 3299 \label{ThetaPerrin}
1044     \end{equation}
1045 gezelter 3352 In these expressions, $G(s)$ is a function of the axial ratio
1046     ($s = b / a$), which for prolate ellipsoids, is
1047 gezelter 3299 \begin{equation}
1048 gezelter 3352 G(s) = (1- s^2)^{-1/2} \ln \left\{ \frac{1 + (1 - s^2)^{1/2}}{s} \right\}
1049 gezelter 3299 \label{GPerrin}
1050     \end{equation}
1051     Again, there is some uncertainty about the correct boundary conditions
1052     to use for molecular-scale ellipsoids in a sea of similarly-sized
1053     solvent particles. Ravichandran and Bagchi found that {\it slip}
1054 gezelter 3302 boundary conditions most closely resembled the simulation
1055     results,\cite{Ravichandran:1999fk} in agreement with earlier work of
1056     Tang and Evans.\cite{TANG:1993lr}
1057 gezelter 3299
1058 gezelter 3305 Even though there are analytic resistance tensors for ellipsoids, we
1059     constructed a rough-shell model using 2135 beads (each with a diameter
1060 gezelter 3310 of 0.25 \AA) to approximate the shape of the model ellipsoid. We
1061 gezelter 3305 compared the Langevin dynamics from both the simple ellipsoidal
1062     resistance tensor and the rough shell approximation with
1063     microcanonical simulations and the predictions of Perrin. As in the
1064     case of our spherical model system, the Langevin integrator reproduces
1065     almost exactly the behavior of the Perrin formulae (which is
1066     unsurprising given that the Perrin formulae were used to derive the
1067 gezelter 3299 drag and random forces applied to the ellipsoid). We obtain
1068     translational diffusion constants and rotational correlation times
1069     that are within a few percent of the analytic values for both the
1070     exact treatment of the diffusion tensor as well as the rough-shell
1071     model for the ellipsoid.
1072    
1073 gezelter 3352 The translational diffusion constants from the microcanonical
1074     simulations agree well with the predictions of the Perrin model,
1075     although the {\it rotational} correlation times are a factor of 2
1076     shorter than expected from hydrodynamic theory. One explanation for
1077     the slower rotation of explicitly-solvated ellipsoids is the
1078     possibility that solute-solvent collisions happen at both ends of the
1079     solute whenever the principal axis of the ellipsoid is turning. In the
1080     upper portion of figure \ref{fig:explanation} we sketch a physical
1081     picture of this explanation. Since our Langevin integrator is
1082     providing nearly quantitative agreement with the Perrin model, it also
1083     predicts orientational diffusion for ellipsoids that exceed explicitly
1084     solvated correlation times by a factor of two.
1085 gezelter 3299
1086 gezelter 3310 \subsection{Rigid dumbbells}
1087 gezelter 3302 Perhaps the only {\it composite} rigid body for which analytic
1088     expressions for the hydrodynamic tensor are available is the
1089     two-sphere dumbbell model. This model consists of two non-overlapping
1090     spheres held by a rigid bond connecting their centers. There are
1091     competing expressions for the 6x6 resistance tensor for this
1092 gezelter 3341 model. The second order expression introduced by Rotne and
1093     Prager,\cite{Rotne1969} and improved by Garc\'{i}a de la Torre and
1094     Bloomfield,\cite{Torre1977} is given above as
1095 gezelter 3299 Eq. (\ref{introEquation:RPTensorNonOverlapped}). In our case, we use
1096     a model dumbbell in which the two spheres are identical Lennard-Jones
1097     particles ($\sigma$ = 6.5 \AA\ , $\epsilon$ = 0.8 kcal / mol) held at
1098 gezelter 3302 a distance of 6.532 \AA.
1099 gezelter 3299
1100     The theoretical values for the translational diffusion constant of the
1101     dumbbell are calculated from the work of Stimson and Jeffery, who
1102     studied the motion of this system in a flow parallel to the
1103 gezelter 3302 inter-sphere axis,\cite{Stimson:1926qy} and Davis, who studied the
1104     motion in a flow {\it perpendicular} to the inter-sphere
1105     axis.\cite{Davis:1969uq} We know of no analytic solutions for the {\it
1106     orientational} correlation times for this model system (other than
1107 gezelter 3341 those derived from the 6 x 6 tensor mentioned above).
1108 gezelter 3299
1109 gezelter 3305 The bead model for this model system comprises the two large spheres
1110     by themselves, while the rough shell approximation used 3368 separate
1111     beads (each with a diameter of 0.25 \AA) to approximate the shape of
1112     the rigid body. The hydrodynamics tensors computed from both the bead
1113     and rough shell models are remarkably similar. Computing the initial
1114     hydrodynamic tensor for a rough shell model can be quite expensive (in
1115     this case it requires inverting a 10104 x 10104 matrix), while the
1116     bead model is typically easy to compute (in this case requiring
1117 gezelter 3308 inversion of a 6 x 6 matrix).
1118 gezelter 3305
1119 gezelter 3308 \begin{figure}
1120     \centering
1121 gezelter 3391 \includegraphics[width=2in]{RoughShellReduced}
1122 xsun 3390 \caption[The model rigid bodies (left column) used to test this
1123     algorithm and their rough-shell approximations (right-column) that
1124     were used to compute the hydrodynamic tensors. The top two models
1125     (ellipsoid and dumbbell) have analytic solutions and were used to test
1126     the rough shell approximation. The lower two models (banana and
1127     lipid) were compared with explicitly-solvated molecular dynamics
1128     simulations]{}
1129 gezelter 3308 \label{fig:roughShell}
1130     \end{figure}
1131    
1132    
1133 gezelter 3305 Once the hydrodynamic tensor has been computed, there is no additional
1134     penalty for carrying out a Langevin simulation with either of the two
1135     different hydrodynamics models. Our naive expectation is that since
1136     the rigid body's surface is roughened under the various shell models,
1137     the diffusion constants will be even farther from the ``slip''
1138     boundary conditions than observed for the bead model (which uses a
1139     Stokes-Einstein model to arrive at the hydrodynamic tensor). For the
1140     dumbbell, this prediction is correct although all of the Langevin
1141     diffusion constants are within 6\% of the diffusion constant predicted
1142     from the fully solvated system.
1143    
1144 gezelter 3308 For rotational motion, Langevin integration (and the hydrodynamic tensor)
1145     yields rotational correlation times that are substantially shorter than those
1146     obtained from explicitly-solvated simulations. It is likely that this is due
1147     to the large size of the explicit solvent spheres, a feature that prevents
1148     the solvent from coming in contact with a substantial fraction of the surface
1149     area of the dumbbell. Therefore, the explicit solvent only provides drag
1150     over a substantially reduced surface area of this model, while the
1151     hydrodynamic theories utilize the entire surface area for estimating
1152     rotational diffusion. A sketch of the free volume available in the explicit
1153     solvent simulations is shown in figure \ref{fig:explanation}.
1154 gezelter 3305
1155 gezelter 3310
1156     \begin{figure}
1157     \centering
1158     \includegraphics[width=6in]{explanation}
1159     \caption[Explanations of the differences between orientational
1160     correlation times for explicitly-solvated models and hydrodynamic
1161 xsun 3390 predictions. For the ellipsoids (upper figures), rotation of the
1162 gezelter 3310 principal axis can involve correlated collisions at both sides of the
1163     solute. In the rigid dumbbell model (lower figures), the large size
1164     of the explicit solvent spheres prevents them from coming in contact
1165     with a substantial fraction of the surface area of the dumbbell.
1166     Therefore, the explicit solvent only provides drag over a
1167     substantially reduced surface area of this model, where the
1168     hydrodynamic theories utilize the entire surface area for estimating
1169 xsun 3390 rotational diffusion]{} \label{fig:explanation}
1170 gezelter 3310 \end{figure}
1171    
1172     \subsection{Composite banana-shaped molecules}
1173     Banana-shaped rigid bodies composed of three Gay-Berne ellipsoids have
1174     been used by Orlandi {\it et al.} to observe mesophases in
1175     coarse-grained models for bent-core liquid crystalline
1176     molecules.\cite{Orlandi:2006fk} We have used the same overlapping
1177 gezelter 3299 ellipsoids as a way to test the behavior of our algorithm for a
1178     structure of some interest to the materials science community,
1179     although since we are interested in capturing only the hydrodynamic
1180 gezelter 3310 behavior of this model, we have left out the dipolar interactions of
1181     the original Orlandi model.
1182 gezelter 3308
1183 gezelter 3341 A reference system composed of a single banana rigid body embedded in
1184     a sea of 1929 solvent particles was created and run under standard
1185     (microcanonical) molecular dynamics. The resulting viscosity of this
1186     mixture was 0.298 centipoise (as estimated using
1187     Eq. (\ref{eq:shear})). To calculate the hydrodynamic properties of
1188     the banana rigid body model, we created a rough shell (see
1189     Fig.~\ref{fig:roughShell}), in which the banana is represented as a
1190     ``shell'' made of 3321 identical beads (0.25 \AA\ in diameter)
1191     distributed on the surface. Applying the procedure described in
1192     Sec.~\ref{introEquation:ResistanceTensorArbitraryOrigin}, we
1193     identified the center of resistance, ${\bf r} = $(0 \AA, 0.81 \AA, 0
1194     \AA).
1195 gezelter 3299
1196 gezelter 3341 The Langevin rigid-body integrator (and the hydrodynamic diffusion
1197     tensor) are essentially quantitative for translational diffusion of
1198     this model. Orientational correlation times under the Langevin
1199     rigid-body integrator are within 11\% of the values obtained from
1200     explicit solvent, but these models also exhibit some solvent
1201     inaccessible surface area in the explicitly-solvated case.
1202 gezelter 3308
1203 gezelter 3310 \subsection{Composite sphero-ellipsoids}
1204 gezelter 3341
1205 gezelter 3299 Spherical heads perched on the ends of Gay-Berne ellipsoids have been
1206 xsun 3312 used recently as models for lipid
1207 gezelter 3367 molecules.\cite{SunX._jp0762020,Ayton01} A reference system composed
1208     of a single lipid rigid body embedded in a sea of 1929 solvent
1209     particles was created and run under a microcanonical ensemble. The
1210     resulting viscosity of this mixture was 0.349 centipoise (as estimated
1211     using Eq. (\ref{eq:shear})). To calculate the hydrodynamic properties
1212     of the lipid rigid body model, we created a rough shell (see
1213 xsun 3312 Fig.~\ref{fig:roughShell}), in which the lipid is represented as a
1214     ``shell'' made of 3550 identical beads (0.25 \AA\ in diameter)
1215 gezelter 3367 distributed on the surface. Applying the procedure described by
1216     Eq. (\ref{introEquation:ResistanceTensorArbitraryOrigin}), we
1217 xsun 3312 identified the center of resistance, ${\bf r} = $(0 \AA, 0 \AA, 1.46
1218     \AA).
1219 gezelter 3310
1220 gezelter 3341 The translational diffusion constants and rotational correlation times
1221     obtained using the Langevin rigid-body integrator (and the
1222     hydrodynamic tensor) are essentially quantitative when compared with
1223     the explicit solvent simulations for this model system.
1224 gezelter 3315
1225 gezelter 3352 \subsection{Summary of comparisons with explicit solvent simulations}
1226     The Langevin rigid-body integrator we have developed is a reliable way
1227     to replace explicit solvent simulations in cases where the detailed
1228     solute-solvent interactions do not greatly impact the behavior of the
1229     solute. As such, it has the potential to greatly increase the length
1230     and time scales of coarse grained simulations of large solvated
1231     molecules. In cases where the dielectric screening of the solvent, or
1232     specific solute-solvent interactions become important for structural
1233     or dynamic features of the solute molecule, this integrator may be
1234     less useful. However, for the kinds of coarse-grained modeling that
1235     have become popular in recent years (ellipsoidal side chains, rigid
1236     bodies, and molecular-scale models), this integrator may prove itself
1237     to be quite valuable.
1238 xsun 3298
1239 gezelter 3315 \begin{figure}
1240     \centering
1241     \includegraphics[width=\linewidth]{graph}
1242 xsun 3390 \caption[The mean-squared displacements ($\langle r^2(t) \rangle$) and
1243 gezelter 3315 orientational correlation functions ($C_2(t)$) for each of the model
1244     rigid bodies studied. The circles are the results for microcanonical
1245     simulations with explicit solvent molecules, while the other data sets
1246     are results for Langevin dynamics using the different hydrodynamic
1247     tensor approximations. The Perrin model for the ellipsoids is
1248     considered the ``exact'' hydrodynamic behavior (this can also be said
1249     for the translational motion of the dumbbell operating under the bead
1250 xsun 3390 model). In most cases, the various hydrodynamics models reproduce each
1251     other quantitatively]{}
1252 gezelter 3315 \label{fig:results}
1253     \end{figure}
1254    
1255 xsun 3298 \begin{table*}
1256     \begin{minipage}{\linewidth}
1257     \begin{center}
1258 gezelter 3391 \caption[Translational diffusion constants (D) for the model systems
1259 gezelter 3305 calculated using microcanonical simulations (with explicit solvent),
1260     theoretical predictions, and Langevin simulations (with implicit solvent).
1261 gezelter 3352 Analytical solutions for the exactly-solved hydrodynamics models are obtained
1262     from: Stokes' law (sphere), and Refs. \citen{Perrin1934} and \citen{Perrin1936}
1263 gezelter 3305 (ellipsoid), \citen{Stimson:1926qy} and \citen{Davis:1969uq}
1264     (dumbbell). The other model systems have no known analytic solution.
1265 gezelter 3352 All diffusion constants are reported in units of $10^{-3}$ cm$^2$ / ps (=
1266 gezelter 3391 $10^{-4}$ \AA$^2$ / fs).]{}
1267 gezelter 3305 \begin{tabular}{lccccccc}
1268 xsun 3298 \hline
1269 gezelter 3305 & \multicolumn{2}c{microcanonical simulation} & & \multicolumn{3}c{Theoretical} & Langevin \\
1270     \cline{2-3} \cline{5-7}
1271     model & $\eta$ (centipoise) & D & & Analytical & method & Hydrodynamics & simulation \\
1272 xsun 3298 \hline
1273 xsun 3312 sphere & 0.279 & 3.06 & & 2.42 & exact & 2.42 & 2.33 \\
1274 gezelter 3305 ellipsoid & 0.255 & 2.44 & & 2.34 & exact & 2.34 & 2.37 \\
1275     & 0.255 & 2.44 & & 2.34 & rough shell & 2.36 & 2.28 \\
1276 xsun 3312 dumbbell & 0.308 & 2.06 & & 1.64 & bead model & 1.65 & 1.62 \\
1277     & 0.308 & 2.06 & & 1.64 & rough shell & 1.59 & 1.62 \\
1278 gezelter 3305 banana & 0.298 & 1.53 & & & rough shell & 1.56 & 1.55 \\
1279 gezelter 3341 lipid & 0.349 & 1.41 & & & rough shell & 1.33 & 1.32 \\
1280 xsun 3298 \end{tabular}
1281     \label{tab:translation}
1282     \end{center}
1283     \end{minipage}
1284     \end{table*}
1285    
1286     \begin{table*}
1287     \begin{minipage}{\linewidth}
1288     \begin{center}
1289 gezelter 3391 \caption[Orientational relaxation times ($\tau$) for the model systems using
1290 gezelter 3305 microcanonical simulation (with explicit solvent), theoretical
1291     predictions, and Langevin simulations (with implicit solvent). All
1292     relaxation times are for the rotational correlation function with
1293     $\ell = 2$ and are reported in units of ps. The ellipsoidal model has
1294     an exact solution for the orientational correlation time due to
1295 gezelter 3391 Perrin, but the other model systems have no known analytic solution.]{}
1296 gezelter 3305 \begin{tabular}{lccccccc}
1297 xsun 3298 \hline
1298 gezelter 3305 & \multicolumn{2}c{microcanonical simulation} & & \multicolumn{3}c{Theoretical} & Langevin \\
1299     \cline{2-3} \cline{5-7}
1300     model & $\eta$ (centipoise) & $\tau$ & & Perrin & method & Hydrodynamic & simulation \\
1301 xsun 3298 \hline
1302 xsun 3312 sphere & 0.279 & & & 9.69 & exact & 9.69 & 9.64 \\
1303 gezelter 3305 ellipsoid & 0.255 & 46.7 & & 22.0 & exact & 22.0 & 22.2 \\
1304     & 0.255 & 46.7 & & 22.0 & rough shell & 22.6 & 22.2 \\
1305 xsun 3312 dumbbell & 0.308 & 14.1 & & & bead model & 50.0 & 50.1 \\
1306     & 0.308 & 14.1 & & & rough shell & 41.5 & 41.3 \\
1307 gezelter 3305 banana & 0.298 & 63.8 & & & rough shell & 70.9 & 70.9 \\
1308     lipid & 0.349 & 78.0 & & & rough shell & 76.9 & 77.9 \\
1309     \hline
1310 xsun 3298 \end{tabular}
1311     \label{tab:rotation}
1312     \end{center}
1313     \end{minipage}
1314     \end{table*}
1315    
1316 gezelter 3310 \section{Application: A rigid-body lipid bilayer}
1317    
1318 gezelter 3352 To test the accuracy and efficiency of the new integrator, we applied
1319     it to study the formation of corrugated structures emerging from
1320     simulations of the coarse grained lipid molecular models presented
1321     above. The initial configuration is taken from earlier molecular
1322     dynamics studies on lipid bilayers which had used spherical
1323     (Lennard-Jones) solvent particles and moderate (480 solvated lipid
1324     molecules) system sizes.\cite{SunX._jp0762020} the solvent molecules
1325     were excluded from the system and the box was replicated three times
1326     in the x- and y- axes (giving a single simulation cell containing 4320
1327     lipids). The experimental value for the viscosity of water at 20C
1328     ($\eta = 1.00$ cp) was used with the Langevin integrator to mimic the
1329     hydrodynamic effects of the solvent. The absence of explicit solvent
1330     molecules and the stability of the integrator allowed us to take
1331     timesteps of 50 fs. A simulation run time of 30 ns was sampled to
1332     calculate structural properties. Fig. \ref{fig:bilayer} shows the
1333     configuration of the system after 30 ns. Structural properties of the
1334     bilayer (e.g. the head and body $P_2$ order parameters) are nearly
1335     identical to those obtained via solvated molecular dynamics. The
1336     ripple structure remained stable during the entire trajectory.
1337     Compared with using explicit bead-model solvent molecules, the 30 ns
1338     trajectory for 4320 lipids with the Langevin integrator is now {\it
1339     faster} on the same hardware than the same length trajectory was for
1340     the 480-lipid system previously studied.
1341 xsun 3298
1342 gezelter 3310 \begin{figure}
1343     \centering
1344     \includegraphics[width=\linewidth]{bilayer}
1345 xsun 3390 \caption[A snapshot of a bilayer composed of 4320 rigid-body models
1346     for lipid molecules evolving using the Langevin integrator described
1347     in this work]{} \label{fig:bilayer}
1348 gezelter 3310 \end{figure}
1349    
1350 tim 2746 \section{Conclusions}
1351    
1352 gezelter 3352 We have presented a new algorithm for carrying out Langevin dynamics
1353     simulations on complex rigid bodies by incorporating the hydrodynamic
1354 gezelter 3367 resistance tensors for arbitrary shapes into a stable and efficient
1355 gezelter 3352 integration scheme. The integrator gives quantitative agreement with
1356     both analytic and approximate hydrodynamic theories, and works
1357     reasonably well at reproducing the solute dynamical properties
1358     (diffusion constants, and orientational relaxation times) from
1359     explicitly-solvated simulations. For the cases where there are
1360     discrepancies between our Langevin integrator and the explicit solvent
1361     simulations, two features of molecular simulations help explain the
1362     differences.
1363 tim 2999
1364 gezelter 3352 First, the use of ``stick'' boundary conditions for molecular-sized
1365     solutes in a sea of similarly-sized solvent particles may be
1366     problematic. We are certainly not the first group to notice this
1367     difference between hydrodynamic theories and explicitly-solvated
1368     molecular
1369     simulations.\cite{Schmidt:2004fj,Schmidt:2003kx,Ravichandran:1999fk,TANG:1993lr}
1370     The problem becomes particularly noticable in both the translational
1371     diffusion of the spherical particles and the rotational diffusion of
1372     the ellipsoids. In both of these cases it is clear that the
1373     approximations that go into hydrodynamics are the source of the error,
1374     and not the integrator itself.
1375 tim 2999
1376 gezelter 3352 Second, in the case of structures which have substantial surface area
1377     that is inaccessible to solvent particles, the hydrodynamic theories
1378     (and the Langevin integrator) may overestimate the effects of solvent
1379     friction because they overestimate the exposed surface area of the
1380     rigid body. This is particularly noticable in the rotational
1381     diffusion of the dumbbell model. We believe that given a solvent of
1382     known radius, it may be possible to modify the rough shell approach to
1383     place beads on solvent-accessible surface, instead of on the geometric
1384     surface defined by the van der Waals radii of the components of the
1385     rigid body. Further work to confirm the behavior of this new
1386     approximation is ongoing.
1387    
1388 tim 2746 \section{Acknowledgments}
1389     Support for this project was provided by the National Science
1390     Foundation under grant CHE-0134881. T.L. also acknowledges the
1391 gezelter 3352 financial support from Center of Applied Mathematics at University of
1392     Notre Dame.
1393    
1394 tim 2746 \newpage
1395    
1396 gezelter 3352 \bibliographystyle{jcp2}
1397 tim 2746 \bibliography{langevin}
1398 gezelter 3391 \end{doublespace}
1399 tim 2746 \end{document}