ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/langevin/langevin.tex
(Generate patch)

Comparing trunk/langevin/langevin.tex (file contents):
Revision 3339 by xsun, Thu Jan 31 17:07:23 2008 UTC vs.
Revision 3340 by gezelter, Thu Jan 31 22:13:55 2008 UTC

# Line 469 | Line 469 | evolution of the system in Newtownian mechanics is typ
469   Eq.~\ref{LDGeneralizedForm} consists of three generalized forces: a
470   system force $\mathbf{F}_{s}$, a frictional or dissipative force
471   $\mathbf{F}_{f}$ and stochastic force $\mathbf{F}_{r}$. While the
472 < evolution of the system in Newtownian mechanics is typically done in the
473 < lab-fixed frame, it is convenient to handle the rotation of rigid
474 < bodies in the body-fixed frame. Thus the friction and random forces are
475 < calculated in body-fixed frame and converted back to lab-fixed frame
476 < using the rigid body's rotation matrix ($Q$):
472 > evolution of the system in Newtonian mechanics is typically done in
473 > the lab-fixed frame, it is convenient to handle the dynamics of rigid
474 > bodies in the body-fixed frame. Thus the friction and random forces
475 > are calculated in body-fixed frame and may be converted back to
476 > lab-fixed frame using the rigid body's rotation matrix ($Q$):
477   \begin{equation}
478 < \mathbf{F}_{f}(t) = \left( \begin{array}{l}
479 < Q^{T} \mathbf{f}_{f}^b (t) \\
480 < Q^{T} \tau_{f}^b (t) \\
481 < \end{array} \right), \\
482 < \mathbf{F}_{r}(t) = \left( \begin{array}{l}
483 < Q^{T} \mathbf{f}_{r}^b (t) \\
484 < Q^{T} \tau_{r}^b (t) \\
485 < \end{array} \right).
478 > \mathbf{F}_{f,r} =
479 > \left( \begin{array}{c}
480 > \mathbf{f}_{f,r} \\
481 > \mathbf{\tau}_{f,r}
482 > \end{array} \right)
483 > =
484 > \left( \begin{array}{c}
485 > Q^{T} \mathbf{f}^{b}_{f,r} \\
486 > Q^{T} \mathbf{\tau}^{b}_{f,r}
487 > \end{array} \right)
488   \end{equation}
489 < Here, the body-fixed friction force $\mathbf{F}_{f}^b$ is proportional to
490 < the body-fixed velocity at the center of resistance $\mathbf{v}_{R}^b$ and
491 < angular velocity $\mathbf{\omega}$
489 > The body-fixed friction force, $\mathbf{F}_{f}^b$, is proportional to
490 > the velocity at the center of resistance $\mathbf{v}_{R}^b$ (in the
491 > body-fixed frame) and the angular velocity $\mathbf{\omega}$
492   \begin{equation}
493   \mathbf{F}_{f}^b (t) = \left( \begin{array}{l}
494   \mathbf{f}_{f}^b (t) \\
# Line 499 | Line 501 | while the random force $\mathbf{F}_{r}^l$ is a Gaussia
501   \mathbf{\omega} (t) \\
502   \end{array} \right),
503   \end{equation}
504 < while the random force $\mathbf{F}_{r}^l$ is a Gaussian stochastic variable
505 < with zero mean and variance
504 > while the random force, $\mathbf{F}_{r}$, is a Gaussian stochastic
505 > variable with zero mean and variance
506   \begin{equation}
507 < \left\langle {\mathbf{F}_{r}^l (t) (\mathbf{F}_{r}^l (t'))^T } \right\rangle  =
507 > \left\langle {\mathbf{F}_{r}(t) (\mathbf{F}_{r}(t'))^T } \right\rangle  =
508   \left\langle {\mathbf{F}_{r}^b (t) (\mathbf{F}_{r}^b (t'))^T } \right\rangle  =
509   2 k_B T \Xi_R \delta(t - t'). \label{randomForce}
510   \end{equation}
511 < Once the $6\times6$ resistance tensor at the center of resistance
512 < ($\Xi_R$) is known, obtaining a stochastic vector that has the
513 < properties in Eq. (\ref{eq:randomForce}) can be done efficiently by
514 < carrying out a one-time Cholesky decomposition to obtain the square
515 < root matrix of $\Xi_R$.\cite{SchlickBook} Each time a random force
516 < vector is needed, a gaussian random vector is generated and then the
517 < square root matrix is multiplied onto this vector.
511 > $\Xi_R$ is the $6\times6$ resistance tensor at the center of
512 > resistance.  Once this tensor is known for a given rigid body,
513 > obtaining a stochastic vector that has the properties in
514 > Eq. (\ref{eq:randomForce}) can be done efficiently by carrying out a
515 > one-time Cholesky decomposition to obtain the square root matrix of
516 > the resistance tensor $\Xi_R = \mathbf{S} \mathbf{S}^{T}$, where
517 > $\mathbf{S}$ is a lower triangular matrix.\cite{SchlickBook} A vector
518 > with the statistics required for the random force can then be obtained
519 > by multiplying $\mathbf{S}$ onto a 6-vector $Z$ which has elements
520 > chosen from a Gaussian distribution, such that:
521 > \begin{equation}
522 > \langle Z_i \rangle = 0, \hspace{1in} \langle Z_i \cdot Z_j \rangle = \frac{2 k_B
523 > T}{\delta t} \delta_{ij}.
524 > \end{equation}
525 > The random force, $F_{r}^{b} = \mathbf{S} Z$, can be shown to have the
526 > correct ohmic
527  
528 +
529 + Each
530 + time a random force vector is needed, a gaussian random vector is
531 + generated and then the square root matrix is multiplied onto this
532 + vector.
533 +
534   The equation of motion for $\mathbf{v}$ can be written as
535   \begin{equation}
536   m \dot{\mathbf{v}} (t) =  \mathbf{f}_{s}^l (t) + \mathbf{f}_{f}^l (t) +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines