ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/langevin/langevin.tex
(Generate patch)

Comparing trunk/langevin/langevin.tex (file contents):
Revision 3338 by xsun, Thu Jan 31 15:06:07 2008 UTC vs.
Revision 3340 by gezelter, Thu Jan 31 22:13:55 2008 UTC

# Line 376 | Line 376 | arbitrary origin $O$ can be written as
376   bead $i$ and origin $O$, the elements of resistance tensor at
377   arbitrary origin $O$ can be written as
378   \begin{eqnarray}
379 + \label{introEquation:ResistanceTensorArbitraryOrigin}
380   \Xi _{}^{tt}  & = & \sum\limits_i {\sum\limits_j {C_{ij} } } \notag , \\
381   \Xi _{}^{tr}  & = & \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
382   \Xi _{}^{rr}  & = &  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } }
383   U_j  + 6 \eta V {\bf I}. \notag
383 \label{introEquation:ResistanceTensorArbitraryOrigin}
384   \end{eqnarray}
385   The final term in the expression for $\Xi^{rr}$ is correction that
386   accounts for errors in the rotational motion of certain kinds of bead
# Line 469 | Line 469 | evolution of the system in Newtownian mechanics is typ
469   Eq.~\ref{LDGeneralizedForm} consists of three generalized forces: a
470   system force $\mathbf{F}_{s}$, a frictional or dissipative force
471   $\mathbf{F}_{f}$ and stochastic force $\mathbf{F}_{r}$. While the
472 < evolution of the system in Newtownian mechanics is typically done in the
473 < lab-fixed frame, it is convenient to handle the rotation of rigid
474 < bodies in the body-fixed frame. Thus the friction and random forces are
475 < calculated in body-fixed frame and converted back to lab-fixed frame
476 < using the rigid body's rotation matrix ($Q$):
472 > evolution of the system in Newtonian mechanics is typically done in
473 > the lab-fixed frame, it is convenient to handle the dynamics of rigid
474 > bodies in the body-fixed frame. Thus the friction and random forces
475 > are calculated in body-fixed frame and may be converted back to
476 > lab-fixed frame using the rigid body's rotation matrix ($Q$):
477   \begin{equation}
478 < \begin{array}{l}
479 < \mathbf{F}_{f}(t) = Q^{T} \mathbf{F}_{f}^b (t), \\
480 < \mathbf{F}_{r}(t) = Q^{T} \mathbf{F}_{r}^b (t). \\
481 < \end{array}
478 > \mathbf{F}_{f,r} =
479 > \left( \begin{array}{c}
480 > \mathbf{f}_{f,r} \\
481 > \mathbf{\tau}_{f,r}
482 > \end{array} \right)
483 > =
484 > \left( \begin{array}{c}
485 > Q^{T} \mathbf{f}^{b}_{f,r} \\
486 > Q^{T} \mathbf{\tau}^{b}_{f,r}
487 > \end{array} \right)
488   \end{equation}
489 < Here, the body-fixed friction force $\mathbf{F}_{f}^b$ is proportional to
490 < the body-fixed velocity at the center of resistance $\mathbf{v}_{R}^b$ and
491 < angular velocity $\mathbf{\omega}$
489 > The body-fixed friction force, $\mathbf{F}_{f}^b$, is proportional to
490 > the velocity at the center of resistance $\mathbf{v}_{R}^b$ (in the
491 > body-fixed frame) and the angular velocity $\mathbf{\omega}$
492   \begin{equation}
493   \mathbf{F}_{f}^b (t) = \left( \begin{array}{l}
494   \mathbf{f}_{f}^b (t) \\
# Line 495 | Line 501 | while the random force $\mathbf{F}_{r}^l$ is a Gaussia
501   \mathbf{\omega} (t) \\
502   \end{array} \right),
503   \end{equation}
504 < while the random force $\mathbf{F}_{r}^l$ is a Gaussian stochastic variable
505 < with zero mean and variance
504 > while the random force, $\mathbf{F}_{r}$, is a Gaussian stochastic
505 > variable with zero mean and variance
506   \begin{equation}
507 < \left\langle {\mathbf{F}_{r}^l (t) (\mathbf{F}_{r}^l (t'))^T } \right\rangle  =
507 > \left\langle {\mathbf{F}_{r}(t) (\mathbf{F}_{r}(t'))^T } \right\rangle  =
508   \left\langle {\mathbf{F}_{r}^b (t) (\mathbf{F}_{r}^b (t'))^T } \right\rangle  =
509   2 k_B T \Xi_R \delta(t - t'). \label{randomForce}
510   \end{equation}
511 < Once the $6\times6$ resistance tensor at the center of resistance
512 < ($\Xi_R$) is known, obtaining a stochastic vector that has the
513 < properties in Eq. (\ref{eq:randomForce}) can be done efficiently by
514 < carrying out a one-time Cholesky decomposition to obtain the square
515 < root matrix of $\Xi_R$.\cite{SchlickBook} Each time a random force
516 < vector is needed, a gaussian random vector is generated and then the
517 < square root matrix is multiplied onto this vector.
511 > $\Xi_R$ is the $6\times6$ resistance tensor at the center of
512 > resistance.  Once this tensor is known for a given rigid body,
513 > obtaining a stochastic vector that has the properties in
514 > Eq. (\ref{eq:randomForce}) can be done efficiently by carrying out a
515 > one-time Cholesky decomposition to obtain the square root matrix of
516 > the resistance tensor $\Xi_R = \mathbf{S} \mathbf{S}^{T}$, where
517 > $\mathbf{S}$ is a lower triangular matrix.\cite{SchlickBook} A vector
518 > with the statistics required for the random force can then be obtained
519 > by multiplying $\mathbf{S}$ onto a 6-vector $Z$ which has elements
520 > chosen from a Gaussian distribution, such that:
521 > \begin{equation}
522 > \langle Z_i \rangle = 0, \hspace{1in} \langle Z_i \cdot Z_j \rangle = \frac{2 k_B
523 > T}{\delta t} \delta_{ij}.
524 > \end{equation}
525 > The random force, $F_{r}^{b} = \mathbf{S} Z$, can be shown to have the
526 > correct ohmic
527  
528 +
529 + Each
530 + time a random force vector is needed, a gaussian random vector is
531 + generated and then the square root matrix is multiplied onto this
532 + vector.
533 +
534   The equation of motion for $\mathbf{v}$ can be written as
535   \begin{equation}
536 < m \dot{\mathbf{v}} (t) =  \mathbf{f}_{s} (t) + \mathbf{f}_{f}^l (t) +
536 > m \dot{\mathbf{v}} (t) =  \mathbf{f}_{s}^l (t) + \mathbf{f}_{f}^l (t) +
537   \mathbf{f}_{r}^l (t)
538   \end{equation}
539   Since the frictional force is applied at the center of resistance
# Line 521 | Line 542 | given by
542   frictional torque at the center of mass, $\tau_{f}^b (t)$, is
543   given by
544   \begin{equation}
545 < \tau_{f}^b \leftarrow \tau_{f}^b + \mathbf{r}_{MR} \times \mathbf{f}_{r}^b
545 > \tau_{f}^b \leftarrow \tau_{f}^b + \mathbf{r}_{MR} \times \mathbf{f}_{f}^b
546   \end{equation}
547   where $r_{MR}$ is the vector from the center of mass to the center
548   of the resistance. Instead of integrating the angular velocity in
549   lab-fixed frame, we consider the equation of angular momentum in
550   body-fixed frame
551   \begin{equation}
552 < \dot j(t) = \tau_{s} (t) + \tau_{f}^b (t) + \tau_{r}^b(t)
552 > \dot j(t) = \tau_{s}^b (t) + \tau_{f}^b (t) + \tau_{r}^b(t)
553   \end{equation}
554   Embedding the friction terms into force and torque, one can integrate
555   the Langevin equations of motion for rigid body of arbitrary shape in

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines