ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/langevin/langevin.tex
(Generate patch)

Comparing trunk/langevin/langevin.tex (file contents):
Revision 2999 by tim, Mon Sep 4 15:05:46 2006 UTC vs.
Revision 3298 by xsun, Wed Jan 2 21:06:31 2008 UTC

# Line 4 | Line 4
4   \usepackage{endfloat}
5   \usepackage{amsmath,bm}
6   \usepackage{amssymb}
7 \usepackage{epsf}
7   \usepackage{times}
8   \usepackage{mathptmx}
9   \usepackage{setspace}
# Line 22 | Line 21
21  
22   \begin{document}
23  
24 < \title{Langevin Dynamics for Rigid Body of Arbitrary Shape }
24 > \title{An algorithm for performing Langevin dynamics on rigid bodies of arbitrary shape }
25  
26   \author{Teng Lin, Xiuquan Sun and J. Daniel Gezelter\footnote{Corresponding author. \ Electronic mail:
27   gezelter@nd.edu} \\
# Line 632 | Line 631 | loses the temperature control ability.
631  
632   \begin{figure}
633   \centering
634 < \includegraphics[width=\linewidth]{temperature.eps}
634 > \includegraphics[width=\linewidth]{temperature.pdf}
635   \caption[Plot of Temperature Fluctuation Versus Time]{Plot of
636   temperature fluctuation versus time.} \label{langevin:temperature}
637   \end{figure}
638 +
639 + \subsection{Langevin Dynamics simulation {\it vs} NVE simulations}
640  
641 + To validate our langevin dynamics simulation. We performed several NVE
642 + simulations with explicit solvents for different shaped
643 + molecules. There are one solute molecule and 1929 solvent molecules in
644 + NVE simulation. The parameters are shown in table
645 + \ref{tab:parameters}. The force field between spheres is standard
646 + Lennard-Jones, and ellipsoids interact with other ellipsoids and
647 + spheres with generalized Gay-Berne potential. All simulations are
648 + carried out at 300 K and 1 Atm. The time step is 25 ns, and a
649 + switching function was applied to all potentials to smoothly turn off
650 + the interactions between a range of $22$ and $25$ \AA.  The switching
651 + function was the standard (cubic) function,
652 + \begin{equation}
653 + s(r) =
654 +        \begin{cases}
655 +        1 & \text{if $r \le r_{\text{sw}}$},\\
656 +        \frac{(r_{\text{cut}} + 2r - 3r_{\text{sw}})(r_{\text{cut}} - r)^2}
657 +        {(r_{\text{cut}} - r_{\text{sw}})^3}
658 +        & \text{if $r_{\text{sw}} < r \le r_{\text{cut}}$}, \\
659 +        0 & \text{if $r > r_{\text{cut}}$.}
660 +        \end{cases}
661 + \label{eq:switchingFunc}
662 + \end{equation}
663 + We have computed translational diffusion constants for lipid molecules
664 + from the mean-square displacement,
665 + \begin{equation}
666 + D = \lim_{t\rightarrow \infty} \frac{1}{6 t} \langle {|\left({\bf r}_{i}(t) - {\bf r}_{i}(0) \right)|}^2 \rangle,
667 + \end{equation}
668 + of the solute molecules. Translational diffusion constants for the
669 + different shaped molecules are shown in table
670 + \ref{tab:translation}.  We have also computed orientational correlation
671 + times for different shaped molecules from fits of the second-order
672 + Legendre polynomial correlation function,
673 + \begin{equation}
674 + C_{\ell}(t)  =  \langle P_{\ell}\left({\bf \mu}_{i}(t) \cdot {\bf
675 + \mu}_{i}(0) \right)
676 + \end{equation}
677 + the results are shown in table \ref{tab:rotation}. We used einstein
678 + format of the pressure correlation function,
679 + \begin{equation}
680 + C_{\ell}(t)  =  \langle P_{\ell}\left({\bf \mu}_{i}(t) \cdot {\bf
681 + \mu}_{i}(0) \right)
682 + \end{equation}
683 + to estimate the viscosity of the systems from NVE simulations. The
684 + viscosity can also be calculated by Green-Kubo pressure correlaton
685 + function,
686 + \begin{equation}
687 + C_{\ell}(t)  =  \langle P_{\ell}\left({\bf \mu}_{i}(t) \cdot {\bf
688 + \mu}_{i}(0) \right)
689 + \end{equation}
690 + However, this method converges slowly, and the statistics are not good
691 + enough to give us a very accurate value. The langevin dynamics
692 + simulations for different shaped molecules are performed at the same
693 + conditions as the NVE simulations with viscosity estimated from NVE
694 + simulations. To get better statistics, 1024 non-interacting solute
695 + molecules are put into one simulation box for each langevin
696 + simulation, this is equal to 1024 simulations for single solute
697 + systems. The diffusion constants and rotation relaxation times for
698 + different shaped molecules are shown in table \ref{tab:translation}
699 + and \ref{tab:rotation} to compare to the results calculated from NVE
700 + simulations. The theoretical values for sphere is calculated from the
701 + Stokes-Einstein law, the theoretical values for ellipsoid is
702 + calculated from Perrin's fomula, the theoretical values for dumbbell
703 + is calculated from StinXX and Davis theory. The exact method is
704 + applied to the langevin dynamics simulations for sphere and ellipsoid,
705 + the bead model is applied to the simulation for dumbbell molecule, and
706 + the rough shell model is applied to ellipsoid, dumbbell, banana and
707 + lipid molecules. The results from all the langevin dynamics
708 + simulations, including exact, bead model and rough shell, match the
709 + theoretical values perfectly for all different shaped molecules. This
710 + indicates that our simulation package for langevin dynamics is working
711 + well. The approxiate methods ( bead model and rough shell model) are
712 + accurate enough for the current simulations. The goal of the langevin
713 + dynamics theory is to replace the explicit solvents by the friction
714 + forces. We compared the dynamic properties of different shaped
715 + molecules in langevin dynamics simulations with that in NVE
716 + simulations. The results are reasonable close. Overall, the
717 + translational diffusion constants calculated from langevin dynamics
718 + simulations are very close to the values from the NVE simulation. For
719 + sphere and lipid molecules, the diffusion constants are a little bit
720 + off from the NVE simulation results. One possible reason is that the
721 + calculation of the viscosity is very difficult to be accurate. Another
722 + possible reason is that although we save very frequently during the
723 + NVE simulations and run pretty long time simulations, there is only
724 + one solute molecule in the system which makes the calculation for the
725 + diffusion constant difficult. The sphere molecule behaves as a free
726 + rotor in the solvent, so there is no rotation relaxation time
727 + calculated from NVE simulations. The rotation relaxation time is not
728 + very close to the NVE simulations results. The banana and lipid
729 + molecules match the NVE simulations results pretty well. The mismatch
730 + between langevin dynamics and NVE simulation for ellipsoid is possibly
731 + caused by the slip boundary condition. For dumbbell, the mismatch is
732 + caused by the size of the solvent molecule is pretty large compared to
733 + dumbbell molecule in NVE simulations.
734 +
735 + According to our simulations, the langevin dynamics is a reliable
736 + theory to apply to replace the explicit solvents, especially for the
737 + translation properties. For large molecules, the rotation properties
738 + are also mimiced reasonablly well.
739 +
740 + \begin{table*}
741 + \begin{minipage}{\linewidth}
742 + \begin{center}
743 + \caption{}
744 + \begin{tabular}{llccccccc}
745 + \hline
746 +  & & Sphere & Ellipsoid & Dumbbell(2 spheres) & Banana(3 ellpsoids) &
747 + Lipid(head) & lipid(tail) & Solvent \\
748 + \hline
749 + $d$ (\AA) & & 6.5 & 4.6  & 6.5 &  4.2 & 6.5 & 4.6 & 4.7 \\
750 + $l$ (\AA) & & $= d$ & 13.8 & $=d$ & 11.2 & $=d$ & 13.8 & 4.7 \\
751 + $\epsilon^s$ (kcal/mol) & & 0.8 & 0.8 & 0.8 & 0.8 & 0.185 & 0.8 & 0.8 \\
752 + $\epsilon_r$ (well-depth aspect ratio)& & 1 & 0.2 & 1 & 0.2 & 1 & 0.2 & 1 \\
753 + $m$ (amu) & & 190 & 200 & 190 & 240 & 196 & 760 & 72.06 \\
754 + %$\overleftrightarrow{\mathsf I}$ (amu \AA$^2$) & & & & \\
755 + %\multicolumn{2}c{$I_{xx}$} & 1125 & 45000 & N/A \\
756 + %\multicolumn{2}c{$I_{yy}$} & 1125 & 45000 & N/A \\
757 + %\multicolumn{2}c{$I_{zz}$} &  0 &    9000 & N/A \\
758 + %$\mu$ (Debye) & & varied & 0 & 0 \\
759 + \end{tabular}
760 + \label{tab:parameters}
761 + \end{center}
762 + \end{minipage}
763 + \end{table*}
764 +
765 + \begin{table*}
766 + \begin{minipage}{\linewidth}
767 + \begin{center}
768 + \caption{}
769 + \begin{tabular}{lccccc}
770 + \hline
771 + & & & & &Translation \\
772 + \hline
773 + & NVE &  & Theoretical & Langevin & \\
774 + \hline
775 + & $\eta$ & D & D & method & D \\
776 + \hline
777 + sphere & 3.480159e-03 & 1.643135e-04 & 1.942779e-04 & exact & 1.982283e-04 \\
778 + ellipsoid & 2.551262e-03 & 2.437492e-04 & 2.335756e-04 & exact & 2.374905e-04 \\
779 + & 2.551262e-03  & 2.437492e-04 & 2.335756e-04 & rough shell & 2.284088e-04 \\
780 + dumbell & 2.41276e-03  & 2.129432e-04 & 2.090239e-04 & bead model & 2.148098e-04 \\
781 + & 2.41276e-03 & 2.129432e-04 & 2.090239e-04 & rough shell & 2.013219e-04 \\
782 + banana & 2.9846e-03 & 1.527819e-04 &  & rough shell & 1.54807e-04 \\
783 + lipid & 3.488661e-03 & 0.9562979e-04 &  & rough shell & 1.320987e-04 \\
784 + \end{tabular}
785 + \label{tab:translation}
786 + \end{center}
787 + \end{minipage}
788 + \end{table*}
789 +
790 + \begin{table*}
791 + \begin{minipage}{\linewidth}
792 + \begin{center}
793 + \caption{}
794 + \begin{tabular}{lccccc}
795 + \hline
796 + & & & & &Rotation \\
797 + \hline
798 + & NVE &  & Theoretical & Langevin & \\
799 + \hline
800 + & $\eta$ & $\tau_0$ & $\tau_0$ & method & $\tau_0$ \\
801 + \hline
802 + sphere & 3.480159e-03 &  & 1.208178e+04 & exact & 1.20628e+04 \\
803 + ellipsoid & 2.551262e-03 & 4.66806e+04 & 2.198986e+04 & exact & 2.21507e+04 \\
804 + & 2.551262e-03 & 4.66806e+04 & 2.198986e+04 & rough shell & 2.21714e+04 \\
805 + dumbell & 2.41276e-03 & 1.42974e+04 &  & bead model & 7.12435e+04 \\
806 + & 2.41276e-03 & 1.42974e+04 &  & rough shell & 7.04765e+04 \\
807 + banana & 2.9846e-03 & 6.38323e+04 &  & rough shell & 7.0945e+04 \\
808 + lipid & 3.488661e-03 & 7.79595e+04 &  & rough shell & 7.78886e+04 \\
809 + \end{tabular}
810 + \label{tab:rotation}
811 + \end{center}
812 + \end{minipage}
813 + \end{table*}
814 +
815 + Langevin dynamics simulations are applied to study the formation of
816 + the ripple phase of lipid membranes. The initial configuration is
817 + taken from our molecular dynamics studies on lipid bilayers with
818 + lennard-Jones sphere solvents. The solvent molecules are excluded from
819 + the system, the experimental value of water viscosity is applied to
820 + mimic the heat bath. Fig. XXX is the snapshot of the stable
821 + configuration of the system, the ripple structure stayed stable after
822 + 100 ns run. The efficiency of the simulation is increased by one order
823 + of magnitude.
824 +
825   \subsection{Langevin Dynamics of Banana Shaped Molecules}
826  
827   In order to verify that Langevin dynamics can mimic the dynamics of
# Line 676 | Line 861 | probably due to the reason that we used the experiment
861  
862   \begin{figure}
863   \centering
864 < \includegraphics[width=\linewidth]{roughShell.eps}
864 > \includegraphics[width=\linewidth]{roughShell.pdf}
865   \caption[Rough shell model for banana shaped molecule]{Rough shell
866   model for banana shaped molecule.} \label{langevin:roughShell}
867   \end{figure}
868  
869   \begin{figure}
870   \centering
871 < \includegraphics[width=\linewidth]{twoBanana.eps}
871 > \includegraphics[width=\linewidth]{twoBanana.pdf}
872   \caption[Snapshot from Simulation of Two Banana Shaped Molecules and
873   256 Pentane Molecules]{Snapshot from simulation of two Banana shaped
874   molecules and 256 pentane molecules.} \label{langevin:twoBanana}
# Line 691 | Line 876 | molecules and 256 pentane molecules.} \label{langevin:
876  
877   \begin{figure}
878   \centering
879 < \includegraphics[width=\linewidth]{vacf.eps}
879 > \includegraphics[width=\linewidth]{vacf.pdf}
880   \caption[Plots of Velocity Auto-correlation Functions]{Velocity
881   auto-correlation functions of NVE (explicit solvent) in blue and
882   Langevin dynamics (implicit solvent) in red.} \label{langevin:vacf}
# Line 699 | Line 884 | Langevin dynamics (implicit solvent) in red.} \label{l
884  
885   \begin{figure}
886   \centering
887 < \includegraphics[width=\linewidth]{uacf.eps}
887 > \includegraphics[width=\linewidth]{uacf.pdf}
888   \caption[Auto-correlation functions of the principle axis of the
889   middle GB particle]{Auto-correlation functions of the principle axis
890   of the middle GB particle of NVE (blue) and Langevin dynamics

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines