ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/langevin/langevin.tex
(Generate patch)

Comparing trunk/langevin/langevin.tex (file contents):
Revision 3338 by xsun, Thu Jan 31 15:06:07 2008 UTC vs.
Revision 3339 by xsun, Thu Jan 31 17:07:23 2008 UTC

# Line 376 | Line 376 | arbitrary origin $O$ can be written as
376   bead $i$ and origin $O$, the elements of resistance tensor at
377   arbitrary origin $O$ can be written as
378   \begin{eqnarray}
379 + \label{introEquation:ResistanceTensorArbitraryOrigin}
380   \Xi _{}^{tt}  & = & \sum\limits_i {\sum\limits_j {C_{ij} } } \notag , \\
381   \Xi _{}^{tr}  & = & \Xi _{}^{rt}  = \sum\limits_i {\sum\limits_j {U_i C_{ij} } } , \\
382   \Xi _{}^{rr}  & = &  - \sum\limits_i {\sum\limits_j {U_i C_{ij} } }
383   U_j  + 6 \eta V {\bf I}. \notag
383 \label{introEquation:ResistanceTensorArbitraryOrigin}
384   \end{eqnarray}
385   The final term in the expression for $\Xi^{rr}$ is correction that
386   accounts for errors in the rotational motion of certain kinds of bead
# Line 475 | Line 475 | using the rigid body's rotation matrix ($Q$):
475   calculated in body-fixed frame and converted back to lab-fixed frame
476   using the rigid body's rotation matrix ($Q$):
477   \begin{equation}
478 < \begin{array}{l}
479 < \mathbf{F}_{f}(t) = Q^{T} \mathbf{F}_{f}^b (t), \\
480 < \mathbf{F}_{r}(t) = Q^{T} \mathbf{F}_{r}^b (t). \\
481 < \end{array}
478 > \mathbf{F}_{f}(t) = \left( \begin{array}{l}
479 > Q^{T} \mathbf{f}_{f}^b (t) \\
480 > Q^{T} \tau_{f}^b (t) \\
481 > \end{array} \right), \\
482 > \mathbf{F}_{r}(t) = \left( \begin{array}{l}
483 > Q^{T} \mathbf{f}_{r}^b (t) \\
484 > Q^{T} \tau_{r}^b (t) \\
485 > \end{array} \right).
486   \end{equation}
487   Here, the body-fixed friction force $\mathbf{F}_{f}^b$ is proportional to
488   the body-fixed velocity at the center of resistance $\mathbf{v}_{R}^b$ and
# Line 512 | Line 516 | The equation of motion for $\mathbf{v}$ can be written
516  
517   The equation of motion for $\mathbf{v}$ can be written as
518   \begin{equation}
519 < m \dot{\mathbf{v}} (t) =  \mathbf{f}_{s} (t) + \mathbf{f}_{f}^l (t) +
519 > m \dot{\mathbf{v}} (t) =  \mathbf{f}_{s}^l (t) + \mathbf{f}_{f}^l (t) +
520   \mathbf{f}_{r}^l (t)
521   \end{equation}
522   Since the frictional force is applied at the center of resistance
# Line 521 | Line 525 | given by
525   frictional torque at the center of mass, $\tau_{f}^b (t)$, is
526   given by
527   \begin{equation}
528 < \tau_{f}^b \leftarrow \tau_{f}^b + \mathbf{r}_{MR} \times \mathbf{f}_{r}^b
528 > \tau_{f}^b \leftarrow \tau_{f}^b + \mathbf{r}_{MR} \times \mathbf{f}_{f}^b
529   \end{equation}
530   where $r_{MR}$ is the vector from the center of mass to the center
531   of the resistance. Instead of integrating the angular velocity in
532   lab-fixed frame, we consider the equation of angular momentum in
533   body-fixed frame
534   \begin{equation}
535 < \dot j(t) = \tau_{s} (t) + \tau_{f}^b (t) + \tau_{r}^b(t)
535 > \dot j(t) = \tau_{s}^b (t) + \tau_{f}^b (t) + \tau_{r}^b(t)
536   \end{equation}
537   Embedding the friction terms into force and torque, one can integrate
538   the Langevin equations of motion for rigid body of arbitrary shape in

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines