1 |
\documentclass[11pt]{article} |
2 |
\usepackage{amsmath} |
3 |
\usepackage{amssymb} |
4 |
\usepackage{setspace} |
5 |
\usepackage{endfloat} |
6 |
\usepackage{caption} |
7 |
\usepackage{graphicx} |
8 |
\usepackage{multirow} |
9 |
\usepackage[square, comma, sort&compress]{natbib} |
10 |
\usepackage{url} |
11 |
\pagestyle{plain} \pagenumbering{arabic} \oddsidemargin 0.0cm |
12 |
\evensidemargin 0.0cm \topmargin -21pt \headsep 10pt \textheight |
13 |
9.0in \textwidth 6.5in \brokenpenalty=10000 |
14 |
|
15 |
% double space list of tables and figures |
16 |
%\AtBeginDelayedFloats{\renewcomand{\baselinestretch}{1.66}} |
17 |
\setlength{\abovecaptionskip}{20 pt} |
18 |
\setlength{\belowcaptionskip}{30 pt} |
19 |
|
20 |
\bibpunct{[}{]}{,}{s}{}{;} |
21 |
\bibliographystyle{aip} |
22 |
|
23 |
\begin{document} |
24 |
|
25 |
\title{The Langevin Hull: Constant pressure and temperature dynamics for non-periodic systems} |
26 |
|
27 |
\author{Charles F. Varedeman II, Kelsey Stocker, and J. Daniel |
28 |
Gezelter\footnote{Corresponding author. \ Electronic mail: gezelter@nd.edu} \\ |
29 |
Department of Chemistry and Biochemistry,\\ |
30 |
University of Notre Dame\\ |
31 |
Notre Dame, Indiana 46556} |
32 |
|
33 |
\date{\today} |
34 |
|
35 |
\maketitle |
36 |
|
37 |
\begin{doublespace} |
38 |
|
39 |
\begin{abstract} |
40 |
We have developed a new isobaric-isothermal (NPT) algorithm which |
41 |
applies an external pressure to the facets comprising the convex |
42 |
hull surrounding the objects in the system. Additionally, a Langevin |
43 |
thermostat is applied to facets of the hull to mimic contact with an |
44 |
external heat bath. This new method, the ``Langevin Hull'', |
45 |
performs better than traditional affine transform methods for |
46 |
systems containing heterogeneous mixtures of materials with |
47 |
different compressibilities. It does not suffer from the edge |
48 |
effects of boundary potential methods, and allows realistic |
49 |
treatment of both external pressure and thermal conductivity to an |
50 |
implicit solvents. We apply this method to several different |
51 |
systems including bare nano-particles, nano-particles in explicit |
52 |
solvent, as well as clusters of liquid water and ice. The predicted |
53 |
mechanical and thermal properties of these systems are in good |
54 |
agreement with experimental data. |
55 |
\end{abstract} |
56 |
|
57 |
\newpage |
58 |
|
59 |
%\narrowtext |
60 |
|
61 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
62 |
% BODY OF TEXT |
63 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
64 |
|
65 |
|
66 |
\section{Introduction} |
67 |
|
68 |
Affine transform methods |
69 |
|
70 |
\begin{figure} |
71 |
\includegraphics[width=\linewidth]{AffineScale} |
72 |
\caption{Affine Scale} |
73 |
\label{affineScale} |
74 |
\end{figure} |
75 |
|
76 |
|
77 |
\begin{figure} |
78 |
\includegraphics[width=\linewidth]{AffineScale2} |
79 |
\caption{Affine Scale2} |
80 |
\label{affineScale2} |
81 |
\end{figure} |
82 |
|
83 |
Heterogeneous mixtures of materials with different compressibilities? |
84 |
|
85 |
Explicitly non-periodic systems |
86 |
|
87 |
Elastic Bag |
88 |
|
89 |
Spherical Boundary approaches |
90 |
|
91 |
\section{Methodology} |
92 |
|
93 |
A new method which uses a constant pressure and temperature bath that |
94 |
interacts with the objects that are currently at the edge of the |
95 |
system. |
96 |
|
97 |
Novel features: No a priori geometry is defined, No affine transforms, |
98 |
No fictitious particles, No bounding potentials. |
99 |
|
100 |
Simulation starts as a collection of atomic locations in 3D (a point |
101 |
cloud). |
102 |
|
103 |
Delaunay triangulation finds all facets between coplanar neighbors. |
104 |
|
105 |
The Convex Hull is the set of facets that have no concave corners at a |
106 |
vertex. |
107 |
|
108 |
Molecules on the convex hull are dynamic. As they re-enter the |
109 |
cluster, all interactions with the external bath are removed.The |
110 |
external bath applies pressure to the facets of the convex hull in |
111 |
direct proportion to the area of the facet.Thermal coupling depends on |
112 |
the solvent temperature, friction and the size and shape of each |
113 |
facet. |
114 |
|
115 |
\begin{equation} |
116 |
m_i \dot{\mathbf v}_i(t)=-{\mathbf \nabla}_i U |
117 |
\end{equation} |
118 |
|
119 |
\begin{equation} |
120 |
m_i \dot{\mathbf v}_i(t)=-{\mathbf \nabla}_i U + {\mathbf F}_i^{\mathrm ext} |
121 |
\end{equation} |
122 |
|
123 |
\begin{equation} |
124 |
{\mathbf F}_{i}^{\mathrm ext} = \sum_{\begin{array}{c}\mathrm{facets\ |
125 |
} f \\ \mathrm{containing\ } i\end{array}} \frac{1}{3}\ {\mathbf |
126 |
F}_f^{\mathrm ext} |
127 |
\end{equation} |
128 |
|
129 |
\begin{equation} |
130 |
\begin{array}{rclclcl} |
131 |
{\mathbf F}_f^{\text{ext}} & = & \text{external pressure} & + & \text{drag force} & + & \text{random force} \\ |
132 |
& = & -\hat{n}_f P A_f & - & \Xi_f(t) {\mathbf v}_f(t) & + & {\mathbf R}_f(t) |
133 |
\end{array} |
134 |
\end{equation} |
135 |
|
136 |
\begin{eqnarray} |
137 |
A_f & = & \text{area of facet}\ f \\ |
138 |
\hat{n}_f & = & \text{facet normal} \\ |
139 |
P & = & \text{external pressure} |
140 |
\end{eqnarray} |
141 |
|
142 |
\begin{eqnarray} |
143 |
{\mathbf v}_f(t) & = & \text{velocity of facet} \\ |
144 |
& = & \frac{1}{3} \sum_{i=1}^{3} {\mathbf v}_i \\ |
145 |
\Xi_f(t) & = & \text{is a hydrodynamic tensor that depends} \\ |
146 |
& & \text{on the geometry and surface area of} \\ |
147 |
& & \text{facet} \ f\ \text{and the viscosity of the fluid.} |
148 |
\end{eqnarray} |
149 |
|
150 |
\begin{eqnarray} |
151 |
\left< {\mathbf R}_f(t) \right> & = & 0 \\ |
152 |
\left<{\mathbf R}_f(t) {\mathbf R}_f^T(t^\prime)\right> & = & 2 k_B T\ |
153 |
\Xi_f(t)\delta(t-t^\prime) |
154 |
\end{eqnarray} |
155 |
|
156 |
Implemented in OpenMD.\cite{Meineke:2005gd,openmd} |
157 |
|
158 |
\section{Tests \& Applications} |
159 |
|
160 |
\subsection{Bulk modulus of gold nanoparticles} |
161 |
|
162 |
\begin{figure} |
163 |
\includegraphics[width=\linewidth]{pressure_tb} |
164 |
\caption{Pressure response is rapid (18 \AA gold nanoparticle), target |
165 |
pressure = 4 GPa} |
166 |
\label{pressureResponse} |
167 |
\end{figure} |
168 |
|
169 |
\begin{figure} |
170 |
\includegraphics[width=\linewidth]{temperature_tb} |
171 |
\caption{Temperature equilibration depends on surface area and bath |
172 |
viscosity. Target Temperature = 300K} |
173 |
\label{temperatureResponse} |
174 |
\end{figure} |
175 |
|
176 |
\begin{equation} |
177 |
\kappa_T=-\frac{1}{V_{\mathrm{eq}}}\left(\frac{\partial V}{\partial |
178 |
P}\right) |
179 |
\end{equation} |
180 |
|
181 |
\begin{figure} |
182 |
\includegraphics[width=\linewidth]{compress_tb} |
183 |
\caption{Isothermal Compressibility (18 \AA gold nanoparticle)} |
184 |
\label{temperatureResponse} |
185 |
\end{figure} |
186 |
|
187 |
\subsection{Compressibility of SPC/E water clusters} |
188 |
|
189 |
\begin{figure} |
190 |
\includegraphics[width=\linewidth]{g_r_theta} |
191 |
\caption{Definition of coordinates} |
192 |
\label{coords} |
193 |
\end{figure} |
194 |
|
195 |
\begin{equation} |
196 |
\cos{\theta}=\frac{\vec{r}_i\cdot\vec{\mu}_i}{|\vec{r}_i||\vec{\mu}_i|} |
197 |
\end{equation} |
198 |
|
199 |
\begin{figure} |
200 |
\includegraphics[width=\linewidth]{pAngle} |
201 |
\caption{SPC/E water clusters: only minor dewetting at the boundary} |
202 |
\label{pAngle} |
203 |
\end{figure} |
204 |
|
205 |
\begin{figure} |
206 |
\includegraphics[width=\linewidth]{isothermal} |
207 |
\caption{Compressibility of SPC/E water} |
208 |
\label{compWater} |
209 |
\end{figure} |
210 |
|
211 |
\subsection{Heterogeneous nanoparticle / water mixtures} |
212 |
|
213 |
|
214 |
\section{Appendix A: Hydrodynamic tensor for triangular facets} |
215 |
|
216 |
\begin{figure} |
217 |
\includegraphics[width=\linewidth]{hydro} |
218 |
\caption{Hydro} |
219 |
\label{hydro} |
220 |
\end{figure} |
221 |
|
222 |
\begin{equation} |
223 |
\Xi_f(t) =\left[\sum_{i=1}^3 T_{if}\right]^{-1} |
224 |
\end{equation} |
225 |
|
226 |
\begin{equation} |
227 |
T_{if}=\frac{A_i}{8\pi\eta R_{if}}\left(I + |
228 |
\frac{\mathbf{R}_{if}\mathbf{R}_{if}^T}{R_{if}^2}\right) |
229 |
\end{equation} |
230 |
|
231 |
\section{Appendix B: Computing Convex Hulls on Parallel Computers} |
232 |
|
233 |
\section{Acknowledgments} |
234 |
Support for this project was provided by the |
235 |
National Science Foundation under grant CHE-0848243. Computational |
236 |
time was provided by the Center for Research Computing (CRC) at the |
237 |
University of Notre Dame. |
238 |
|
239 |
\newpage |
240 |
|
241 |
\bibliography{langevinHull} |
242 |
|
243 |
\end{doublespace} |
244 |
\end{document} |