ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/langevinHull.tex
Revision: 3635
Committed: Thu Aug 12 20:12:04 2010 UTC (14 years, 8 months ago) by gezelter
Content type: application/x-tex
File size: 7066 byte(s)
Log Message:
Import of working copy of Langevin Hull paper

File Contents

# Content
1 \documentclass[11pt]{article}
2 \usepackage{amsmath}
3 \usepackage{amssymb}
4 \usepackage{setspace}
5 \usepackage{endfloat}
6 \usepackage{caption}
7 \usepackage{graphicx}
8 \usepackage{multirow}
9 \usepackage[square, comma, sort&compress]{natbib}
10 \usepackage{url}
11 \pagestyle{plain} \pagenumbering{arabic} \oddsidemargin 0.0cm
12 \evensidemargin 0.0cm \topmargin -21pt \headsep 10pt \textheight
13 9.0in \textwidth 6.5in \brokenpenalty=10000
14
15 % double space list of tables and figures
16 %\AtBeginDelayedFloats{\renewcomand{\baselinestretch}{1.66}}
17 \setlength{\abovecaptionskip}{20 pt}
18 \setlength{\belowcaptionskip}{30 pt}
19
20 \bibpunct{[}{]}{,}{s}{}{;}
21 \bibliographystyle{aip}
22
23 \begin{document}
24
25 \title{The Langevin Hull: Constant pressure and temperature dynamics for non-periodic systems}
26
27 \author{Charles F. Varedeman II, Kelsey Stocker, and J. Daniel
28 Gezelter\footnote{Corresponding author. \ Electronic mail: gezelter@nd.edu} \\
29 Department of Chemistry and Biochemistry,\\
30 University of Notre Dame\\
31 Notre Dame, Indiana 46556}
32
33 \date{\today}
34
35 \maketitle
36
37 \begin{doublespace}
38
39 \begin{abstract}
40 We have developed a new isobaric-isothermal (NPT) algorithm which
41 applies an external pressure to the facets comprising the convex
42 hull surrounding the objects in the system. Additionally, a Langevin
43 thermostat is applied to facets of the hull to mimic contact with an
44 external heat bath. This new method, the ``Langevin Hull'',
45 performs better than traditional affine transform methods for
46 systems containing heterogeneous mixtures of materials with
47 different compressibilities. It does not suffer from the edge
48 effects of boundary potential methods, and allows realistic
49 treatment of both external pressure and thermal conductivity to an
50 implicit solvents. We apply this method to several different
51 systems including bare nano-particles, nano-particles in explicit
52 solvent, as well as clusters of liquid water and ice. The predicted
53 mechanical and thermal properties of these systems are in good
54 agreement with experimental data.
55 \end{abstract}
56
57 \newpage
58
59 %\narrowtext
60
61 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
62 % BODY OF TEXT
63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64
65
66 \section{Introduction}
67
68 Affine transform methods
69
70 \begin{figure}
71 \includegraphics[width=\linewidth]{AffineScale}
72 \caption{Affine Scale}
73 \label{affineScale}
74 \end{figure}
75
76
77 \begin{figure}
78 \includegraphics[width=\linewidth]{AffineScale2}
79 \caption{Affine Scale2}
80 \label{affineScale2}
81 \end{figure}
82
83 Heterogeneous mixtures of materials with different compressibilities?
84
85 Explicitly non-periodic systems
86
87 Elastic Bag
88
89 Spherical Boundary approaches
90
91 \section{Methodology}
92
93 A new method which uses a constant pressure and temperature bath that
94 interacts with the objects that are currently at the edge of the
95 system.
96
97 Novel features: No a priori geometry is defined, No affine transforms,
98 No fictitious particles, No bounding potentials.
99
100 Simulation starts as a collection of atomic locations in 3D (a point
101 cloud).
102
103 Delaunay triangulation finds all facets between coplanar neighbors.
104
105 The Convex Hull is the set of facets that have no concave corners at a
106 vertex.
107
108 Molecules on the convex hull are dynamic. As they re-enter the
109 cluster, all interactions with the external bath are removed.The
110 external bath applies pressure to the facets of the convex hull in
111 direct proportion to the area of the facet.Thermal coupling depends on
112 the solvent temperature, friction and the size and shape of each
113 facet.
114
115 \begin{equation}
116 m_i \dot{\mathbf v}_i(t)=-{\mathbf \nabla}_i U
117 \end{equation}
118
119 \begin{equation}
120 m_i \dot{\mathbf v}_i(t)=-{\mathbf \nabla}_i U + {\mathbf F}_i^{\mathrm ext}
121 \end{equation}
122
123 \begin{equation}
124 {\mathbf F}_{i}^{\mathrm ext} = \sum_{\begin{array}{c}\mathrm{facets\
125 } f \\ \mathrm{containing\ } i\end{array}} \frac{1}{3}\ {\mathbf
126 F}_f^{\mathrm ext}
127 \end{equation}
128
129 \begin{equation}
130 \begin{array}{rclclcl}
131 {\mathbf F}_f^{\text{ext}} & = & \text{external pressure} & + & \text{drag force} & + & \text{random force} \\
132 & = & -\hat{n}_f P A_f & - & \Xi_f(t) {\mathbf v}_f(t) & + & {\mathbf R}_f(t)
133 \end{array}
134 \end{equation}
135
136 \begin{eqnarray}
137 A_f & = & \text{area of facet}\ f \\
138 \hat{n}_f & = & \text{facet normal} \\
139 P & = & \text{external pressure}
140 \end{eqnarray}
141
142 \begin{eqnarray}
143 {\mathbf v}_f(t) & = & \text{velocity of facet} \\
144 & = & \frac{1}{3} \sum_{i=1}^{3} {\mathbf v}_i \\
145 \Xi_f(t) & = & \text{is a hydrodynamic tensor that depends} \\
146 & & \text{on the geometry and surface area of} \\
147 & & \text{facet} \ f\ \text{and the viscosity of the fluid.}
148 \end{eqnarray}
149
150 \begin{eqnarray}
151 \left< {\mathbf R}_f(t) \right> & = & 0 \\
152 \left<{\mathbf R}_f(t) {\mathbf R}_f^T(t^\prime)\right> & = & 2 k_B T\
153 \Xi_f(t)\delta(t-t^\prime)
154 \end{eqnarray}
155
156 Implemented in OpenMD.\cite{Meineke:2005gd,openmd}
157
158 \section{Tests \& Applications}
159
160 \subsection{Bulk modulus of gold nanoparticles}
161
162 \begin{figure}
163 \includegraphics[width=\linewidth]{pressure_tb}
164 \caption{Pressure response is rapid (18 \AA gold nanoparticle), target
165 pressure = 4 GPa}
166 \label{pressureResponse}
167 \end{figure}
168
169 \begin{figure}
170 \includegraphics[width=\linewidth]{temperature_tb}
171 \caption{Temperature equilibration depends on surface area and bath
172 viscosity. Target Temperature = 300K}
173 \label{temperatureResponse}
174 \end{figure}
175
176 \begin{equation}
177 \kappa_T=-\frac{1}{V_{\mathrm{eq}}}\left(\frac{\partial V}{\partial
178 P}\right)
179 \end{equation}
180
181 \begin{figure}
182 \includegraphics[width=\linewidth]{compress_tb}
183 \caption{Isothermal Compressibility (18 \AA gold nanoparticle)}
184 \label{temperatureResponse}
185 \end{figure}
186
187 \subsection{Compressibility of SPC/E water clusters}
188
189 \begin{figure}
190 \includegraphics[width=\linewidth]{g_r_theta}
191 \caption{Definition of coordinates}
192 \label{coords}
193 \end{figure}
194
195 \begin{equation}
196 \cos{\theta}=\frac{\vec{r}_i\cdot\vec{\mu}_i}{|\vec{r}_i||\vec{\mu}_i|}
197 \end{equation}
198
199 \begin{figure}
200 \includegraphics[width=\linewidth]{pAngle}
201 \caption{SPC/E water clusters: only minor dewetting at the boundary}
202 \label{pAngle}
203 \end{figure}
204
205 \begin{figure}
206 \includegraphics[width=\linewidth]{isothermal}
207 \caption{Compressibility of SPC/E water}
208 \label{compWater}
209 \end{figure}
210
211 \subsection{Heterogeneous nanoparticle / water mixtures}
212
213
214 \section{Appendix A: Hydrodynamic tensor for triangular facets}
215
216 \begin{figure}
217 \includegraphics[width=\linewidth]{hydro}
218 \caption{Hydro}
219 \label{hydro}
220 \end{figure}
221
222 \begin{equation}
223 \Xi_f(t) =\left[\sum_{i=1}^3 T_{if}\right]^{-1}
224 \end{equation}
225
226 \begin{equation}
227 T_{if}=\frac{A_i}{8\pi\eta R_{if}}\left(I +
228 \frac{\mathbf{R}_{if}\mathbf{R}_{if}^T}{R_{if}^2}\right)
229 \end{equation}
230
231 \section{Appendix B: Computing Convex Hulls on Parallel Computers}
232
233 \section{Acknowledgments}
234 Support for this project was provided by the
235 National Science Foundation under grant CHE-0848243. Computational
236 time was provided by the Center for Research Computing (CRC) at the
237 University of Notre Dame.
238
239 \newpage
240
241 \bibliography{langevinHull}
242
243 \end{doublespace}
244 \end{document}