ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/langevinHull/langevinHull.tex
Revision: 3640
Committed: Thu Aug 12 20:25:00 2010 UTC (13 years, 11 months ago) by gezelter
Content type: application/x-tex
File size: 7066 byte(s)
Log Message:
new import of Langevin Hull paper

File Contents

# User Rev Content
1 gezelter 3640 \documentclass[11pt]{article}
2     \usepackage{amsmath}
3     \usepackage{amssymb}
4     \usepackage{setspace}
5     \usepackage{endfloat}
6     \usepackage{caption}
7     \usepackage{graphicx}
8     \usepackage{multirow}
9     \usepackage[square, comma, sort&compress]{natbib}
10     \usepackage{url}
11     \pagestyle{plain} \pagenumbering{arabic} \oddsidemargin 0.0cm
12     \evensidemargin 0.0cm \topmargin -21pt \headsep 10pt \textheight
13     9.0in \textwidth 6.5in \brokenpenalty=10000
14    
15     % double space list of tables and figures
16     %\AtBeginDelayedFloats{\renewcomand{\baselinestretch}{1.66}}
17     \setlength{\abovecaptionskip}{20 pt}
18     \setlength{\belowcaptionskip}{30 pt}
19    
20     \bibpunct{[}{]}{,}{s}{}{;}
21     \bibliographystyle{aip}
22    
23     \begin{document}
24    
25     \title{The Langevin Hull: Constant pressure and temperature dynamics for non-periodic systems}
26    
27     \author{Charles F. Varedeman II, Kelsey Stocker, and J. Daniel
28     Gezelter\footnote{Corresponding author. \ Electronic mail: gezelter@nd.edu} \\
29     Department of Chemistry and Biochemistry,\\
30     University of Notre Dame\\
31     Notre Dame, Indiana 46556}
32    
33     \date{\today}
34    
35     \maketitle
36    
37     \begin{doublespace}
38    
39     \begin{abstract}
40     We have developed a new isobaric-isothermal (NPT) algorithm which
41     applies an external pressure to the facets comprising the convex
42     hull surrounding the objects in the system. Additionally, a Langevin
43     thermostat is applied to facets of the hull to mimic contact with an
44     external heat bath. This new method, the ``Langevin Hull'',
45     performs better than traditional affine transform methods for
46     systems containing heterogeneous mixtures of materials with
47     different compressibilities. It does not suffer from the edge
48     effects of boundary potential methods, and allows realistic
49     treatment of both external pressure and thermal conductivity to an
50     implicit solvents. We apply this method to several different
51     systems including bare nano-particles, nano-particles in explicit
52     solvent, as well as clusters of liquid water and ice. The predicted
53     mechanical and thermal properties of these systems are in good
54     agreement with experimental data.
55     \end{abstract}
56    
57     \newpage
58    
59     %\narrowtext
60    
61     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
62     % BODY OF TEXT
63     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64    
65    
66     \section{Introduction}
67    
68     Affine transform methods
69    
70     \begin{figure}
71     \includegraphics[width=\linewidth]{AffineScale}
72     \caption{Affine Scale}
73     \label{affineScale}
74     \end{figure}
75    
76    
77     \begin{figure}
78     \includegraphics[width=\linewidth]{AffineScale2}
79     \caption{Affine Scale2}
80     \label{affineScale2}
81     \end{figure}
82    
83     Heterogeneous mixtures of materials with different compressibilities?
84    
85     Explicitly non-periodic systems
86    
87     Elastic Bag
88    
89     Spherical Boundary approaches
90    
91     \section{Methodology}
92    
93     A new method which uses a constant pressure and temperature bath that
94     interacts with the objects that are currently at the edge of the
95     system.
96    
97     Novel features: No a priori geometry is defined, No affine transforms,
98     No fictitious particles, No bounding potentials.
99    
100     Simulation starts as a collection of atomic locations in 3D (a point
101     cloud).
102    
103     Delaunay triangulation finds all facets between coplanar neighbors.
104    
105     The Convex Hull is the set of facets that have no concave corners at a
106     vertex.
107    
108     Molecules on the convex hull are dynamic. As they re-enter the
109     cluster, all interactions with the external bath are removed.The
110     external bath applies pressure to the facets of the convex hull in
111     direct proportion to the area of the facet.Thermal coupling depends on
112     the solvent temperature, friction and the size and shape of each
113     facet.
114    
115     \begin{equation}
116     m_i \dot{\mathbf v}_i(t)=-{\mathbf \nabla}_i U
117     \end{equation}
118    
119     \begin{equation}
120     m_i \dot{\mathbf v}_i(t)=-{\mathbf \nabla}_i U + {\mathbf F}_i^{\mathrm ext}
121     \end{equation}
122    
123     \begin{equation}
124     {\mathbf F}_{i}^{\mathrm ext} = \sum_{\begin{array}{c}\mathrm{facets\
125     } f \\ \mathrm{containing\ } i\end{array}} \frac{1}{3}\ {\mathbf
126     F}_f^{\mathrm ext}
127     \end{equation}
128    
129     \begin{equation}
130     \begin{array}{rclclcl}
131     {\mathbf F}_f^{\text{ext}} & = & \text{external pressure} & + & \text{drag force} & + & \text{random force} \\
132     & = & -\hat{n}_f P A_f & - & \Xi_f(t) {\mathbf v}_f(t) & + & {\mathbf R}_f(t)
133     \end{array}
134     \end{equation}
135    
136     \begin{eqnarray}
137     A_f & = & \text{area of facet}\ f \\
138     \hat{n}_f & = & \text{facet normal} \\
139     P & = & \text{external pressure}
140     \end{eqnarray}
141    
142     \begin{eqnarray}
143     {\mathbf v}_f(t) & = & \text{velocity of facet} \\
144     & = & \frac{1}{3} \sum_{i=1}^{3} {\mathbf v}_i \\
145     \Xi_f(t) & = & \text{is a hydrodynamic tensor that depends} \\
146     & & \text{on the geometry and surface area of} \\
147     & & \text{facet} \ f\ \text{and the viscosity of the fluid.}
148     \end{eqnarray}
149    
150     \begin{eqnarray}
151     \left< {\mathbf R}_f(t) \right> & = & 0 \\
152     \left<{\mathbf R}_f(t) {\mathbf R}_f^T(t^\prime)\right> & = & 2 k_B T\
153     \Xi_f(t)\delta(t-t^\prime)
154     \end{eqnarray}
155    
156     Implemented in OpenMD.\cite{Meineke:2005gd,openmd}
157    
158     \section{Tests \& Applications}
159    
160     \subsection{Bulk modulus of gold nanoparticles}
161    
162     \begin{figure}
163     \includegraphics[width=\linewidth]{pressure_tb}
164     \caption{Pressure response is rapid (18 \AA gold nanoparticle), target
165     pressure = 4 GPa}
166     \label{pressureResponse}
167     \end{figure}
168    
169     \begin{figure}
170     \includegraphics[width=\linewidth]{temperature_tb}
171     \caption{Temperature equilibration depends on surface area and bath
172     viscosity. Target Temperature = 300K}
173     \label{temperatureResponse}
174     \end{figure}
175    
176     \begin{equation}
177     \kappa_T=-\frac{1}{V_{\mathrm{eq}}}\left(\frac{\partial V}{\partial
178     P}\right)
179     \end{equation}
180    
181     \begin{figure}
182     \includegraphics[width=\linewidth]{compress_tb}
183     \caption{Isothermal Compressibility (18 \AA gold nanoparticle)}
184     \label{temperatureResponse}
185     \end{figure}
186    
187     \subsection{Compressibility of SPC/E water clusters}
188    
189     \begin{figure}
190     \includegraphics[width=\linewidth]{g_r_theta}
191     \caption{Definition of coordinates}
192     \label{coords}
193     \end{figure}
194    
195     \begin{equation}
196     \cos{\theta}=\frac{\vec{r}_i\cdot\vec{\mu}_i}{|\vec{r}_i||\vec{\mu}_i|}
197     \end{equation}
198    
199     \begin{figure}
200     \includegraphics[width=\linewidth]{pAngle}
201     \caption{SPC/E water clusters: only minor dewetting at the boundary}
202     \label{pAngle}
203     \end{figure}
204    
205     \begin{figure}
206     \includegraphics[width=\linewidth]{isothermal}
207     \caption{Compressibility of SPC/E water}
208     \label{compWater}
209     \end{figure}
210    
211     \subsection{Heterogeneous nanoparticle / water mixtures}
212    
213    
214     \section{Appendix A: Hydrodynamic tensor for triangular facets}
215    
216     \begin{figure}
217     \includegraphics[width=\linewidth]{hydro}
218     \caption{Hydro}
219     \label{hydro}
220     \end{figure}
221    
222     \begin{equation}
223     \Xi_f(t) =\left[\sum_{i=1}^3 T_{if}\right]^{-1}
224     \end{equation}
225    
226     \begin{equation}
227     T_{if}=\frac{A_i}{8\pi\eta R_{if}}\left(I +
228     \frac{\mathbf{R}_{if}\mathbf{R}_{if}^T}{R_{if}^2}\right)
229     \end{equation}
230    
231     \section{Appendix B: Computing Convex Hulls on Parallel Computers}
232    
233     \section{Acknowledgments}
234     Support for this project was provided by the
235     National Science Foundation under grant CHE-0848243. Computational
236     time was provided by the Center for Research Computing (CRC) at the
237     University of Notre Dame.
238    
239     \newpage
240    
241     \bibliography{langevinHull}
242    
243     \end{doublespace}
244     \end{document}