ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/langevinHull/langevinHull.tex
Revision: 3641
Committed: Thu Aug 26 17:52:56 2010 UTC (13 years, 10 months ago) by gezelter
Content type: application/x-tex
File size: 8235 byte(s)
Log Message:
started some edits

File Contents

# User Rev Content
1 gezelter 3640 \documentclass[11pt]{article}
2     \usepackage{amsmath}
3     \usepackage{amssymb}
4     \usepackage{setspace}
5     \usepackage{endfloat}
6     \usepackage{caption}
7     \usepackage{graphicx}
8     \usepackage{multirow}
9     \usepackage[square, comma, sort&compress]{natbib}
10     \usepackage{url}
11     \pagestyle{plain} \pagenumbering{arabic} \oddsidemargin 0.0cm
12     \evensidemargin 0.0cm \topmargin -21pt \headsep 10pt \textheight
13     9.0in \textwidth 6.5in \brokenpenalty=10000
14    
15     % double space list of tables and figures
16     %\AtBeginDelayedFloats{\renewcomand{\baselinestretch}{1.66}}
17     \setlength{\abovecaptionskip}{20 pt}
18     \setlength{\belowcaptionskip}{30 pt}
19    
20     \bibpunct{[}{]}{,}{s}{}{;}
21     \bibliographystyle{aip}
22    
23     \begin{document}
24    
25     \title{The Langevin Hull: Constant pressure and temperature dynamics for non-periodic systems}
26    
27     \author{Charles F. Varedeman II, Kelsey Stocker, and J. Daniel
28     Gezelter\footnote{Corresponding author. \ Electronic mail: gezelter@nd.edu} \\
29     Department of Chemistry and Biochemistry,\\
30     University of Notre Dame\\
31     Notre Dame, Indiana 46556}
32    
33     \date{\today}
34    
35     \maketitle
36    
37     \begin{doublespace}
38    
39     \begin{abstract}
40     We have developed a new isobaric-isothermal (NPT) algorithm which
41     applies an external pressure to the facets comprising the convex
42     hull surrounding the objects in the system. Additionally, a Langevin
43     thermostat is applied to facets of the hull to mimic contact with an
44     external heat bath. This new method, the ``Langevin Hull'',
45     performs better than traditional affine transform methods for
46     systems containing heterogeneous mixtures of materials with
47     different compressibilities. It does not suffer from the edge
48     effects of boundary potential methods, and allows realistic
49     treatment of both external pressure and thermal conductivity to an
50     implicit solvents. We apply this method to several different
51     systems including bare nano-particles, nano-particles in explicit
52     solvent, as well as clusters of liquid water and ice. The predicted
53     mechanical and thermal properties of these systems are in good
54     agreement with experimental data.
55     \end{abstract}
56    
57     \newpage
58    
59     %\narrowtext
60    
61     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
62     % BODY OF TEXT
63     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64    
65    
66     \section{Introduction}
67    
68 gezelter 3641 The most common molecular dynamics methods for sampling configurations
69     of an isobaric-isothermal (NPT) ensemble attempt to maintain a target
70     pressure in a simulation by coupling the volume of the system to an
71     extra degree of freedom, the {\it barostat}. These methods require
72     periodic boundary conditions, because when the instantaneous pressure
73     in the system differs from the target pressure, the volume is
74     typically reduced or expanded using {\it affine transforms} of the
75     system geometry. An affine transform scales both the box lengths as
76     well as the scaled particle positions (but not the sizes of the
77     particles). The most common constant pressure methods, including the
78     Melchionna modification\cite{melchionna93} to the
79     Nos\'e-Hoover-Andersen equations of motion, the Berendsen pressure
80     bath, and the Langevin Piston, all utilize coordinate transformation
81     to adjust the box volume.
82 gezelter 3640
83     \begin{figure}
84 gezelter 3641 \includegraphics[width=\linewidth]{AffineScale2}
85     \caption{Affine Scaling constant pressure methods use box-length
86     scaling to adjust the volume to adjust to under- or over-pressure
87     conditions. In a system with a uniform compressibility (e.g. bulk
88     fluids) these methods can work well. In systems containing
89     heterogeneous mixtures, the affine scaling moves required to adjust
90     the pressure in the high-compressibility regions can cause molecules
91     in low compressibility regions to collide.}
92 gezelter 3640 \label{affineScale}
93     \end{figure}
94    
95    
96     Heterogeneous mixtures of materials with different compressibilities?
97    
98     Explicitly non-periodic systems
99    
100     Elastic Bag
101    
102     Spherical Boundary approaches
103    
104     \section{Methodology}
105    
106     A new method which uses a constant pressure and temperature bath that
107     interacts with the objects that are currently at the edge of the
108     system.
109    
110     Novel features: No a priori geometry is defined, No affine transforms,
111     No fictitious particles, No bounding potentials.
112    
113     Simulation starts as a collection of atomic locations in 3D (a point
114     cloud).
115    
116     Delaunay triangulation finds all facets between coplanar neighbors.
117    
118     The Convex Hull is the set of facets that have no concave corners at a
119     vertex.
120    
121     Molecules on the convex hull are dynamic. As they re-enter the
122     cluster, all interactions with the external bath are removed.The
123     external bath applies pressure to the facets of the convex hull in
124     direct proportion to the area of the facet.Thermal coupling depends on
125     the solvent temperature, friction and the size and shape of each
126     facet.
127    
128     \begin{equation}
129     m_i \dot{\mathbf v}_i(t)=-{\mathbf \nabla}_i U
130     \end{equation}
131    
132     \begin{equation}
133     m_i \dot{\mathbf v}_i(t)=-{\mathbf \nabla}_i U + {\mathbf F}_i^{\mathrm ext}
134     \end{equation}
135    
136     \begin{equation}
137     {\mathbf F}_{i}^{\mathrm ext} = \sum_{\begin{array}{c}\mathrm{facets\
138     } f \\ \mathrm{containing\ } i\end{array}} \frac{1}{3}\ {\mathbf
139     F}_f^{\mathrm ext}
140     \end{equation}
141    
142     \begin{equation}
143     \begin{array}{rclclcl}
144     {\mathbf F}_f^{\text{ext}} & = & \text{external pressure} & + & \text{drag force} & + & \text{random force} \\
145     & = & -\hat{n}_f P A_f & - & \Xi_f(t) {\mathbf v}_f(t) & + & {\mathbf R}_f(t)
146     \end{array}
147     \end{equation}
148    
149     \begin{eqnarray}
150     A_f & = & \text{area of facet}\ f \\
151     \hat{n}_f & = & \text{facet normal} \\
152     P & = & \text{external pressure}
153     \end{eqnarray}
154    
155     \begin{eqnarray}
156     {\mathbf v}_f(t) & = & \text{velocity of facet} \\
157     & = & \frac{1}{3} \sum_{i=1}^{3} {\mathbf v}_i \\
158     \Xi_f(t) & = & \text{is a hydrodynamic tensor that depends} \\
159     & & \text{on the geometry and surface area of} \\
160     & & \text{facet} \ f\ \text{and the viscosity of the fluid.}
161     \end{eqnarray}
162    
163     \begin{eqnarray}
164     \left< {\mathbf R}_f(t) \right> & = & 0 \\
165     \left<{\mathbf R}_f(t) {\mathbf R}_f^T(t^\prime)\right> & = & 2 k_B T\
166     \Xi_f(t)\delta(t-t^\prime)
167     \end{eqnarray}
168    
169     Implemented in OpenMD.\cite{Meineke:2005gd,openmd}
170    
171     \section{Tests \& Applications}
172    
173     \subsection{Bulk modulus of gold nanoparticles}
174    
175     \begin{figure}
176     \includegraphics[width=\linewidth]{pressure_tb}
177     \caption{Pressure response is rapid (18 \AA gold nanoparticle), target
178     pressure = 4 GPa}
179     \label{pressureResponse}
180     \end{figure}
181    
182     \begin{figure}
183     \includegraphics[width=\linewidth]{temperature_tb}
184     \caption{Temperature equilibration depends on surface area and bath
185     viscosity. Target Temperature = 300K}
186     \label{temperatureResponse}
187     \end{figure}
188    
189     \begin{equation}
190     \kappa_T=-\frac{1}{V_{\mathrm{eq}}}\left(\frac{\partial V}{\partial
191     P}\right)
192     \end{equation}
193    
194     \begin{figure}
195     \includegraphics[width=\linewidth]{compress_tb}
196     \caption{Isothermal Compressibility (18 \AA gold nanoparticle)}
197     \label{temperatureResponse}
198     \end{figure}
199    
200     \subsection{Compressibility of SPC/E water clusters}
201    
202     \begin{figure}
203     \includegraphics[width=\linewidth]{g_r_theta}
204     \caption{Definition of coordinates}
205     \label{coords}
206     \end{figure}
207    
208     \begin{equation}
209     \cos{\theta}=\frac{\vec{r}_i\cdot\vec{\mu}_i}{|\vec{r}_i||\vec{\mu}_i|}
210     \end{equation}
211    
212     \begin{figure}
213     \includegraphics[width=\linewidth]{pAngle}
214     \caption{SPC/E water clusters: only minor dewetting at the boundary}
215     \label{pAngle}
216     \end{figure}
217    
218     \begin{figure}
219     \includegraphics[width=\linewidth]{isothermal}
220     \caption{Compressibility of SPC/E water}
221     \label{compWater}
222     \end{figure}
223    
224     \subsection{Heterogeneous nanoparticle / water mixtures}
225    
226    
227     \section{Appendix A: Hydrodynamic tensor for triangular facets}
228    
229     \begin{figure}
230     \includegraphics[width=\linewidth]{hydro}
231     \caption{Hydro}
232     \label{hydro}
233     \end{figure}
234    
235     \begin{equation}
236     \Xi_f(t) =\left[\sum_{i=1}^3 T_{if}\right]^{-1}
237     \end{equation}
238    
239     \begin{equation}
240     T_{if}=\frac{A_i}{8\pi\eta R_{if}}\left(I +
241     \frac{\mathbf{R}_{if}\mathbf{R}_{if}^T}{R_{if}^2}\right)
242     \end{equation}
243    
244     \section{Appendix B: Computing Convex Hulls on Parallel Computers}
245    
246     \section{Acknowledgments}
247     Support for this project was provided by the
248     National Science Foundation under grant CHE-0848243. Computational
249     time was provided by the Center for Research Computing (CRC) at the
250     University of Notre Dame.
251    
252     \newpage
253    
254     \bibliography{langevinHull}
255    
256     \end{doublespace}
257     \end{document}