ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/langevinHull/langevinHull.tex
Revision: 3644
Committed: Thu Sep 9 20:19:09 2010 UTC (13 years, 9 months ago) by kstocke1
Content type: application/x-tex
File size: 8237 byte(s)
Log Message:
M    langevinHull.tex


File Contents

# Content
1 \documentclass[11pt]{article}
2 \usepackage{amsmath}
3 \usepackage{amssymb}
4 \usepackage{setspace}
5 \usepackage{endfloat}
6 \usepackage{caption}
7 \usepackage{graphicx}
8 \usepackage{multirow}
9 \usepackage[square, comma, sort&compress]{natbib}
10 \usepackage{url}
11 \pagestyle{plain} \pagenumbering{arabic} \oddsidemargin 0.0cm
12 \evensidemargin 0.0cm \topmargin -21pt \headsep 10pt \textheight
13 9.0in \textwidth 6.5in \brokenpenalty=10000
14
15 % double space list of tables and figures
16 %\AtBeginDelayedFloats{\renewcomand{\baselinestretch}{1.66}}
17 \setlength{\abovecaptionskip}{20 pt}
18 \setlength{\belowcaptionskip}{30 pt}
19
20 \bibpunct{[}{]}{,}{s}{}{;}
21 \bibliographystyle{aip}
22
23 \begin{document}
24
25 \title{The Langevin Hull: Constant pressure and temperature dynamics for non-periodic systems}
26
27 \author{Charles F. Vardeman II, Kelsey M. Stocker, and J. Daniel
28 Gezelter\footnote{Corresponding author. \ Electronic mail: gezelter@nd.edu} \\
29 Department of Chemistry and Biochemistry,\\
30 University of Notre Dame\\
31 Notre Dame, Indiana 46556}
32
33 \date{\today}
34
35 \maketitle
36
37 \begin{doublespace}
38
39 \begin{abstract}
40 We have developed a new isobaric-isothermal (NPT) algorithm which
41 applies an external pressure to the facets comprising the convex
42 hull surrounding the objects in the system. Additionally, a Langevin
43 thermostat is applied to facets of the hull to mimic contact with an
44 external heat bath. This new method, the ``Langevin Hull'',
45 performs better than traditional affine transform methods for
46 systems containing heterogeneous mixtures of materials with
47 different compressibilities. It does not suffer from the edge
48 effects of boundary potential methods, and allows realistic
49 treatment of both external pressure and thermal conductivity to an
50 implicit solvents. We apply this method to several different
51 systems including bare nano-particles, nano-particles in explicit
52 solvent, as well as clusters of liquid water and ice. The predicted
53 mechanical and thermal properties of these systems are in good
54 agreement with experimental data.
55 \end{abstract}
56
57 \newpage
58
59 %\narrowtext
60
61 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
62 % BODY OF TEXT
63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64
65
66 \section{Introduction}
67
68 The most common molecular dynamics methods for sampling configurations
69 of an isobaric-isothermal (NPT) ensemble attempt to maintain a target
70 pressure in a simulation by coupling the volume of the system to an
71 extra degree of freedom, the {\it barostat}. These methods require
72 periodic boundary conditions, because when the instantaneous pressure
73 in the system differs from the target pressure, the volume is
74 typically reduced or expanded using {\it affine transforms} of the
75 system geometry. An affine transform scales both the box lengths as
76 well as the scaled particle positions (but not the sizes of the
77 particles). The most common constant pressure methods, including the
78 Melchionna modification\cite{melchionna93} to the
79 Nos\'e-Hoover-Andersen equations of motion, the Berendsen pressure
80 bath, and the Langevin Piston, all utilize coordinate transformation
81 to adjust the box volume.
82
83 \begin{figure}
84 \includegraphics[width=\linewidth]{AffineScale2}
85 \caption{Affine Scaling constant pressure methods use box-length
86 scaling to adjust the volume to adjust to under- or over-pressure
87 conditions. In a system with a uniform compressibility (e.g. bulk
88 fluids) these methods can work well. In systems containing
89 heterogeneous mixtures, the affine scaling moves required to adjust
90 the pressure in the high-compressibility regions can cause molecules
91 in low compressibility regions to collide.}
92 \label{affineScale}
93 \end{figure}
94
95
96 Heterogeneous mixtures of materials with different compressibilities?
97
98 Explicitly non-periodic systems
99
100 Elastic Bag
101
102 Spherical Boundary approaches
103
104 \section{Methodology}
105
106 A new method which uses a constant pressure and temperature bath that
107 interacts with the objects that are currently at the edge of the
108 system.
109
110 Novel features: No a priori geometry is defined, No affine transforms,
111 No fictitious particles, No bounding potentials.
112
113 Simulation starts as a collection of atomic locations in 3D (a point
114 cloud).
115
116 Delaunay triangulation finds all facets between coplanar neighbors.
117
118 The Convex Hull is the set of facets that have no concave corners at a
119 vertex.
120
121 Molecules on the convex hull are dynamic. As they re-enter the
122 cluster, all interactions with the external bath are removed.The
123 external bath applies pressure to the facets of the convex hull in
124 direct proportion to the area of the facet.Thermal coupling depends on
125 the solvent temperature, friction and the size and shape of each
126 facet.
127
128 \begin{equation}
129 m_i \dot{\mathbf v}_i(t)=-{\mathbf \nabla}_i U
130 \end{equation}
131
132 \begin{equation}
133 m_i \dot{\mathbf v}_i(t)=-{\mathbf \nabla}_i U + {\mathbf F}_i^{\mathrm ext}
134 \end{equation}
135
136 \begin{equation}
137 {\mathbf F}_{i}^{\mathrm ext} = \sum_{\begin{array}{c}\mathrm{facets\
138 } f \\ \mathrm{containing\ } i\end{array}} \frac{1}{3}\ {\mathbf
139 F}_f^{\mathrm ext}
140 \end{equation}
141
142 \begin{equation}
143 \begin{array}{rclclcl}
144 {\mathbf F}_f^{\text{ext}} & = & \text{external pressure} & + & \text{drag force} & + & \text{random force} \\
145 & = & -\hat{n}_f P A_f & - & \Xi_f(t) {\mathbf v}_f(t) & + & {\mathbf R}_f(t)
146 \end{array}
147 \end{equation}
148
149 \begin{eqnarray}
150 A_f & = & \text{area of facet}\ f \\
151 \hat{n}_f & = & \text{facet normal} \\
152 P & = & \text{external pressure}
153 \end{eqnarray}
154
155 \begin{eqnarray}
156 {\mathbf v}_f(t) & = & \text{velocity of facet} \\
157 & = & \frac{1}{3} \sum_{i=1}^{3} {\mathbf v}_i \\
158 \Xi_f(t) & = & \text{is a hydrodynamic tensor that depends} \\
159 & & \text{on the geometry and surface area of} \\
160 & & \text{facet} \ f\ \text{and the viscosity of the fluid.}
161 \end{eqnarray}
162
163 \begin{eqnarray}
164 \left< {\mathbf R}_f(t) \right> & = & 0 \\
165 \left<{\mathbf R}_f(t) {\mathbf R}_f^T(t^\prime)\right> & = & 2 k_B T\
166 \Xi_f(t)\delta(t-t^\prime)
167 \end{eqnarray}
168
169 Implemented in OpenMD.\cite{Meineke:2005gd,openmd}
170
171 \section{Tests \& Applications}
172
173 \subsection{Bulk modulus of gold nanoparticles}
174
175 \begin{figure}
176 \includegraphics[width=\linewidth]{pressure_tb}
177 \caption{Pressure response is rapid (18 \AA gold nanoparticle), target
178 pressure = 4 GPa}
179 \label{pressureResponse}
180 \end{figure}
181
182 \begin{figure}
183 \includegraphics[width=\linewidth]{temperature_tb}
184 \caption{Temperature equilibration depends on surface area and bath
185 viscosity. Target Temperature = 300K}
186 \label{temperatureResponse}
187 \end{figure}
188
189 \begin{equation}
190 \kappa_T=-\frac{1}{V_{\mathrm{eq}}}\left(\frac{\partial V}{\partial
191 P}\right)
192 \end{equation}
193
194 \begin{figure}
195 \includegraphics[width=\linewidth]{compress_tb}
196 \caption{Isothermal Compressibility (18 \AA gold nanoparticle)}
197 \label{temperatureResponse}
198 \end{figure}
199
200 \subsection{Compressibility of SPC/E water clusters}
201
202 \begin{figure}
203 \includegraphics[width=\linewidth]{g_r_theta}
204 \caption{Definition of coordinates}
205 \label{coords}
206 \end{figure}
207
208 \begin{equation}
209 \cos{\theta}=\frac{\vec{r}_i\cdot\vec{\mu}_i}{|\vec{r}_i||\vec{\mu}_i|}
210 \end{equation}
211
212 \begin{figure}
213 \includegraphics[width=\linewidth]{pAngle}
214 \caption{SPC/E water clusters: only minor dewetting at the boundary}
215 \label{pAngle}
216 \end{figure}
217
218 \begin{figure}
219 \includegraphics[width=\linewidth]{isothermal}
220 \caption{Compressibility of SPC/E water}
221 \label{compWater}
222 \end{figure}
223
224 \subsection{Heterogeneous nanoparticle / water mixtures}
225
226
227 \section{Appendix A: Hydrodynamic tensor for triangular facets}
228
229 \begin{figure}
230 \includegraphics[width=\linewidth]{hydro}
231 \caption{Hydro}
232 \label{hydro}
233 \end{figure}
234
235 \begin{equation}
236 \Xi_f(t) =\left[\sum_{i=1}^3 T_{if}\right]^{-1}
237 \end{equation}
238
239 \begin{equation}
240 T_{if}=\frac{A_i}{8\pi\eta R_{if}}\left(I +
241 \frac{\mathbf{R}_{if}\mathbf{R}_{if}^T}{R_{if}^2}\right)
242 \end{equation}
243
244 \section{Appendix B: Computing Convex Hulls on Parallel Computers}
245
246 \section{Acknowledgments}
247 Support for this project was provided by the
248 National Science Foundation under grant CHE-0848243. Computational
249 time was provided by the Center for Research Computing (CRC) at the
250 University of Notre Dame.
251
252 \newpage
253
254 \bibliography{langevinHull}
255
256 \end{doublespace}
257 \end{document}