ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/langevinHull/langevinHull.tex
(Generate patch)

Comparing trunk/langevinHull/langevinHull.tex (file contents):
Revision 3640 by gezelter, Thu Aug 12 20:25:00 2010 UTC vs.
Revision 3644 by kstocke1, Thu Sep 9 20:19:09 2010 UTC

# Line 24 | Line 24
24  
25   \title{The Langevin Hull: Constant pressure and temperature dynamics for non-periodic systems}
26  
27 < \author{Charles F. Varedeman II, Kelsey Stocker, and J. Daniel
27 > \author{Charles F. Vardeman II, Kelsey M. Stocker, and J. Daniel
28   Gezelter\footnote{Corresponding author. \ Electronic mail: gezelter@nd.edu} \\
29   Department of Chemistry and Biochemistry,\\
30   University of Notre Dame\\
# Line 65 | Line 65 | Affine transform methods
65  
66   \section{Introduction}
67  
68 < Affine transform methods
68 > The most common molecular dynamics methods for sampling configurations
69 > of an isobaric-isothermal (NPT) ensemble attempt to maintain a target
70 > pressure in a simulation by coupling the volume of the system to an
71 > extra degree of freedom, the {\it barostat}.  These methods require
72 > periodic boundary conditions, because when the instantaneous pressure
73 > in the system differs from the target pressure, the volume is
74 > typically reduced or expanded using {\it affine transforms} of the
75 > system geometry. An affine transform scales both the box lengths as
76 > well as the scaled particle positions (but not the sizes of the
77 > particles). The most common constant pressure methods, including the
78 > Melchionna modification\cite{melchionna93} to the
79 > Nos\'e-Hoover-Andersen equations of motion, the Berendsen pressure
80 > bath, and the Langevin Piston, all utilize coordinate transformation
81 > to adjust the box volume.
82  
83   \begin{figure}
84 < \includegraphics[width=\linewidth]{AffineScale}
85 < \caption{Affine Scale}
84 > \includegraphics[width=\linewidth]{AffineScale2}
85 > \caption{Affine Scaling constant pressure methods use box-length
86 >  scaling to adjust the volume to adjust to under- or over-pressure
87 >  conditions. In a system with a uniform compressibility (e.g. bulk
88 >  fluids) these methods can work well.  In systems containing
89 >  heterogeneous mixtures, the affine scaling moves required to adjust
90 >  the pressure in the high-compressibility regions can cause molecules
91 >  in low compressibility regions to collide.}
92   \label{affineScale}
93   \end{figure}
94  
95  
77 \begin{figure}
78 \includegraphics[width=\linewidth]{AffineScale2}
79 \caption{Affine Scale2}
80 \label{affineScale2}
81 \end{figure}
82
96   Heterogeneous mixtures of materials with different compressibilities?
97  
98   Explicitly non-periodic systems

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines