ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mattDisertation/Introduction.tex
(Generate patch)

Comparing trunk/mattDisertation/Introduction.tex (file contents):
Revision 979 by mmeineke, Fri Jan 23 02:18:34 2004 UTC vs.
Revision 980 by mmeineke, Sat Jan 24 03:09:15 2004 UTC

# Line 456 | Line 456 | Sec.~\ref{introSec:MDsymplecticRot}.
456  
457   \subsubsection{\label{introSec:MDliouville}Liouville Propagator}
458  
459 + Before discussing the integration of the rotation matrix, it is
460 + necessary to understand the construction of a ``good'' integration
461 + scheme.  It has been previously
462 + discussed(Sec.~\ref{introSec:MDintegrate}) how it is desirable for an
463 + integrator to be symplectic, or time reversible.  The following is an
464 + outline of the Trotter factorization of the Liouville Propagator as a
465 + scheme for generating symplectic integrators. \cite{Tuckerman:1992}
466  
467 + For a system with $f$ degrees of freedom the Liouville operator can be
468 + defined as,
469 + \begin{equation}
470 + eq here
471 + \label{introEq:LiouvilleOperator}
472 + \end{equation}
473 + Here, $r_j$ and $p_j$ are the position and conjugate momenta of a
474 + degree of freedom, and $f_j$ is the force on that degree of freedom.
475 + $\Gamma$ is defined as the set of all positions nad conjugate momenta,
476 + $\{r_j,p_j\}$, and the propagator, $U(t)$, is defined
477 + \begin {equation}
478 + eq here
479 + \label{introEq:Lpropagator}
480 + \end{equation}
481 + This allows the specification of $\Gamma$ at any time $t$ as
482 + \begin{equation}
483 + eq here
484 + \label{introEq:Lp2}
485 + \end{equation}
486 + It is important to note, $U(t)$ is a unitary operator meaning
487 + \begin{equation}
488 + U(-t)=U^{-1}(t)
489 + \label{introEq:Lp3}
490 + \end{equation}
491 +
492 + Decomposing $L$ into two parts, $iL_1$ and $iL_2$, one can use the
493 + Trotter theorem to yield
494 + \begin{equation}
495 + eq here
496 + \label{introEq:Lp4}
497 + \end{equation}
498 + Where $\Delta t = \frac{t}{P}$.
499 + With this, a discrete time operator $G(\Delta t)$ can be defined:
500 + \begin{equation}
501 + eq here
502 + \label{introEq:Lp5}
503 + \end{equation}
504 + Because $U_1(t)$ and $U_2(t)$ are unitary, $G|\Delta t)$ is also
505 + unitary.  Meaning an integrator based on this factorization will be
506 + reversible in time.
507 +
508 + As an example, consider the following decomposition of $L$:
509 + \begin{equation}
510 + eq here
511 + \label{introEq:Lp6}
512 + \end{equation}
513 + Operating $G(\Delta t)$ on $\Gamma)0)$, and utilizing the operator property
514 + \begin{equation}
515 + eq here
516 + \label{introEq:Lp8}
517 + \end{equation}
518 + Where $c$ is independent of $q$.  One obtains the following:  
519 + \begin{equation}
520 + eq here
521 + \label{introEq:Lp8}
522 + \end{equation}
523 + Or written another way,
524 + \begin{equation}
525 + eq here
526 + \label{intorEq:Lp9}
527 + \end{equation}
528 + This is the velocity Verlet formulation presented in
529 + Sec.~\ref{introSec:MDintegrate}.  Because this integration scheme is
530 + comprised of unitary propagators, it is symplectic, and therefore area
531 + preserving in phase space.  From the preceeding fatorization, one can
532 + see that the integration of the equations of motion would follow:
533 + \begin{enumerate}
534 + \item calculate the velocities at the half step, $\frac{\Delta t}{2}$, from the forces calculated at the initial position.
535 +
536 + \item Use the half step velocities to move positions one whole step, $\Delta t$.
537 +
538 + \item Evaluate the forces at the new positions, $\mathbf{r}(\Delta t)$, and use the new forces to complete the velocity move.
539 +
540 + \item Repeat from step 1 with the new position, velocities, and forces assuming the roles of the initial values.
541 + \end{enumerate}
542 +
543 + \subsubsection{\label{introSec:MDsymplecticRot} Symplectic Propagation of the Rotation Matrix}
544 +
545 + Based on the factorization from the previous section,
546 + Dullweber\emph{et al.}\cite{Dullweber:1997}~ proposed a scheme for the
547 + symplectic propagation of the rotation matrix, $\mathbf{A}$, as an
548 + alternative method for the integration of orientational degrees of
549 + freedom. The method starts with a straightforward splitting of the
550 + Liouville operator:
551 + \begin{equation}
552 + eq here
553 + \label{introEq:SR1}
554 + \end{equation}
555 + Where $\boldsymbol{\tau}(\mathbf{A})$ are the tourques of the system
556 + due to the configuration, and $\boldsymbol{/pi}$ are the conjugate
557 + angular momenta of the system. The propagator, $G(\Delta t)$, becomes
558 + \begin{equation}
559 + eq here
560 + \label{introEq:SR2}
561 + \end{equation}
562 + Propagation fo the linear and angular momenta follows as in the Verlet
563 + scheme.  The propagation of positions also follows the verlet scheme
564 + with the addition of a further symplectic splitting of the rotation
565 + matrix propagation, $\mathcal{G}_{\text{rot}}(\Delta t)$.
566 + \begin{equation}
567 + eq here
568 + \label{introEq:SR3}
569 + \end{equation}
570 + Where $\mathcal{G}_j$ is a unitary rotation of $\mathbf{A}$ and
571 + $\boldsymbol{\pi}$ about each axis $j$.  As all propagations are now
572 + unitary and symplectic, the entire integration scheme is also
573 + symplectic and time reversible.
574 +
575   \section{\label{introSec:chapterLayout}Chapter Layout}
576  
577   \subsection{\label{introSec:RSA}Random Sequential Adsorption}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines