ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mattDisertation/lipid.tex
Revision: 971
Committed: Wed Jan 21 02:25:18 2004 UTC (20 years, 7 months ago) by mmeineke
Content type: application/x-tex
File size: 2947 byte(s)
Log Message:
started work on the lipid chapter

File Contents

# User Rev Content
1 mmeineke 971
2    
3     \chapter{\label{chapt:lipid}Phospholipid Simulations}
4    
5     \section{\label{lipidSec:Intro}Introduction}
6    
7     \section{\label{lipidSec:Methods}Methods}
8    
9     \subsection{\label{lipidSec:lipidMedel}The Lipid Model}
10    
11     \begin{figure}
12    
13     \caption{Schematic diagram of the single chain phospholipid model}
14    
15     \label{lipidFig:lipidModel}
16    
17     \end{figure}
18    
19     The phospholipid model used in these simulations is based on the
20     design illustrated in Fig.~\ref{lipidFig:lipidModel}. The head group
21     of the phospholipid is replaced by a single Lennard-Jones sphere of
22     diameter $fix$, with $fix$ scaling the well depth of its van der Walls
23     interaction. This sphere also contains a single dipole of magnitude
24     $fix$, where $fix$ can be varied to mimic the charge separation of a
25     given phospholipid head group. The atoms of the tail region are
26     modeled by unified atom beads. They are free of partial charges or
27     dipoles, containing only Lennard-Jones interaction sites at their
28     centers of mass. As with the head groups, their potentials can be
29     scaled by $fix$ and $fix$.
30    
31     The long range interactions between lipids are given by the following:
32     \begin{equation}
33     EQ Here
34     \label{lipidEq:LJpot}
35     \end{equation}
36     and
37     \begin{equation}
38     EQ Here
39     \label{lipidEq:dipolePot}
40     \end{equation}
41     Where $V_{\text{LJ}}$ is the Lennard-Jones potential and
42     $V_{\text{dipole}}$ is the dipole-dipole potential. As previously
43     stated, $\sigma_{ij}$ and $\epsilon_{ij}$ are the Lennard-Jones
44     parameters which scale the length and depth of the interaction
45     respectively, and $r_{ij}$ is the distance between beads $i$ and $j$.
46     In $V_{\text{dipole}}$, $\mathbf{r}_{ij}$ is the vector starting at
47     bead$i$ and pointing towards bead $j$. Vectors $\mathbf{\Omega}_i$
48     and $\mathbf{\Omega}_j$ are the orientational degrees of freedom for
49     beads $i$ and $j$. $|\mu_i|$ is the magnitude of the dipole moment of
50     $i$, and $\boldsymbol{\hat{u}}_i$ is the standard unit orientation
51     vector of $\boldsymbol{\Omega}_i$.
52    
53     The model also allows for the bonded interactions of bonds, bends, and
54     torsions. The bonds between two beads on a chain are of fixed length,
55     and are maintained according to the {\sc rattle} algorithm. \cite{fix}
56     The bends are subject to a harmonic potential:
57     \begin{equation}
58     eq here
59     \label{lipidEq:bendPot}
60     \end{equation}
61     where $fix$ scales the strength of the harmonic well, and $fix$ is the
62     angle between bond vectors $fix$ and $fix$. The torsion potential is
63     given by:
64     \begin{equation}
65     eq here
66     \label{lipidEq:torsionPot}
67     \end{equation}
68     Here, the parameters $k_0$, $k_1$, $k_2$, and $k_3$ fit the cosine
69     power series to the desired torsion potential surface, and $\phi$ is
70     the angle between bondvectors $fix$ and $fix$ along the vector $fix$
71     (see Fig.:\ref{lipidFig:lipidModel}). Long range interactions such as
72     the Lennard-Jones potential are excluded for bead pairs involved in
73     the same bond, bend, or torsion. However, internal interactions not
74     directly involved in a bonded pair are calculated.
75    
76