ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/mattDisertation/oopse.tex
Revision: 1044
Committed: Mon Feb 9 21:44:01 2004 UTC (20 years, 5 months ago) by mmeineke
Content type: application/x-tex
File size: 48771 byte(s)
Log Message:
added some OOPSE sections

File Contents

# User Rev Content
1 mmeineke 1044 \documentclass[11pt]{article}
2     \usepackage{amsmath}
3     \usepackage{amssymb}
4     \usepackage{endfloat}
5     \usepackage{berkeley}
6     \usepackage{listings}
7     \usepackage{epsf}
8     \usepackage[ref]{overcite}
9     \usepackage{setspace}
10     \usepackage{tabularx}
11     \pagestyle{plain}
12     \pagenumbering{arabic}
13     \oddsidemargin 0.0cm \evensidemargin 0.0cm
14     \topmargin -21pt \headsep 10pt
15     \textheight 9.0in \textwidth 6.5in
16     \brokenpenalty=10000
17     \renewcommand{\baselinestretch}{1.2}
18     \renewcommand\citemid{\ } % no comma in optional reference note
19    
20     \begin{document}
21     \lstset{language=C,float,frame=tblr,frameround=tttt}
22     \renewcommand{\lstlistingname}{Scheme}
23     \title{{\sc oopse}: An Open Source Object-Oriented Parallel Simulation
24     Engine for Molecular Dynamics}
25    
26     \author{Matthew A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher J. Fennell and J. Daniel Gezelter\\
27     Department of Chemistry and Biochemistry\\
28     University of Notre Dame\\
29     Notre Dame, Indiana 46556}
30    
31     \date{\today}
32     \maketitle
33    
34     \begin{abstract}
35     We detail the capabilities of a new open-source parallel simulation
36     package ({\sc oopse}) that can perform molecular dynamics simulations
37     on atom types that are missing from other popular packages. In
38     particular, {\sc oopse} is capable of performing orientational
39     dynamics on dipolar systems, and it can handle simulations of metallic
40     systems using the embedded atom method ({\sc eam}).
41     \end{abstract}
42    
43     \newpage
44    
45     \section{\label{sec:intro}Introduction}
46    
47     \begin{itemize}
48    
49     \item Need for package / Niche to fill
50    
51     \item Design Goal
52    
53     \item Open Source
54    
55     \item Discussion of Paper Layout
56    
57     \end{itemize}
58    
59     \section{\label{sec:empiricalEnergy}The Empirical Energy Functions}
60    
61     \subsection{\label{sec:atomsMolecules}Atoms, Molecules and Rigid Bodies}
62    
63     The basic unit of an {\sc oopse} simulation is the atom. The
64     parameters describing the atom are generalized to make the atom as
65     flexible a representation as possible. They may represent specific
66     atoms of an element, or be used for collections of atoms such as
67     methyl and carbonyl groups. The atoms are also capable of having
68     directional components associated with them (\emph{e.g.}~permanent
69     dipoles). Charges on atoms are not currently supported by {\sc oopse}.
70    
71     \begin{lstlisting}[caption={[Specifier for molecules and atoms] A sample specification of the simple Ar molecule},label=sch:AtmMole]
72     molecule{
73     name = "Ar";
74     nAtoms = 1;
75     atom[0]{
76     type="Ar";
77     position( 0.0, 0.0, 0.0 );
78     }
79     }
80     \end{lstlisting}
81    
82     Atoms can be collected into secondary srtructures such as rigid bodies
83     or molecules. The molecule is a way for {\sc oopse} to keep track of
84     the atoms in a simulation in logical manner. Molecular units store the
85     identities of all the atoms associated with themselves, and are
86     responsible for the evaluation of their own internal interactions
87     (\emph{i.e.}~bonds, bends, and torsions). Scheme \ref{sch:AtmMole}
88     shws how one creates a molecule in the \texttt{.mdl} files. The
89     position of the atoms given in the declaration are relative to the
90     origin of the molecule, and is used when creating a system containing
91     the molecule.
92    
93     As stated previously, one of the features that sets {\sc oopse} apart
94     from most of the current molecular simulation packages is the ability
95     to handle rigid body dynamics. Rigid bodies are non-spherical
96     particles or collections of particles that have a constant internal
97     potential and move collectively.\cite{Goldstein01} They are not
98     included in most simulation packages because of the requirement to
99     propagate the orientational degrees of freedom. Until recently,
100     integrators which propagate orientational motion have been lacking.
101    
102     Moving a rigid body involves determination of both the force and
103     torque applied by the surroundings, which directly affect the
104     translational and rotational motion in turn. In order to accumulate
105     the total force on a rigid body, the external forces and torques must
106     first be calculated for all the internal particles. The total force on
107     the rigid body is simply the sum of these external forces.
108     Accumulation of the total torque on the rigid body is more complex
109     than the force in that it is the torque applied on the center of mass
110     that dictates rotational motion. The torque on rigid body {\it i} is
111     \begin{equation}
112     \boldsymbol{\tau}_i=
113     \sum_{a}(\mathbf{r}_{ia}-\mathbf{r}_i)\times \mathbf{f}_{ia}
114     + \boldsymbol{\tau}_{ia},
115     \label{eq:torqueAccumulate}
116     \end{equation}
117     where $\boldsymbol{\tau}_i$ and $\mathbf{r}_i$ are the torque on and
118     position of the center of mass respectively, while $\mathbf{f}_{ia}$,
119     $\mathbf{r}_{ia}$, and $\boldsymbol{\tau}_{ia}$ are the force on,
120     position of, and torque on the component particles of the rigid body.
121    
122     The summation of the total torque is done in the body fixed axis of
123     the rigid body. In order to move between the space fixed and body
124     fixed coordinate axes, parameters describing the orientation must be
125     maintained for each rigid body. At a minimum, the rotation matrix
126     (\textbf{A}) can be described by the three Euler angles ($\phi,
127     \theta,$ and $\psi$), where the elements of \textbf{A} are composed of
128     trigonometric operations involving $\phi, \theta,$ and
129     $\psi$.\cite{Goldstein01} In order to avoid numerical instabilities
130     inherent in using the Euler angles, the four parameter ``quaternion''
131     scheme is often used. The elements of \textbf{A} can be expressed as
132     arithmetic operations involving the four quaternions ($q_0, q_1, q_2,$
133     and $q_3$).\cite{allen87:csl} Use of quaternions also leads to
134     performance enhancements, particularly for very small
135     systems.\cite{Evans77}
136    
137     {\sc oopse} utilizes a relatively new scheme that propagates the
138     entire nine parameter rotation matrix internally. Further discussion
139     on this choice can be found in Sec.~\ref{sec:integrate}. An example
140     definition of a riged body can be seen in Scheme
141     \ref{sch:rigidBody}. The positions in the atom definitions are the
142     placements of the atoms relative to the origin of the rigid body,
143     which itself has a position relative to the origin of the molecule.
144    
145     \begin{lstlisting}[caption={[Defining rigid bodies]A sample definition of a rigid body},label={sch:rigidBody}]
146     molecule{
147     name = "TIP3P_water";
148     nRigidBodies = 1;
149     rigidBody[0]{
150     nAtoms = 3;
151     atom[0]{
152     type = "O_TIP3P";
153     position( 0.0, 0.0, -0.06556 );
154     }
155     atom[1]{
156     type = "H_TIP3P";
157     position( 0.0, 0.75695, 0.52032 );
158     }
159     atom[2]{
160     type = "H_TIP3P";
161     position( 0.0, -0.75695, 0.52032 );
162     }
163     position( 0.0, 0.0, 0.0 );
164     orientation( 0.0, 0.0, 1.0 );
165     }
166     }
167     \end{lstlisting}
168    
169     \subsection{\label{sec:LJPot}The Lennard Jones Potential}
170    
171     The most basic force field implemented in {\sc oopse} is the
172     Lennard-Jones potential, which mimics the van der Waals interaction at
173     long distances, and uses an empirical repulsion at short
174     distances. The Lennard-Jones potential is given by:
175     \begin{equation}
176     V_{\text{LJ}}(r_{ij}) =
177     4\epsilon_{ij} \biggl[
178     \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{12}
179     - \biggl(\frac{\sigma_{ij}}{r_{ij}}\biggr)^{6}
180     \biggr]
181     \label{eq:lennardJonesPot}
182     \end{equation}
183     Where $r_{ij}$ is the distance between particles $i$ and $j$,
184     $\sigma_{ij}$ scales the length of the interaction, and
185     $\epsilon_{ij}$ scales the well depth of the potential. Scheme
186     \ref{sch:LJFF} gives and example partial \texttt{.bass} file that
187     shows a system of 108 Ar particles simulated with the Lennard-Jones
188     force field.
189    
190     \begin{lstlisting}[caption={[Invocation of the Lennard-Jones force field] A sample system using the Lennard-Jones force field.},label={sch:LJFF}]
191    
192     /*
193     * The Ar molecule is specified
194     * external to the.bass file
195     */
196    
197     #include "argon.mdl"
198    
199     nComponents = 1;
200     component{
201     type = "Ar";
202     nMol = 108;
203     }
204    
205     /*
206     * The initial configuration is generated
207     * before the simulation is invoked.
208     */
209    
210     initialConfig = "./argon.init";
211    
212     forceField = "LJ";
213     \end{lstlisting}
214    
215     Because this potential is calculated between all pairs, the force
216     evaluation can become computationally expensive for large systems. To
217     keep the pair evaluations to a manageable number, {\sc oopse} employs
218     a cut-off radius.\cite{allen87:csl} The cutoff radius is set to be
219     $2.5\sigma_{ii}$, where $\sigma_{ii}$ is the largest Lennard-Jones
220     length parameter present in the simulation. Truncating the calculation
221     at $r_{\text{cut}}$ introduces a discontinuity into the potential
222     energy. To offset this discontinuity, the energy value at
223     $r_{\text{cut}}$ is subtracted from the potential. This causes the
224     potential to go to zero smoothly at the cut-off radius.
225    
226     Interactions between dissimilar particles requires the generation of
227     cross term parameters for $\sigma$ and $\epsilon$. These are
228     calculated through the Lorentz-Berthelot mixing
229     rules:\cite{allen87:csl}
230     \begin{equation}
231     \sigma_{ij} = \frac{1}{2}[\sigma_{ii} + \sigma_{jj}]
232     \label{eq:sigmaMix}
233     \end{equation}
234     and
235     \begin{equation}
236     \epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}
237     \label{eq:epsilonMix}
238     \end{equation}
239    
240    
241    
242     \subsection{\label{sec:DUFF}Dipolar Unified-Atom Force Field}
243    
244     The dipolar unified-atom force field ({\sc duff}) was developed to
245     simulate lipid bilayers. The simulations require a model capable of
246     forming bilayers, while still being sufficiently computationally
247     efficient to allow large systems ($\approx$100's of phospholipids,
248     $\approx$1000's of waters) to be simulated for long times
249     ($\approx$10's of nanoseconds).
250    
251     With this goal in mind, {\sc duff} has no point
252     charges. Charge-neutral distributions were replaced with dipoles,
253     while most atoms and groups of atoms were reduced to Lennard-Jones
254     interaction sites. This simplification cuts the length scale of long
255     range interactions from $\frac{1}{r}$ to $\frac{1}{r^3}$, allowing us
256     to avoid the computationally expensive Ewald sum. Instead, we can use
257     neighbor-lists, reaction field, and cutoff radii for the dipolar
258     interactions.
259    
260     As an example, lipid head-groups in {\sc duff} are represented as
261     point dipole interaction sites. By placing a dipole of 20.6~Debye at
262     the head group center of mass, our model mimics the head group of
263     phosphatidylcholine.\cite{Cevc87} Additionally, a large Lennard-Jones
264     site is located at the pseudoatom's center of mass. The model is
265     illustrated by the dark grey atom in Fig.~\ref{fig:lipidModel}. The
266     water model we use to complement the dipoles of the lipids is our
267     reparameterization of the soft sticky dipole (SSD) model of Ichiye
268     \emph{et al.}\cite{liu96:new_model}
269    
270     \begin{figure}
271     \epsfxsize=\linewidth
272     \epsfbox{lipidModel.eps}
273     \caption{A representation of the lipid model. $\phi$ is the torsion angle, $\theta$ %
274     is the bend angle, $\mu$ is the dipole moment of the head group, and n
275     is the chain length.}
276     \label{fig:lipidModel}
277     \end{figure}
278    
279     We have used a set of scalable parameters to model the alkyl groups
280     with Lennard-Jones sites. For this, we have borrowed parameters from
281     the TraPPE force field of Siepmann
282     \emph{et al}.\cite{Siepmann1998} TraPPE is a unified-atom
283     representation of n-alkanes, which is parametrized against phase
284     equilibria using Gibbs ensemble Monte Carlo simulation
285     techniques.\cite{Siepmann1998} One of the advantages of TraPPE is that
286     it generalizes the types of atoms in an alkyl chain to keep the number
287     of pseudoatoms to a minimum; the parameters for an atom such as
288     $\text{CH}_2$ do not change depending on what species are bonded to
289     it.
290    
291     TraPPE also constrains all bonds to be of fixed length. Typically,
292     bond vibrations are the fastest motions in a molecular dynamic
293     simulation. Small time steps between force evaluations must be used to
294     ensure adequate sampling of the bond potential to ensure conservation
295     of energy. By constraining the bond lengths, larger time steps may be
296     used when integrating the equations of motion. A simulation using {\sc
297     duff} is illustrated in Scheme \ref{sch:DUFF}.
298    
299     \begin{lstlisting}[caption={[Invocation of {\sc duff}]Sample \texttt{.bass} file showing a simulation utilizing {\sc duff}},label={sch:DUFF}]
300    
301     #include "water.mdl"
302     #include "lipid.mdl"
303    
304     nComponents = 2;
305     component{
306     type = "simpleLipid_16";
307     nMol = 60;
308     }
309    
310     component{
311     type = "SSD_water";
312     nMol = 1936;
313     }
314    
315     initialConfig = "bilayer.init";
316    
317     forceField = "DUFF";
318    
319     \end{lstlisting}
320    
321     \subsubsection{\label{subSec:energyFunctions}{\sc duff} Energy Functions}
322    
323     The total potential energy function in {\sc duff} is
324     \begin{equation}
325     V = \sum^{N}_{I=1} V^{I}_{\text{Internal}}
326     + \sum^{N}_{I=1} \sum_{J>I} V^{IJ}_{\text{Cross}}
327     \label{eq:totalPotential}
328     \end{equation}
329     Where $V^{I}_{\text{Internal}}$ is the internal potential of molecule $I$:
330     \begin{equation}
331     V^{I}_{\text{Internal}} =
332     \sum_{\theta_{ijk} \in I} V_{\text{bend}}(\theta_{ijk})
333     + \sum_{\phi_{ijkl} \in I} V_{\text{torsion}}(\phi_{ijkl})
334     + \sum_{i \in I} \sum_{(j>i+4) \in I}
335     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
336     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
337     \biggr]
338     \label{eq:internalPotential}
339     \end{equation}
340     Here $V_{\text{bend}}$ is the bend potential for all 1, 3 bonded pairs
341     within the molecule $I$, and $V_{\text{torsion}}$ is the torsion potential
342     for all 1, 4 bonded pairs. The pairwise portions of the internal
343     potential are excluded for pairs that are closer than three bonds,
344     i.e.~atom pairs farther away than a torsion are included in the
345     pair-wise loop.
346    
347    
348     The bend potential of a molecule is represented by the following function:
349     \begin{equation}
350     V_{\text{bend}}(\theta_{ijk}) = k_{\theta}( \theta_{ijk} - \theta_0 )^2 \label{eq:bendPot}
351     \end{equation}
352     Where $\theta_{ijk}$ is the angle defined by atoms $i$, $j$, and $k$
353     (see Fig.~\ref{fig:lipidModel}), $\theta_0$ is the equilibrium
354     bond angle, and $k_{\theta}$ is the force constant which determines the
355     strength of the harmonic bend. The parameters for $k_{\theta}$ and
356     $\theta_0$ are borrowed from those in TraPPE.\cite{Siepmann1998}
357    
358     The torsion potential and parameters are also borrowed from TraPPE. It is
359     of the form:
360     \begin{equation}
361     V_{\text{torsion}}(\phi) = c_1[1 + \cos \phi]
362     + c_2[1 + \cos(2\phi)]
363     + c_3[1 + \cos(3\phi)]
364     \label{eq:origTorsionPot}
365     \end{equation}
366     Here $\phi$ is the angle defined by four bonded neighbors $i$,
367     $j$, $k$, and $l$ (again, see Fig.~\ref{fig:lipidModel}). For
368     computational efficiency, the torsion potential has been recast after
369     the method of CHARMM,\cite{charmm1983} in which the angle series is
370     converted to a power series of the form:
371     \begin{equation}
372     V_{\text{torsion}}(\phi) =
373     k_3 \cos^3 \phi + k_2 \cos^2 \phi + k_1 \cos \phi + k_0
374     \label{eq:torsionPot}
375     \end{equation}
376     Where:
377     \begin{align*}
378     k_0 &= c_1 + c_3 \\
379     k_1 &= c_1 - 3c_3 \\
380     k_2 &= 2 c_2 \\
381     k_3 &= 4c_3
382     \end{align*}
383     By recasting the potential as a power series, repeated trigonometric
384     evaluations are avoided during the calculation of the potential energy.
385    
386    
387     The cross potential between molecules $I$ and $J$, $V^{IJ}_{\text{Cross}}$, is
388     as follows:
389     \begin{equation}
390     V^{IJ}_{\text{Cross}} =
391     \sum_{i \in I} \sum_{j \in J}
392     \biggl[ V_{\text{LJ}}(r_{ij}) + V_{\text{dipole}}
393     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
394     + V_{\text{sticky}}
395     (\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},\boldsymbol{\Omega}_{j})
396     \biggr]
397     \label{eq:crossPotentail}
398     \end{equation}
399     Where $V_{\text{LJ}}$ is the Lennard Jones potential,
400     $V_{\text{dipole}}$ is the dipole dipole potential, and
401     $V_{\text{sticky}}$ is the sticky potential defined by the SSD model
402     (Sec.~\ref{sec:SSD}). Note that not all atom types include all
403     interactions.
404    
405     The dipole-dipole potential has the following form:
406     \begin{equation}
407     V_{\text{dipole}}(\mathbf{r}_{ij},\boldsymbol{\Omega}_{i},
408     \boldsymbol{\Omega}_{j}) = \frac{|\mu_i||\mu_j|}{4\pi\epsilon_{0}r_{ij}^{3}} \biggl[
409     \boldsymbol{\hat{u}}_{i} \cdot \boldsymbol{\hat{u}}_{j}
410     -
411     \frac{3(\boldsymbol{\hat{u}}_i \cdot \mathbf{r}_{ij}) %
412     (\boldsymbol{\hat{u}}_j \cdot \mathbf{r}_{ij}) }
413     {r^{2}_{ij}} \biggr]
414     \label{eq:dipolePot}
415     \end{equation}
416     Here $\mathbf{r}_{ij}$ is the vector starting at atom $i$ pointing
417     towards $j$, and $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$
418     are the orientational degrees of freedom for atoms $i$ and $j$
419     respectively. $|\mu_i|$ is the magnitude of the dipole moment of atom
420     $i$, $\boldsymbol{\hat{u}}_i$ is the standard unit orientation
421     vector of $\boldsymbol{\Omega}_i$, and $\boldsymbol{\hat{r}}_{ij}$ is
422     the unit vector pointing along $\mathbf{r}_{ij}$.
423    
424    
425     \subsubsection{\label{sec:SSD}The {\sc duff} Water Models: SSD/E and SSD/RF}
426    
427     In the interest of computational efficiency, the default solvent used
428     by {\sc oopse} is the extended Soft Sticky Dipole (SSD/E) water
429     model.\cite{Gezelter04} The original SSD was developed by Ichiye
430     \emph{et al.}\cite{liu96:new_model} as a modified form of the hard-sphere
431     water model proposed by Bratko, Blum, and
432     Luzar.\cite{Bratko85,Bratko95} It consists of a single point dipole
433     with a Lennard-Jones core and a sticky potential that directs the
434     particles to assume the proper hydrogen bond orientation in the first
435     solvation shell. Thus, the interaction between two SSD water molecules
436     \emph{i} and \emph{j} is given by the potential
437     \begin{equation}
438     V_{ij} =
439     V_{ij}^{LJ} (r_{ij})\ + V_{ij}^{dp}
440     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)\ +
441     V_{ij}^{sp}
442     (\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j),
443     \label{eq:ssdPot}
444     \end{equation}
445     where the $\mathbf{r}_{ij}$ is the position vector between molecules
446     \emph{i} and \emph{j} with magnitude equal to the distance $r_{ij}$, and
447     $\boldsymbol{\Omega}_i$ and $\boldsymbol{\Omega}_j$ represent the
448     orientations of the respective molecules. The Lennard-Jones and dipole
449     parts of the potential are given by equations \ref{eq:lennardJonesPot}
450     and \ref{eq:dipolePot} respectively. The sticky part is described by
451     the following,
452     \begin{equation}
453     u_{ij}^{sp}(\mathbf{r}_{ij},\boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)=
454     \frac{\nu_0}{2}[s(r_{ij})w(\mathbf{r}_{ij},
455     \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j) +
456     s^\prime(r_{ij})w^\prime(\mathbf{r}_{ij},
457     \boldsymbol{\Omega}_i,\boldsymbol{\Omega}_j)]\ ,
458     \label{eq:stickyPot}
459     \end{equation}
460     where $\nu_0$ is a strength parameter for the sticky potential, and
461     $s$ and $s^\prime$ are cubic switching functions which turn off the
462     sticky interaction beyond the first solvation shell. The $w$ function
463     can be thought of as an attractive potential with tetrahedral
464     geometry:
465     \begin{equation}
466     w({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
467     \sin\theta_{ij}\sin2\theta_{ij}\cos2\phi_{ij},
468     \label{eq:stickyW}
469     \end{equation}
470     while the $w^\prime$ function counters the normal aligned and
471     anti-aligned structures favored by point dipoles:
472     \begin{equation}
473     w^\prime({\bf r}_{ij},{\bf \Omega}_i,{\bf \Omega}_j)=
474     (\cos\theta_{ij}-0.6)^2(\cos\theta_{ij}+0.8)^2-w^0,
475     \label{eq:stickyWprime}
476     \end{equation}
477     It should be noted that $w$ is proportional to the sum of the $Y_3^2$
478     and $Y_3^{-2}$ spherical harmonics (a linear combination which
479     enhances the tetrahedral geometry for hydrogen bonded structures),
480     while $w^\prime$ is a purely empirical function. A more detailed
481     description of the functional parts and variables in this potential
482     can be found in the original SSD
483     articles.\cite{liu96:new_model,liu96:monte_carlo,chandra99:ssd_md,Ichiye03}
484    
485     Since SSD is a single-point {\it dipolar} model, the force
486     calculations are simplified significantly relative to the standard
487     {\it charged} multi-point models. In the original Monte Carlo
488     simulations using this model, Ichiye {\it et al.} reported that using
489     SSD decreased computer time by a factor of 6-7 compared to other
490     models.\cite{liu96:new_model} What is most impressive is that these savings
491     did not come at the expense of accurate depiction of the liquid state
492     properties. Indeed, SSD maintains reasonable agreement with the Soper
493     diffraction data for the structural features of liquid
494     water.\cite{Soper86,liu96:new_model} Additionally, the dynamical properties
495     exhibited by SSD agree with experiment better than those of more
496     computationally expensive models (like TIP3P and
497     SPC/E).\cite{chandra99:ssd_md} The combination of speed and accurate depiction
498     of solvent properties makes SSD a very attractive model for the
499     simulation of large scale biochemical simulations.
500    
501     Recent constant pressure simulations revealed issues in the original
502     SSD model that led to lower than expected densities at all target
503     pressures.\cite{Ichiye03,Gezelter04} The default model in {\sc oopse}
504     is therefore SSD/E, a density corrected derivative of SSD that
505     exhibits improved liquid structure and transport behavior. If the use
506     of a reaction field long-range interaction correction is desired, it
507     is recommended that the parameters be modified to those of the SSD/RF
508     model. Solvent parameters can be easily modified in an accompanying
509     {\sc BASS} file as illustrated in the scheme below. A table of the
510     parameter values and the drawbacks and benefits of the different
511     density corrected SSD models can be found in reference
512     \ref{Gezelter04}.
513    
514     \begin{lstlisting}[caption={[A simulation of {\sc ssd} water]An example file showing a simulation including {\sc ssd} water.},label={sch:ssd}]
515    
516     #include "water.mdl"
517    
518     nComponents = 1;
519     component{
520     type = "SSD_water";
521     nMol = 864;
522     }
523    
524     initialConfig = "liquidWater.init";
525    
526     forceField = "DUFF";
527    
528     /*
529     * The reactionField flag toggles reaction
530     * field corrections.
531     */
532    
533     reactionField = false; // defaults to false
534     dielectric = 80.0; // dielectric for reaction field
535    
536     /*
537     * The following two flags set the cutoff
538     * radius for the electrostatic forces
539     * as well as the skin thickness of the switching
540     * function.
541     */
542    
543     electrostaticCutoffRadius = 9.2;
544     electrostaticSkinThickness = 1.38;
545    
546     \end{lstlisting}
547    
548    
549     \subsection{\label{sec:eam}Embedded Atom Method}
550    
551     Several other molecular dynamics packages\cite{dynamo86} exist which have the
552     capacity to simulate metallic systems, including some that have
553     parallel computational abilities\cite{plimpton93}. Potentials that
554     describe bonding transition metal
555     systems\cite{Finnis84,Ercolessi88,Chen90,Qi99,Ercolessi02} have a
556     attractive interaction which models ``Embedding''
557     a positively charged metal ion in the electron density due to the
558     free valance ``sea'' of electrons created by the surrounding atoms in
559     the system. A mostly repulsive pairwise part of the potential
560     describes the interaction of the positively charged metal core ions
561     with one another. A particular potential description called the
562     Embedded Atom Method\cite{Daw84,FBD86,johnson89,Lu97}({\sc eam}) that has
563     particularly wide adoption has been selected for inclusion in {\sc oopse}. A
564     good review of {\sc eam} and other metallic potential formulations was done
565     by Voter.\cite{voter}
566    
567     The {\sc eam} potential has the form:
568     \begin{eqnarray}
569     V & = & \sum_{i} F_{i}\left[\rho_{i}\right] + \sum_{i} \sum_{j \neq i}
570     \phi_{ij}({\bf r}_{ij}) \\
571     \rho_{i} & = & \sum_{j \neq i} f_{j}({\bf r}_{ij})
572     \end{eqnarray}S
573    
574     where $F_{i} $ is the embedding function that equates the energy required to embed a
575     positively-charged core ion $i$ into a linear superposition of
576     spherically averaged atomic electron densities given by
577     $\rho_{i}$. $\phi_{ij}$ is a primarily repulsive pairwise interaction
578     between atoms $i$ and $j$. In the original formulation of
579     {\sc eam} cite{Daw84}, $\phi_{ij}$ was an entirely repulsive term, however
580     in later refinements to EAM have shown that non-uniqueness between $F$
581     and $\phi$ allow for more general forms for $\phi$.\cite{Daw89}
582     There is a cutoff distance, $r_{cut}$, which limits the
583     summations in the {\sc eam} equation to the few dozen atoms
584     surrounding atom $i$ for both the density $\rho$ and pairwise $\phi$
585     interactions. Foiles et al. fit EAM potentials for fcc metals Cu, Ag, Au, Ni, Pd, Pt and alloys of these metals\cite{FDB86}. These potential fits are in the DYNAMO 86 format and are included with {\sc oopse}.
586    
587    
588     \subsection{\label{Sec:pbc}Periodic Boundary Conditions}
589    
590     \newcommand{\roundme}{\operatorname{round}}
591    
592     \textit{Periodic boundary conditions} are widely used to simulate truly
593     macroscopic systems with a relatively small number of particles. The
594     simulation box is replicated throughout space to form an infinite lattice.
595     During the simulation, when a particle moves in the primary cell, its image in
596     other boxes move in exactly the same direction with exactly the same
597     orientation.Thus, as a particle leaves the primary cell, one of its images
598     will enter through the opposite face.If the simulation box is large enough to
599     avoid \textquotedblleft feeling\textquotedblright\ the symmetries of the
600     periodic lattice, surface effects can be ignored. Cubic, orthorhombic and
601     parallelepiped are the available periodic cells In OOPSE. We use a matrix to
602     describe the property of the simulation box. Therefore, both the size and
603     shape of the simulation box can be changed during the simulation. The
604     transformation from box space vector $\mathbf{s}$ to its corresponding real
605     space vector $\mathbf{r}$ is defined by
606     \begin{equation}
607     \mathbf{r}=\underline{\mathbf{H}}\cdot\mathbf{s}%
608     \end{equation}
609    
610    
611     where $H=(h_{x},h_{y},h_{z})$ is a transformation matrix made up of the three
612     box axis vectors. $h_{x},h_{y}$ and $h_{z}$ represent the three sides of the
613     simulation box respectively.
614    
615     To find the minimum image of a vector $\mathbf{r}$, we convert the real vector
616     to its corresponding vector in box space first, \bigskip%
617     \begin{equation}
618     \mathbf{s}=\underline{\mathbf{H}}^{-1}\cdot\mathbf{r}%
619     \end{equation}
620     And then, each element of $\mathbf{s}$ is wrapped to lie between -0.5 to 0.5,
621     \begin{equation}
622     s_{i}^{\prime}=s_{i}-\roundme(s_{i})
623     \end{equation}
624     where
625    
626     %
627    
628     \begin{equation}
629     \roundme(x)=\left\{
630     \begin{array}{cc}%
631     \lfloor{x+0.5}\rfloor & \text{if \ }x\geqslant0\\
632     \lceil{x-0.5}\rceil & \text{otherwise}%
633     \end{array}
634     \right.
635     \end{equation}
636    
637    
638     For example, $\roundme(3.6)=4$,$\roundme(3.1)=3$, $\roundme(-3.6)=-4$, $\roundme(-3.1)=-3$.
639    
640     Finally, we obtain the minimum image coordinates $\mathbf{r}^{\prime}$ by
641     transforming back to real space,%
642    
643     \begin{equation}
644     \mathbf{r}^{\prime}=\underline{\mathbf{H}}^{-1}\cdot\mathbf{s}^{\prime}%
645     \end{equation}
646    
647    
648     \section{Input and Output Files}
649    
650     \subsection{{\sc bass} and Model Files}
651    
652     Every {\sc oopse} simuation begins with a {\sc bass} file. {\sc bass}
653     (\underline{B}izarre \underline{A}tom \underline{S}imulation
654     \underline{S}yntax) is a script syntax that is parsed by {\sc oopse} at
655     runtime. The {\sc bass} file allows for the user to completely describe the
656     system they are to simulate, as well as tailor {\sc oopse}'s behavior during
657     the simulation. {\sc bass} files are denoted with the extension
658     \texttt{.bass}, an example file is shown in
659     Fig.~\ref{fig:bassExample}.
660    
661     \begin{figure}
662    
663     \centering
664     \framebox[\linewidth]{\rule{0cm}{0.75\linewidth}I'm a {\sc bass} file!}
665     \caption{Here is an example \texttt{.bass} file}
666     \label{fig:bassExample}
667     \end{figure}
668    
669     Within the \texttt{.bass} file it is neccassary to provide a complete
670     description of the molecule before it is actually placed in the
671     simulation. The {\sc bass} syntax was originally developed with this goal in
672     mind, and allows for the specification of all the atoms in a molecular
673     prototype, as well as any bonds, bends, or torsions. These
674     descriptions can become lengthy for complex molecules, and it would be
675     inconvient to duplicate the simulation at the begining of each {\sc bass}
676     script. Addressing this issue {\sc bass} allows for the inclusion of model
677     files at the top of a \texttt{.bass} file. These model files, denoted
678     with the \texttt{.mdl} extension, allow the user to describe a
679     molecular prototype once, then simply include it into each simulation
680     containing that molecule.
681    
682     \subsection{\label{subSec:coordFiles}Coordinate Files}
683    
684     The standard format for storage of a systems coordinates is a modified
685     xyz-file syntax, the exact details of which can be seen in
686     App.~\ref{appCoordFormat}. As all bonding and molecular information is
687     stored in the \texttt{.bass} and \texttt{.mdl} files, the coordinate
688     files are simply the complete set of coordinates for each atom at a
689     given simulation time.
690    
691     There are three major files used by {\sc oopse} written in the coordinate
692     format, they are as follows: the initialization file, the simulation
693     trajectory file, and the final coordinates of the simulation. The
694     initialization file is neccassary for {\sc oopse} to start the simulation
695     with the proper coordinates. It is typically denoted with the
696     extension \texttt{.init}. The trajectory file is created at the
697     beginning of the simulation, and is used to store snapshots of the
698     simulation at regular intervals. The first frame is a duplication of
699     the \texttt{.init} file, and each subsequent frame is appended to the
700     file at an interval specified in the \texttt{.bass} file. The
701     trajectory file is given the extension \texttt{.dump}. The final
702     coordinate file is the end of run or \texttt{.eor} file. The
703     \texttt{.eor} file stores the final configuration of teh system for a
704     given simulation. The file is updated at the same time as the
705     \texttt{.dump} file. However, it only contains the most recent
706     frame. In this way, an \texttt{.eor} file may be used as the
707     initialization file to a second simulation in order to continue or
708     recover the previous simulation.
709    
710     \subsection{Generation of Initial Coordinates}
711    
712     As was stated in Sec.~\ref{subSec:coordFiles}, an initialization file
713     is needed to provide the starting coordinates for a simulation. The
714     {\sc oopse} package provides a program called \texttt{sysBuilder} to aid in
715     the creation of the \texttt{.init} file. \texttt{sysBuilder} is {\sc bass}
716     aware, and will recognize arguments and parameters in the
717     \texttt{.bass} file that would otherwise be ignored by the
718     simulation. The program itself is under contiunual development, and is
719     offered here as a helper tool only.
720    
721     \subsection{The Statistics File}
722    
723     The last output file generated by {\sc oopse} is the statistics file. This
724     file records such statistical quantities as the instantaneous
725     temperature, volume, pressure, etc. It is written out with the
726     frequency specified in the \texttt{.bass} file. The file allows the
727     user to observe the system variables as a function od simulation time
728     while the simulation is in progress. One useful function the
729     statistics file serves is to monitor the conserved quantity of a given
730     simulation ensemble, this allows the user to observe the stability of
731     the integrator. The statistics file is denoted with the \texttt{.stat}
732     file extension.
733    
734     \section{\label{sec:mechanics}Mechanics}
735    
736     \subsection{\label{integrate}Integrating the Equations of Motion: the Symplectic Step Integrator}
737    
738     Integration of the equations of motion was carried out using the
739     symplectic splitting method proposed by Dullweber \emph{et
740     al.}.\cite{Dullweber1997} The reason for this integrator selection
741     deals with poor energy conservation of rigid body systems using
742     quaternions. While quaternions work well for orientational motion in
743     alternate ensembles, the microcanonical ensemble has a constant energy
744     requirement that is quite sensitive to errors in the equations of
745     motion. The original implementation of this code utilized quaternions
746     for rotational motion propagation; however, a detailed investigation
747     showed that they resulted in a steady drift in the total energy,
748     something that has been observed by others.\cite{Laird97}
749    
750     The key difference in the integration method proposed by Dullweber
751     \emph{et al.} is that the entire rotation matrix is propagated from
752     one time step to the next. In the past, this would not have been as
753     feasible a option, being that the rotation matrix for a single body is
754     nine elements long as opposed to 3 or 4 elements for Euler angles and
755     quaternions respectively. System memory has become much less of an
756     issue in recent times, and this has resulted in substantial benefits
757     in energy conservation. There is still the issue of 5 or 6 additional
758     elements for describing the orientation of each particle, which will
759     increase dump files substantially. Simply translating the rotation
760     matrix into its component Euler angles or quaternions for storage
761     purposes relieves this burden.
762    
763     The symplectic splitting method allows for Verlet style integration of
764     both linear and angular motion of rigid bodies. In the integration
765     method, the orientational propagation involves a sequence of matrix
766     evaluations to update the rotation matrix.\cite{Dullweber1997} These
767     matrix rotations end up being more costly computationally than the
768     simpler arithmetic quaternion propagation. With the same time step, a
769     1000 SSD particle simulation shows an average 7\% increase in
770     computation time using the symplectic step method in place of
771     quaternions. This cost is more than justified when comparing the
772     energy conservation of the two methods as illustrated in figure
773     \ref{timestep}.
774    
775     \begin{figure}
776     \epsfxsize=6in
777     \epsfbox{timeStep.epsi}
778     \caption{Energy conservation using quaternion based integration versus
779     the symplectic step method proposed by Dullweber \emph{et al.} with
780     increasing time step. For each time step, the dotted line is total
781     energy using the symplectic step integrator, and the solid line comes
782     from the quaternion integrator. The larger time step plots are shifted
783     up from the true energy baseline for clarity.}
784     \label{timestep}
785     \end{figure}
786    
787     In figure \ref{timestep}, the resulting energy drift at various time
788     steps for both the symplectic step and quaternion integration schemes
789     is compared. All of the 1000 SSD particle simulations started with the
790     same configuration, and the only difference was the method for
791     handling rotational motion. At time steps of 0.1 and 0.5 fs, both
792     methods for propagating particle rotation conserve energy fairly well,
793     with the quaternion method showing a slight energy drift over time in
794     the 0.5 fs time step simulation. At time steps of 1 and 2 fs, the
795     energy conservation benefits of the symplectic step method are clearly
796     demonstrated. Thus, while maintaining the same degree of energy
797     conservation, one can take considerably longer time steps, leading to
798     an overall reduction in computation time.
799    
800     Energy drift in these SSD particle simulations was unnoticeable for
801     time steps up to three femtoseconds. A slight energy drift on the
802     order of 0.012 kcal/mol per nanosecond was observed at a time step of
803     four femtoseconds, and as expected, this drift increases dramatically
804     with increasing time step. To insure accuracy in the constant energy
805     simulations, time steps were set at 2 fs and kept at this value for
806     constant pressure simulations as well.
807    
808    
809     \subsection{\label{sec:extended}Extended Systems for other Ensembles}
810    
811    
812     {\sc oopse} implements a
813    
814    
815     \subsubsection{\label{sec:noseHooverThermo}Nose-Hoover Thermostatting}
816    
817     To mimic the effects of being in a constant temperature ({\sc nvt})
818     ensemble, {\sc oopse} uses the Nose-Hoover extended system
819     approach.\cite{Hoover85} In this method, the equations of motion for
820     the particle positions and velocities are
821     \begin{eqnarray}
822     \dot{{\bf r}} & = & {\bf v} \\
823     \dot{{\bf v}} & = & \frac{{\bf f}}{m} - \chi {\bf v}
824     \label{eq:nosehoovereom}
825     \end{eqnarray}
826    
827     $\chi$ is an ``extra'' variable included in the extended system, and
828     it is propagated using the first order equation of motion
829     \begin{equation}
830     \dot{\chi} = \frac{1}{\tau_{T}} \left( \frac{T}{T_{target}} - 1 \right)
831     \label{eq:nosehooverext}
832     \end{equation}
833     where $T_{target}$ is the target temperature for the simulation, and
834     $\tau_{T}$ is a time constant for the thermostat.
835    
836     To select the Nose-Hoover {\sc nvt} ensemble, the {\tt ensemble = NVT;}
837     command would be used in the simulation's {\sc bass} file. There is
838     some subtlety in choosing values for $\tau_{T}$, and it is usually set
839     to values of a few ps. Within a {\sc bass} file, $\tau_{T}$ could be
840     set to 1 ps using the {\tt tauThermostat = 1000; } command.
841    
842    
843     \subsection{\label{Sec:zcons}Z-Constraint Method}
844    
845     Based on fluctuatin-dissipation theorem,\bigskip\ force auto-correlation
846     method was developed to investigate the dynamics of ions inside the ion
847     channels.\cite{Roux91} Time-dependent friction coefficient can be calculated
848     from the deviation of the instaneous force from its mean force.
849    
850     %
851    
852     \begin{equation}
853     \xi(z,t)=\langle\delta F(z,t)\delta F(z,0)\rangle/k_{B}T
854     \end{equation}
855    
856    
857     where%
858     \begin{equation}
859     \delta F(z,t)=F(z,t)-\langle F(z,t)\rangle
860     \end{equation}
861    
862    
863     If the time-dependent friction decay rapidly, static friction coefficient can
864     be approximated by%
865    
866     \begin{equation}
867     \xi^{static}(z)=\int_{0}^{\infty}\langle\delta F(z,t)\delta F(z,0)\rangle dt
868     \end{equation}
869    
870    
871     Hence, diffusion constant can be estimated by
872     \begin{equation}
873     D(z)=\frac{k_{B}T}{\xi^{static}(z)}=\frac{(k_{B}T)^{2}}{\int_{0}^{\infty
874     }\langle\delta F(z,t)\delta F(z,0)\rangle dt}%
875     \end{equation}
876    
877    
878     \bigskip Z-Constraint method, which fixed the z coordinates of the molecules
879     with respect to the center of the mass of the system, was proposed to obtain
880     the forces required in force auto-correlation method.\cite{Marrink94} However,
881     simply resetting the coordinate will move the center of the mass of the whole
882     system. To avoid this problem, a new method was used at {\sc oopse}. Instead of
883     resetting the coordinate, we reset the forces of z-constraint molecules as
884     well as subtract the total constraint forces from the rest of the system after
885     force calculation at each time step.
886     \begin{verbatim}
887     $F_{\alpha i}=0$
888     $V_{\alpha i}=V_{\alpha i}-\frac{\sum\limits_{i}M_{_{\alpha i}}V_{\alpha i}}{\sum\limits_{i}M_{_{\alpha i}}}$
889     $F_{\alpha i}=F_{\alpha i}-\frac{M_{_{\alpha i}}}{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}}\sum\limits_{\beta}F_{\beta}$
890     $V_{\alpha i}=V_{\alpha i}-\frac{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}V_{\alpha i}}{\sum\limits_{\alpha}\sum\limits_{i}M_{_{\alpha i}}}$
891     \end{verbatim}
892    
893     At the very beginning of the simulation, the molecules may not be at its
894     constraint position. To move the z-constraint molecule to the specified
895     position, a simple harmonic potential is used%
896    
897     \begin{equation}
898     U(t)=\frac{1}{2}k_{Harmonic}(z(t)-z_{cons})^{2}%
899     \end{equation}
900     where $k_{Harmonic}$\bigskip\ is the harmonic force constant, $z(t)$ is
901     current z coordinate of the center of mass of the z-constraint molecule, and
902     $z_{cons}$ is the restraint position. Therefore, the harmonic force operated
903     on the z-constraint molecule at time $t$ can be calculated by%
904     \begin{equation}
905     F_{z_{Harmonic}}(t)=-\frac{\partial U(t)}{\partial z(t)}=-k_{Harmonic}%
906     (z(t)-z_{cons})
907     \end{equation}
908     Worthy of mention, other kinds of potential functions can also be used to
909     drive the z-constraint molecule.
910    
911     \section{\label{sec:analysis}Trajectory Analysis}
912    
913     \subsection{\label{subSec:staticProps}Static Property Analysis}
914    
915     The static properties of the trajectories are analyzed with the
916     program \texttt{staticProps}. The code is capable of calculating the following
917     pair correlations between species A and B:
918     \begin{itemize}
919     \item $g_{\text{AB}}(r)$: Eq.~\ref{eq:gofr}
920     \item $g_{\text{AB}}(r, \cos \theta)$: Eq.~\ref{eq:gofrCosTheta}
921     \item $g_{\text{AB}}(r, \cos \omega)$: Eq.~\ref{eq:gofrCosOmega}
922     \item $g_{\text{AB}}(x, y, z)$: Eq.~\ref{eq:gofrXYZ}
923     \item $\langle \cos \omega \rangle_{\text{AB}}(r)$:
924     Eq.~\ref{eq:cosOmegaOfR}
925     \end{itemize}
926    
927     The first pair correlation, $g_{\text{AB}}(r)$, is defined as follows:
928     \begin{equation}
929     g_{\text{AB}}(r) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle %%
930     \sum_{i \in \text{A}} \sum_{j \in \text{B}} %%
931     \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofr}
932     \end{equation}
933     Where $\mathbf{r}_{ij}$ is the vector
934     \begin{equation*}
935     \mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i \notag
936     \end{equation*}
937     and $\frac{V}{N_{\text{A}}N_{\text{B}}}$ normalizes the average over
938     the expected pair density at a given $r$.
939    
940     The next two pair correlations, $g_{\text{AB}}(r, \cos \theta)$ and
941     $g_{\text{AB}}(r, \cos \omega)$, are similar in that they are both two
942     dimensional histograms. Both use $r$ for the primary axis then a
943     $\cos$ for the secondary axis ($\cos \theta$ for
944     Eq.~\ref{eq:gofrCosTheta} and $\cos \omega$ for
945     Eq.~\ref{eq:gofrCosOmega}). This allows for the investigator to
946     correlate alignment on directional entities. $g_{\text{AB}}(r, \cos
947     \theta)$ is defined as follows:
948     \begin{equation}
949     g_{\text{AB}}(r, \cos \theta) = \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
950     \sum_{i \in \text{A}} \sum_{j \in \text{B}}
951     \delta( \cos \theta - \cos \theta_{ij})
952     \delta( r - |\mathbf{r}_{ij}|) \rangle
953     \label{eq:gofrCosTheta}
954     \end{equation}
955     Where
956     \begin{equation*}
957     \cos \theta_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{r}}_{ij}
958     \end{equation*}
959     Here $\mathbf{\hat{i}}$ is the unit directional vector of species $i$
960     and $\mathbf{\hat{r}}_{ij}$ is the unit vector associated with vector
961     $\mathbf{r}_{ij}$.
962    
963     The second two dimensional histogram is of the form:
964     \begin{equation}
965     g_{\text{AB}}(r, \cos \omega) =
966     \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
967     \sum_{i \in \text{A}} \sum_{j \in \text{B}}
968     \delta( \cos \omega - \cos \omega_{ij})
969     \delta( r - |\mathbf{r}_{ij}|) \rangle \label{eq:gofrCosOmega}
970     \end{equation}
971     Here
972     \begin{equation*}
973     \cos \omega_{ij} = \mathbf{\hat{i}} \cdot \mathbf{\hat{j}}
974     \end{equation*}
975     Again, $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ are the unit
976     directional vectors of species $i$ and $j$.
977    
978     The static analysis code is also cable of calculating a three
979     dimensional pair correlation of the form:
980     \begin{equation}\label{eq:gofrXYZ}
981     g_{\text{AB}}(x, y, z) =
982     \frac{V}{N_{\text{A}}N_{\text{B}}}\langle
983     \sum_{i \in \text{A}} \sum_{j \in \text{B}}
984     \delta( x - x_{ij})
985     \delta( y - y_{ij})
986     \delta( z - z_{ij}) \rangle
987     \end{equation}
988     Where $x_{ij}$, $y_{ij}$, and $z_{ij}$ are the $x$, $y$, and $z$
989     components respectively of vector $\mathbf{r}_{ij}$.
990    
991     The final pair correlation is similar to
992     Eq.~\ref{eq:gofrCosOmega}. $\langle \cos \omega
993     \rangle_{\text{AB}}(r)$ is calculated in the following way:
994     \begin{equation}\label{eq:cosOmegaOfR}
995     \langle \cos \omega \rangle_{\text{AB}}(r) =
996     \langle \sum_{i \in \text{A}} \sum_{j \in \text{B}}
997     (\cos \omega_{ij}) \delta( r - |\mathbf{r}_{ij}|) \rangle
998     \end{equation}
999     Here $\cos \omega_{ij}$ is defined in the same way as in
1000     Eq.~\ref{eq:gofrCosOmega}. This equation is a single dimensional pair
1001     correlation that gives the average correlation of two directional
1002     entities as a function of their distance from each other.
1003    
1004     All static properties are calculated on a frame by frame basis. The
1005     trajectory is read a single frame at a time, and the appropriate
1006     calculations are done on each frame. Once one frame is finished, the
1007     next frame is read in, and a running average of the property being
1008     calculated is accumulated in each frame. The program allows for the
1009     user to specify more than one property be calculated in single run,
1010     preventing the need to read a file multiple times.
1011    
1012     \subsection{\label{dynamicProps}Dynamic Property Analysis}
1013    
1014     The dynamic properties of a trajectory are calculated with the program
1015     \texttt{dynamicProps}. The program will calculate the following properties:
1016     \begin{gather}
1017     \langle | \mathbf{r}(t) - \mathbf{r}(0) |^2 \rangle \label{eq:rms}\\
1018     \langle \mathbf{v}(t) \cdot \mathbf{v}(0) \rangle \label{eq:velCorr} \\
1019     \langle \mathbf{j}(t) \cdot \mathbf{j}(0) \rangle \label{eq:angularVelCorr}
1020     \end{gather}
1021    
1022     Eq.~\ref{eq:rms} is the root mean square displacement
1023     function. Eq.~\ref{eq:velCorr} and Eq.~\ref{eq:angularVelCorr} are the
1024     velocity and angular velocity correlation functions respectively. The
1025     latter is only applicable to directional species in the simulation.
1026    
1027     The \texttt{dynamicProps} program handles he file in a manner different from
1028     \texttt{staticProps}. As the properties calculated by this program are time
1029     dependent, multiple frames must be read in simultaneously by the
1030     program. For small trajectories this is no problem, and the entire
1031     trajectory is read into memory. However, for long trajectories of
1032     large systems, the files can be quite large. In order to accommodate
1033     large files, \texttt{dynamicProps} adopts a scheme whereby two blocks of memory
1034     are allocated to read in several frames each.
1035    
1036     In this two block scheme, the correlation functions are first
1037     calculated within each memory block, then the cross correlations
1038     between the frames contained within the two blocks are
1039     calculated. Once completed, the memory blocks are incremented, and the
1040     process is repeated. A diagram illustrating the process is shown in
1041     Fig.~\ref{fig:dynamicPropsMemory}. As was the case with \texttt{staticProps},
1042     multiple properties may be calculated in a single run to avoid
1043     multiple reads on the same file.
1044    
1045     \begin{figure}
1046     \epsfxsize=6in
1047     \epsfbox{dynamicPropsMem.eps}
1048     \caption{This diagram illustrates the dynamic memory allocation used by \texttt{dynamicProps}, which follows the scheme: $\sum^{N_{\text{memory blocks}}}_{i=1}[ \operatorname{self}(i) + \sum^{N_{\text{memory blocks}}}_{j>i} \operatorname{cross}(i,j)]$. The shaded region represents the self correlation of the memory block, and the open blocks are read one at a time and the cross correlations between blocks are calculated.}
1049     \label{fig:dynamicPropsMemory}
1050     \end{figure}
1051    
1052     \section{\label{sec:ProgramDesign}Program Design}
1053    
1054     \subsection{\label{sec:architecture} OOPSE Architecture}
1055    
1056     The core of OOPSE is divided into two main object libraries: {\texttt
1057     libBASS} and {\texttt libmdtools}. {\texttt libBASS} is the library
1058     developed around the parseing engine and {\texttt libmdtools} is the
1059     software library developed around the simulation engine.
1060    
1061    
1062    
1063     \subsection{\label{sec:programLang} Programming Languages }
1064    
1065     \subsection{\label{sec:parallelization} Parallelization of OOPSE}
1066    
1067     Although processor power is doubling roughly every 18 months according
1068     to the famous Moore's Law\cite{moore}, it is still unreasonable to
1069     simulate systems of more then a 1000 atoms on a single processor. To
1070     facilitate study of larger system sizes or smaller systems on long
1071     time scales in a reasonable period of time, parallel methods were
1072     developed allowing multiple CPU's to share the simulation
1073     workload. Three general categories of parallel decomposition method's
1074     have been developed including atomic, spatial and force decomposition
1075     methods.
1076    
1077     Algorithmically simplest of the three method's is atomic decomposition
1078     where N particles in a simulation are split among P processors for the
1079     duration of the simulation. Computational cost scales as an optimal
1080     $O(N/P)$ for atomic decomposition. Unfortunately all processors must
1081     communicate positions and forces with all other processors leading
1082     communication to scale as an unfavorable $O(N)$ independent of the
1083     number of processors. This communication bottleneck led to the
1084     development of spatial and force decomposition methods in which
1085     communication among processors scales much more favorably. Spatial or
1086     domain decomposition divides the physical spatial domain into 3D boxes
1087     in which each processor is responsible for calculation of forces and
1088     positions of particles located in its box. Particles are reassigned to
1089     different processors as they move through simulation space. To
1090     calculate forces on a given particle, a processor must know the
1091     positions of particles within some cutoff radius located on nearby
1092     processors instead of the positions of particles on all
1093     processors. Both communication between processors and computation
1094     scale as $O(N/P)$ in the spatial method. However, spatial
1095     decomposition adds algorithmic complexity to the simulation code and
1096     is not very efficient for small N since the overall communication
1097     scales as the surface to volume ratio $(N/P)^{2/3}$ in three
1098     dimensions.
1099    
1100     Force decomposition assigns particles to processors based on a block
1101     decomposition of the force matrix. Processors are split into a
1102     optimally square grid forming row and column processor groups. Forces
1103     are calculated on particles in a given row by particles located in
1104     that processors column assignment. Force decomposition is less complex
1105     to implement then the spatial method but still scales computationally
1106     as $O(N/P)$ and scales as $(N/\sqrt{p})$ in communication
1107     cost. Plimpton also found that force decompositions scales more
1108     favorably then spatial decomposition up to 10,000 atoms and favorably
1109     competes with spatial methods for up to 100,000 atoms.
1110    
1111     \subsection{\label{sec:memory}Memory Allocation in Analysis}
1112    
1113     \subsection{\label{sec:documentation}Documentation}
1114    
1115     \subsection{\label{openSource}Open Source and Distribution License}
1116    
1117    
1118     \section{\label{sec:conclusion}Conclusion}
1119    
1120     \begin{itemize}
1121    
1122     \item Restate capabilities
1123    
1124     \item recap major structure / design choices
1125    
1126     \begin{itemize}
1127    
1128     \item parallel
1129     \item symplectic integration
1130     \item languages
1131    
1132     \end{itemize}
1133    
1134     \item How well does it meet the primary goal
1135    
1136     \end{itemize}
1137     \section{Acknowledgments}
1138     The authors would like to thank espresso for fueling this work, and
1139     would also like to send a special acknowledgement to single malt
1140     scotch for its wonderful calming effects and its ability to make the
1141     troubles of the world float away.
1142     \bibliographystyle{achemso}
1143    
1144     \bibliography{oopse}
1145    
1146     \end{document}